Math 5233 Jukes-Cantor and Kimura model worksheet

Group members (1 to 3):

(1) Calculate the evolutionary distance d in the Jukes-Cantor model for every pair of the above sequences. $(d = -\frac{3}{4}\ln(1 - \frac{4}{3}D).)$

(2) Repeat the above exercise with Γ -distributed rates with shape parameter $a = \frac{1}{4}$.

$$(d = \frac{3}{4}a((1 - \frac{4D}{3})^{-\frac{1}{a}} - 1).)$$

(3) Repeat the above exercise using the Kimura model. $(d = -\frac{1}{2}\ln(1 - 2S - V) - \frac{1}{4}\ln(1 - 2V).)$

(4) Which makes more of a difference to the ratio d_{23}/d_{12} (compared to the Jukes-Cantor model), using the Kimura model or the JC+ Γ model with a = 1/4?