LOCATION

—A multiply-intruded subsuite of the Duluth Complex composed of medium-grained, moderately to well foliated, rarely locally varitextured on an outcrop scale; moderately to well foliated; locally grades to oxide troctolite, augite-bearing troctolite, augite troctolite, inclusions (or areas rich in inclusions) of various anorthositic rock types. Inclusions range in size from a few centimeters to several hundred meters in diameter. Inclusions are typically oval to lens-shaped and have sharp edges. Inclusions are commonly surrounded by a thin boundary of fine-grained material, which is likely a reaction rim formed as the inclusion was emplaced. The reaction rim is typically a few millimeters thick and is composed of a fine-grained, granoblastic texture. The reaction rim is often zoned, with a core of fine-grained material that grades outward into a more mafic texture. The reaction rim is typically surrounded by a zone of fine-grained material, which may be a mixture of fine-grained clinopyroxene and olivine. The fine-grained material is often more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock. The fine-grained material may be more mafic in composition than the inclusion, indicating that it was formed as a result of reactions between the inclusion and the host rock. The fine-grained material may also contain small amounts of feldspar and quartz, which are likely derived from the host rock.