Tetrapod Limb Development

February 11, 2008
Tetrapod Limbs

© Vicki Lockard and Paul Barry

© Father Alejandro Sanchez

© Merlin D. Tuttle

© Anne Fischer
Limb Patterning

- **Stylopod**
 - Humerus
 - Radius
 - Ulna

- **Zeugopod**
 - Carpals
 - Metacarpals

- **Autopod**
 - Phalanges

Human arm

Chicken wing

Chicken leg

Orientation
- Anterior
- Ventral
- Distal
- Posterior
- Dorsal
- Proximal

Anatomical parts
- Humerus
- Radius
- Ulna
- Carpals
- Metacarpals
- Phalanges
- Shoulder
- Knuckle
- Palm
- Finger
- Thumb
- Pinkie
Endochondral Bone Development

Epiphyseal cartilage

Compact nodules

Growth plate

Proliferating chondrocytes

Hypertrophic chondrocytes

Osteoblasts

Blood vessel

Proliferating chondrocytes

Secondary ossification center
Somite Formation

- 26-29 h
- 29-33 h
- 33-38 h
- 40-45 h
- 50-53 h
- 55+ h
Limb Buds

Fgf10 expression
Vertebrate Limb Buds

Hox expression determines limb bud location

Hox5
Hox6

Limb bud
Ectoderm

Somites
Lateral plate mesoderm
Mesodermal mesenchyme
Forelimb initiation: - anterior-most point of *Hoxc6* expression
Tbx Genes Specify Limb Type

NOTE – *Tbx* genes are not the first step in forelimb/hindlimb specification
- initial step(s) unknown
- *Tbx*’s initiated by Wnts, FGFs
Fgf/Wnt - Limb Bud Initiation

(A) Somitic mesoderm
Intermediated mesoderm

(B) Lateral plate mesoderm
Surface ectoderm

(C) Wnt2b
Fgf10
Wnt8c
Wnt3a
Fgf8
AER

Legend:
- Fgf8
- Fgf10
- Fgf10 (stabilized)
- Wnt2b/8c
- Wnt3a
Vertebrate Limb Axes

Mesoderm

Proximal

Ventral

Posterior

Anterior

Ectoderm

Dorsal

Distal

Shoulder

Knuckle

Pinkie

Palm

Finger
Apical Ectodermal Ridge (AER) forms at boundary between dorsal and ventral ectoderm

Lateral plate mesoderm expresses Fgf10
Fgf10 initiates AER via Wnt3a, β-catenin
AER expresses Fgf8, Fgf4; maintains Fgf10 expression
Apical Ectodermal Ridge Manipulation

- **AER removed**
 - Extent of development depends on time of AER removal
 - Limb development ceases

- **Extra AER**
 - Wing is duplicated
 - Distal structures are duplicated

- **Forelimb mesenchyme**
 - Degree of “legness” of wing depends on placement of leg mesenchyme

- **Leg mesenchyme**
 - Leg

- **Nonlimb mesenchyme**
 - Wing

- **AER replaced by FGF bead**
 - Normal wing
 - AER regresses; limb development ceases
Progress Zone – mesodermal mesenchyme; receives AER signals:
- promotes proliferation (mitosis)
- prevents differentiation into cartilage
- maintains expression of A/P and D/V-related signals

PZ mesenchyme specifies proximal-distal axis
- transplantation experiments demonstrated that positional information was carried by PZ cells
- PZs conveyed age-appropriate specification instructions
Proximal-Distal Specification Models

Progress zone model: Identity established by residence time in PZ

Early allocation and progenitor expansion model: Elements are specified early

Specifying mechanism - ??
5’ Hox Genes Pattern Limb Elements

Forelimb

Hox paralog group

13
12
11
10
9

Hindlimb

Hox paralog group

13
12
11
10
9

Stylopod

Zeugopod

Autopod
Anterior-Posterior Specification

Shh necessary and sufficient for establishing ZPA
(NOTE – Shh not necessary for polarity of stylopod)

Shh induced by **dHAND** and **Hoxb8**

ZPA maintained by feedback loop with AER

NOTE – preaxial polydactyly (PPD) models showed that Shh expression is controlled by a long-range enhancer; located in Lmbr1 locus; ~1Mb away from Shh; Lmbr1 locus contains ZPA Regulatory Sequence (ZRS); ZRS contains core region – Mouse Fish Conserved Sequence 1 (MFCS1)

5’ HoxD proteins bind to ZRS/MFCS1
- Hoxd8 induces Shh
- provides regulatory options for Hox proteins
1. dHAND - bHLH transcription factor and Fgf8 from AER stimulate Shh
 - Fgf8 (and Fgf4) maintains Shh expression

2. Shh up-regulates Gremlin1 in posterior mesenchyme
 - Gremlin1 antagonizes BMP ligands
 - BMPs repress Fgf expression in AER

3. Wnt7a maintains Shh
 Wnt7a determines the size of the AER

Loss-of-function mutants (both Shh and Gremlin1) = syndactyly, loss of digits
Drosophila Hedgehog Pathway

Hedgehog
Patched
Smoothened
Ci protein made activator
Transcription

Cytoplasm
Patched inhibits smoothened

Microtubule
Cos2
Fused
Ci
Repressor
No transcription of Hedgehog-responsive genes

PKA
Smoothened inhibits PKA and Slimb
Slimb

Activation
Transcription of Hedgehog-response genes

CBP

Drosophila
Vertebrate Hedgehog Activity

Vertebrate homologues:
- Hh - Sonic hedgehog (Shh), plus others
- Ci – Gli (Gli1, Gli2, Gli3)

Pathway activity
- SHH absent:
 - Gli3 – proteolytic fragment – acts as a transcriptional repressor (Gli3R)
 - represses e.g. dHAND, Gremlin, Fgf4, Hoxd13
- SHH present:
 - Gli’s retained in long form – acts as a transcriptional activator
 - e.g. Gli1 activates Shh
ZPA Morphogen Gradient

Shh gradient

High [Morphogen] Low

Posterior Anterior

1 2 3 4 5
ZPA Transplantation

Posterior tissue transplant to anterior = duplicated autopod
 - Note structure: “mirror-image”

Mirror-image duplication effects can be replicated by transplanting Shh bead

Retinoic acid operates upstream of Shh
 - implant RA-soaked bead = mirror-image duplication
 - possible Hox gene involvement

Hox Genes in Early Limb Bud

NOTE - SHH binding switches Gli3R (repressor form) to Gli3A (activator form)
- initiates transcription of 5’ Hoxd genes
- Hoxd genes then maintain Shh expression
Shh Specifies Digit Identity

(A) Specifies Digit Identity

(B) Specifies Digit Identity

(C) Digit 1: Shh-independent
Digit 2: Shh concentration
Digit 3: Shh time of expression and concentration
Digits 4–5: Shh time of expression

(D) Shh diffusion
Shh descendants
Vertebrate Hedgehog Activity

Vertebrate homologues:

Hh - Sonic hedgehog (Shh), plus others
Ci – Gli (Gli1, Gli2, Gli3)

Without SHH:

Gli3 – proteolytic fragment – acts as a transcriptional repressor (Gli3R)
 - represses e.g. dHAND, Gremlin, Fgf4, Hoxd13

With SHH signal:

Gli’s retained in long form – acts as a transcriptional activator
 - e.g. Gli1 activates Shh

Gli3⁻/⁻ = polydactyly; (~)8 digits; unpatterned
Shh⁻/⁻ = 1 digit; Gli3R prevails

Anterior – high Gli3R
Posterior – low Gli3R

SHH main function may be to relieve Gli3R repression in posterior region
Shh/Gli3 Knockouts

Shh digit specification:

5,4 - autocrine
3 – autocrine and diffusion (paracrine)
2 – diffusion (paracrine)
1 – not Shh-dependent

Shh knockout – one digit

Shh/Gli3 knockouts – multiple digits
#1 or unspecified variants
BMPs Regulate Digital Identity

Shh initiates BMP2 and BMP7 gradients
- BMPs in interdigital mesoderm (webbing) specifies identity of digits anteriorly
- BMP targets unknown

NOTE – BMP effects probably only on tissue “primed” by Shh

Remove interdigital mesoderm

NOTE – Fgfs from AER control phalange development; Shh bead inserted between digits can add phalange; Shh sustains Fgf signal; Fgf inhibitor = lack of phalange

Insert BMP antagonist into interdigital webbing

Noggin – BMP antagonist
Dorsal-Ventral Specification

Progress Zone (PZ)

Ectoderm

Apical Ectodermal Ridge (AER)

Zone of Polarizing Activity (ZPA)

Wnt7a – necessary and sufficient to dorsalize limb bud
- *Wnt7a* knockouts = ventral footpads on both surfaces
- induces *Lmx1* in dorsal mesenchyme
- *Lmx1* knockouts = ventralized phenotype