Group members (1 to 4): \qquad Due 3/30
(1) In the standard betting ("pass the line") in the game of Craps, you begin in the "come-out" state. Each round you roll two 6 -sided dice, and total the result. In the come-out state, if you roll a 2,3 , or 12 , you lose. If you roll a 7 or 11 , you win. Otherwise, the number you roll becomes the "point" number ($4,5,6,8,9$, or 10). Once the point number is set, you continue rolling until you either roll the point again, in which case you win, or you roll 7 , in which case you lose.

If we use the ordered list of states $p=[$ comeout, win, lose, $4,5,6,8,9,10]$, then we obtain a Markov chain with $p_{i+1}=p_{i} T$, where T is the transition matrix.

Complete the transition matrix below, and then draw the states and transitions as a graph. You do not have to label the edges with their weights, but do not include an edge if the transition value is zero.

$$
T=\left(\begin{array}{ccccccccc}
0 & \frac{2}{9} & \frac{1}{9} & \frac{1}{12} & \frac{1}{9} & \frac{5}{36} & \frac{5}{36} & \frac{1}{9} & \frac{1}{12} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{12} & \frac{1}{6} & \frac{3}{4} & 0 & 0 & 0 & 0 & 0 \\
0 & & & & & & & & \\
0 & \frac{5}{36} & \frac{1}{6} & 0 & 0 & \frac{25}{36} & 0 & 0 & 0 \\
0 & \frac{5}{36} & \frac{1}{6} & 0 & 0 & 0 & \frac{25}{36} & 0 & 0 \\
0 & \frac{1}{9} & \frac{1}{6} & 0 & 0 & 0 & 0 & \frac{13}{18} & 0 \\
0 & \frac{1}{12} & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & \frac{3}{4}
\end{array}\right)
$$

