Group members (1 to 3): \qquad

(1) Calculate the evolutionary distance d in the Jukes-Cantor model for every pair of the above sequences. $\left(d=-\frac{3}{4} \ln \left(1-\frac{4}{3} D\right)\right.$.)
(2) Repeat the above exercise with Γ-distributed rates with shape parameter $a=$ $1 / 4$.

$$
\left(d=\frac{3}{4} a\left(\left(1-\frac{4 D}{3}\right)^{-\frac{1}{a}}-1\right) .\right)
$$

(3) Repeat the above exercise using the Kimura model.
$\left(d=-\frac{1}{2} \ln (1-2 S-V)-\frac{1}{4} \ln (1-2 V).\right)$
(4) Which makes more of a difference to the ratio d_{23} / d_{12} (compared to the JukesCantor model), using the Kimura model or the $\mathrm{JC}+\Gamma$ model with $a=1 / 4$?

