(1) Find the Jordan normal form of the matrix \(\begin{pmatrix} -2 & 0 & 1 \\ -1 & -2 & 2 \\ -1 & -1 & 1 \end{pmatrix} \). You do not have to explicitly compute the similarity matrix.

(2) Show that a \(n \times n \) matrix \(A \) is normal if and only if \(\text{tr}(A^*A) = \sum_{i=1}^{n} |\lambda_i|^2 \) where \(\lambda_i \) is the \(i \)th eigenvalue of \(A \).

(3) Show that the eigenvalues of the tridiagonal Toeplitz matrices

\[
B_n = \begin{pmatrix}
a & b & 0 & 0 & \ldots & 0 & 0 \\
c & a & b & 0 & \ldots & 0 & 0 \\
0 & c & a & b & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & a & b \\
0 & 0 & 0 & 0 & \ldots & c & a
\end{pmatrix}
\]

only depend on \(a \) and the product \(bc \) (instead of \(b \) and \(c \) individually).

(4) Is the set of trace-free (i.e. their trace is zero) linear transformations of \(\mathbb{C}^n \) a vector space? Justify your answer.

(5) Find the orthogonal projection matrix that projects onto the subspace of \(\mathbb{R}^4 \) satisfying the conditions \(x_1 + x_2 + x_3 + x_4 = 0 \) and \(x_1 - x_2 = 0 \).

(6) What is the set of \(\lambda \) for which \(\lim_{n \to \infty} J^n_\lambda = 0 \) if \(J_\lambda = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \)? Extra credit question: for which \(\lambda \) in this set does the 2-norm of \(J^n_\lambda \) decrease monotonically?

(7) Find the least squares solution to \(\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 3 & -1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

(8) Suppose that a \(8 \times 8 \) matrix \(A \) has the property that \(\text{Range}(A^4) \subset \text{Nullspace}(A^3) \), and \(\dim(\text{Range}(A^3)) = 3 \). What are the possible values of the rank of \(A \)? What are the possible Jordan forms for \(A \)?

(9) Extra credit: if \(P_M \) and \(P_N \) are orthogonal projectors onto subspaces \(M \) and \(N \), respectively, show that the orthogonal projection onto \(M \cap N \) can be written as \(2P_M(P_M + P_N)^\dagger P_N \) where \(\dagger \) denotes the pseudo-inverse.