Carlson (7e) PowerPoint Lecture Outline Chapter 8: Control of Movement

This multimedia product and its contents are protected under copyright

law. The following are prohibited by law:

•any public performance or display, including transmission of any image over a network;

preparation of any derivative work, including extraction, in whole or in part, of any images;

•any rental, lease, or lending of the program.

Skeletal Muscle

- Movements of our body are accomplished by contraction of the skeletal muscles
 - <u>Flexion</u>: contraction of a flexor muscle draws in a limb
 - <u>Extension</u>: contraction of extensor muscle
- Skeletal muscle fibers have a striated appearance
- Skeletal muscle is composed of two fiber types:
 - <u>Extrafusal</u>: innervated by alpha-motoneurons from the spinal cord: exert force
 - Intrafusal: sensory fibers that detect stretch of the muscle
 - Afferent fibers: report length of intrafusal: when stretched, the fibers stimulate the alpha-neuron that innervates the muscle fiber: maintains muscle tone

• Efferent fibers: contraction adjusts sensitivity of afferent fibers. Copyright 2001 by Allyn & Bacon

Skeletal Muscle Anatomy

- Each muscle fiber consists of a bundle of <u>myofibrils</u>
 - Each myofibril is made up of overlapping strands of <u>actin</u> and <u>myosin</u>
 - During a muscle twitch, the myosin filaments move relative to the actin filaments, thereby shortening the muscle fiber

Neuromuscular Junction

- The neuromuscular junction is the synapse formed between an alpha motor neuron axon and a muscle fiber
 - Each axon can form synapses with several muscle fibers (forming a motor unit)
 - The precision of muscle control is related to motor unit size
 - Small: precise movements of the hand
 - ◆ Large: movements of the leg
- ACh is the neuromuscular junction neurotransmitter
 - Release of ACh produces a large endplate potential
 - Voltage changes open CA⁺⁺ channels
 - CA⁺⁺ entry triggers myosin-actin interaction (rowing action)
 - Movement of myosin bridges shortens muscle fiber

Smooth and Cardiac Muscle

- Smooth muscle is controlled by the autonomic nervous system
 - Multiunit smooth muscle is normally inactive
 - Located in large arteries, around hair and in the eye
 - Responds to neural or hormonal stimulation
 - Single-unit smooth muscle exhibits rhythmic contraction
 - Muscle fibers produce spontaneous pacemaker potentials that elicit action potentials in adjacent smooth muscle fibers
 - Single-unit muscle is found in gastrointestinal tract, uterus, small blood vessels
- Cardiac muscle fibers resemble striated muscle in appearance, but exhibit rhythmic contractions like that of single-unit smooth muscle

Muscle Sensory Feedback

 Striated muscle contraction is governed by sensory feedback

- Intrafusal fibers are in parallel with extrafusal fibers
- Intrafusal receptors fire when the extrafusal muscle fibers lengthen (load on muscle)
 - Intrafusal fibers activate agonist muscle fibers and inhibit antagonist muscle fibers
 - Extrafusal contraction eliminates intrafusal firing
- Golgi tendon organ (GTO) receptors are located within tendons
 - Sense degree of stretch on muscle
 - GTO activation inhibits the agonist muscle (via release of glycine onto alpha-motoneuron
 - GTO receptors function to prevent over-contraction of striated muscle

Spinal Cord Anatomy

- Spinal cord is organized into dorsal and ventral aspects
 - Dorsal horn receives incoming sensory information
 - Ventral horn issues efferent fibers (alpha-motoneurons) that innervate extrafusal fibers

Fig 3.23

Spinal Cord Reflexes

- Monosynaptic reflexes involve a single synapse between a sensory fiber from a muscle and an alpha-motor neuron
 - Sensory fiber activation quickly activates the alpha motor neuron which contracts muscle fibers
 - Patellar reflex
 - Monosynaptic stretch stretch (posture)
- Polysynaptic reflexes involve multiple synapses between sensory axons, interneurons, and motor neurons
 - Axons from the afferent muscle spindles can synapse onto
 - Alpha motoneuron connected to the agonist muscle
 - An inhibitory interneuron connected to the antagonist muscle
 - Signals from the muscle spindle activate the agonist and inhibit the antagonist muscle

Polysynaptic Reflex

Copyright 2001 by Allyn & Bacon

8.9

Motor Cortex

- Multiple motor systems control body movements
 - Walking, talking, postural, arm and finger movements
- Primary motor cortex is located on the precentral gyrus
 - Motor cortex is somatotopically organized (motor homunculus)
 - Motor cortex receives input from
 - Premotor cortex
 - Supplemental motor area
 - Frontal association cortex
 - Primary somatosensory cortex
 - Planning of movements involves the premotor cortex and the supplemental motor area which influence the primary motor cortex

Motor "Homunculus"

Cortical Control of Movement

Descending Motor Pathways

- Axons from primary motor cortex descend to the spinal cord via two groups
 - Lateral group: controls independent limb movements
 - Corticospinal tract: hand/finger movements
 - Corticobulbar tract: movements of face, neck, tongue, eye
 - Rubrospinal tract: fore- and hind-limb muscles
 - Ventromedial group control gross limb movements
 - Vestibulospinal tract: control of posture
 - Tectospinal tract: coordinate eye and head/trunk movements
 - Reticulospinal tract: walking, sneezing, muscle tone
 - Ventral corticospinal tract: muscles of upper leg/trunk

Corticospinal Tract

- Neurons of the corticospinal tract terminate on motor neurons within the gray matter of the spinal cord
 - Corticospinal tract starts in layer 5 of primary motor cortex
 - Passes through the cerebral peduncles of the midbrain
 - Corticospinal neurons decussate (crossover) in the medulla
 - ↗ 80% become the lat. corticospinal tract
 - ↗ 20% become the ventral corticospinal tract
 - Terminate onto internuncial neurons or alpha-motoneurons of ventral horn
- Corticospinal tracts control fine movements
 - Destruction: loss of muscle strength, reduced dexterity of hands and fingers
 - No effect of corticospinal lesions on posture or use of limbs for reaching

The Apraxias

- Apraxia refers to an inability to properly execute a learned skilled movement following brain damage
 - Limb apraxia involves movement of the wrong portion of a limb, incorrect movement of the correct limb part, or an incorrect sequence of movements
 - <u>Callosal apraxia</u>: person cannot perform movement of left hand to a verbal request (anterior callosum interruption prevents information from reaching right hemisphere)
 - <u>Sympathetic apraxia</u>: damage to anterior left hemisphere causes apraxia of the left arm (as well as paralysis of right arm and hand)
 - Left parietal apraxia: difficulty in initiating movements to verbal request
 - Constructional apraxia is caused by right parietal lobe damage
 - Person has difficulty with drawing pictures or assembling objects