Correlation & Regression
Chapter 5

Correlation: Do you have a relationship?
Between two Quantitative Variables (measured on **Same** Person)

1. If you have a relationship ($p<0.05$)?
2. What is the Direction (+ vs. -)?
3. What is the Strength (r: from -1 to $+1$)?

Regression: If you have a Significant Correlation:
How well can you **Predict** a subject’s y-score if you know their X-score (and vice versa)
Are predictions for members of the Population as good As predictions for Sample members?
Correlations measure LINEAR Relationships

No Relationship: $r=0.0$
Y-scores do not have a Tendency to go up or down as X-scores go up
You cannot Predict a person’s Y-value if you know his X-Value any better than if you Didn’t know his X-score

Positive Linear Relationship: Y-scores tend to go up as X-scores go up
Correlations measure LINEAR Relationships, cont.

There IS a relationship, but it's not Linear

R=0.0, but that DOESN’T mean that the two variables are Unrelated
Interpreting r-values

Coefficient of Determination – r^2:

Square of r-value

$r^2 * 100 = \text{Percent of Shared Variance}; \text{the Rest of the variance is Independent of the other variable}$

$r=0.50$ $r=0.6928$
Interpreting r-values

If the Coefficient of Determination between height and weight is $r^2=0.3$ ($r=0.9$):

• 30% of variability in people's weight can be related to their height

• 70% of the difference between people in their weight is independent of their height

• Remember: This does not mean that weight is partially caused by height
 Arm and leg length have a high coefficient of determination but a growing leg does not cause your arm to grow
IV & DV both Quantitative

Correlation:
Each data point represents Two Measures from Same person.

1. Is There a Relationship?
2. What Direction is the Relationship?
3. How Strong is the Relationship?
 -1 0 1

The stronger the relationship, the better you can predict one score if you know the other.
Negative Correlation

Quasi-Independent Variable:
of cigarettes/day

Dependent Variable:
Physical Endurance

The fatter the field, the weaker the correlation

$ r = -0.30 $
$ r = -0.50 $
$ r = -0.70 $
$ r = -0.90 $
$ r = -0.95 $
$ r = -0.99 $
Correlations

of Malformed Cells in Lung Biopsy

of Cigarettes Smoked per Day x 10

Correlation coefficient = .95
Correlation

Lung Capacity

of cigarettes smoked per day x 10
Methodology: Restriction of Range

Restriction of Range cases an artificially low (underestimated) value of r.

E.G. using just high GRE scores represented by the open circles. Common when using the scores to determine Who is used in the correlational analysis.

E.G.: Only applicants with high GRE scores get into Grad School.
Computing r

Raw Scores

$$r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2}[\sum (Y - \bar{Y})^2]}$$

Deviation Scores

$$r = \frac{\sum xy}{\sqrt{(\sum x^2)(\sum y^2)}}$$
Computing \(r \), cont.

\[
r = \frac{\sum (z_x z_y)}{N}
\]

Z-scores
Can You Predict Y_i If You Know X_i?

$$r = \frac{\Sigma (X - \bar{X})(Y - \bar{Y})}{\sqrt{[\Sigma (X - \bar{X})^2][\Sigma (Y - \bar{Y})^2]}}$$

<table>
<thead>
<tr>
<th>X</th>
<th align="right">d_i</th>
<th align="right">$d_{ix} \times d_{ix}$</th>
<th>Y</th>
<th align="right">d_i</th>
<th align="right">$d_{iy} \times d_{iy}$</th>
<th align="right">$d_{ix} \times d_{iy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td align="right">10</td>
<td align="right">100</td>
<td>10</td>
<td align="right">10</td>
<td align="right">100</td>
<td align="right">100</td>
</tr>
<tr>
<td>10</td>
<td align="right">10</td>
<td align="right">100</td>
<td>10</td>
<td align="right">10</td>
<td align="right">100</td>
<td align="right">100</td>
</tr>
<tr>
<td>-10</td>
<td align="right">-10</td>
<td align="right">100</td>
<td>-10</td>
<td align="right">-10</td>
<td align="right">100</td>
<td align="right">100</td>
</tr>
<tr>
<td>-10</td>
<td align="right">-10</td>
<td align="right">100</td>
<td>-10</td>
<td align="right">-10</td>
<td align="right">100</td>
<td align="right">100</td>
</tr>
</tbody>
</table>

X-bar=0 Y-bar= Y-bar=0

SUM 400 SUM 400 SUM 400
Can You Predict Y_i If: You Know X_i?

$$r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2} \sqrt{\sum (Y - \bar{Y})^2}}$$

<table>
<thead>
<tr>
<th>X</th>
<th>d_i</th>
<th>$d_{ix} \times d_{ix}$</th>
<th>Y</th>
<th>d_i</th>
<th>$d_{iy} \times d_{iy}$</th>
<th>$d_{ix} \times d_{iy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>-10</td>
<td>-10</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>-10</td>
<td>-10</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>-10</td>
<td>-10</td>
<td>100</td>
<td>-10</td>
<td>-10</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

X-bar=0 Y-bar=0 Y-bar=0

<table>
<thead>
<tr>
<th>SUM</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>
Methodology: Reliability

An instrument used to measure a Trait (vs. State) must be Reliable. Measurements taken twice on the same subjects should agree.

Disagreement:
- Not a Trait
- Poor Instrument

Criterion for Reliability: $r=0.80$

Coefficient of Stability:
Correlation of measures taken more than 6mo. apart
Regression

Creates a line of “Best Fit” running through the data

Uses Method of Least Squares
The smallest Squared Distances between the Points and The Line

\[\hat{Y} = a + b \times X \quad \text{and} \quad y = a + b \times \hat{X} \]

\(a = \text{intercept} \quad b = \text{slope} \)

The Regression Line (line of best fit) give you a & b
Plug in X to predict Y, or Y to predict X
Regression, cont.

Method of Least Squares:
- Minimizes deviations from regression line
- Therefore, minimizes Errors of Prediction
Regression, cont.

Correlation between X & Y = Correlation between Y & Y-hat

Error of Estimation: Difference between Y and Y-hat

Standard Error of Estimation: sqrt (∑(Y-Y-hat)^2/n)
 Remember what “Standard” means
 The higher the correlation:
 The lower the Standard Error of Estimation

Shrinkage: Reduction in size of correlation between sample correlation and the population correlation which it measures
Multiple Correlation & Regression

Using several measures to predict a measure or future measure

\[Y\text{-hat} = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 \]

- \(Y\text{-hat} \) is the **Dependent Variable**
- \(X_1, X_2, X_3, \) & \(X_4 \) are the **Predictor (Independent) Variables**

College GPA-hat = \(a + b_1\text{H.S.GPA} + b_2\text{SAT} + b_3\text{ACT} + b_4\text{HoursWork} \)

\(R \) = Multiple Correlation (Range: -1 - 0 - +1)
\(R^2 \) = Coefficient of Determination (\(R*R \times 100; 0 - 100\% \))

Uses **Partial Correlations** for all but the **first** Predictor Variable
Partial Correlations

The relationship (shared variance) between two variables when the variance which they BOTH share with a third variable is removed.

Used in multiple regression to subtract Redundant variance when Assessing the Combined relationship between the Predictor Variables And the Dependent Variable. E.G., H.S. GPA and SAT scores.
Step-wise Regression

Build your regression equation one dependent variable at a time.

• Start with the P.V. with the highest simple correlation with the DV

• Compute the partial correlations between the remaining PVs and The DV
 Take the PV with the highest partial correlation

• Compute the partial correlations between the remaining PVs and The DV with the redundancy with the First Two Pvs removed.
 Take the PV with the highest partial correlation.

• Keep going until you run out of PVs
Step-wise Regression, cont.

Simple Correlations with college GPA:
- HS GPA = .6
- SAT = .5
- ACT = .48 (but highly Redundant with SAT, measures same thing)
- Work = -.3

College GPA-hat = a + b_1H.S.GPA + b_2SAT + b_3HoursWork + b_4ACT
Stepwise Multiple Regression

Freshman GPA

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MULTIPLE R</th>
<th>R SQUARE</th>
<th>RSQ CHANGE</th>
<th>SIMPLE R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLBOARD</td>
<td>0.70000</td>
<td>0.49000</td>
<td>0.49000</td>
<td>0.70000</td>
<td>0.00821</td>
</tr>
<tr>
<td>HIGHSC</td>
<td>0.75820</td>
<td>0.57487</td>
<td>0.08487</td>
<td>0.01300</td>
<td>-0.01819</td>
</tr>
<tr>
<td>FAMINC</td>
<td>0.76278</td>
<td>0.58183</td>
<td>0.00697</td>
<td>0.12000</td>
<td>0.01931</td>
</tr>
<tr>
<td>(CONSTANT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.35188</td>
</tr>
</tbody>
</table>

Investor Index

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MULTIPLE R</th>
<th>R SQUARE</th>
<th>RSQ CHANGE</th>
<th>SIMPLE R</th>
<th>B</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>0.93729</td>
<td>0.87852</td>
<td>0.87852</td>
<td>0.93729</td>
<td>0.01574</td>
<td>1.08714</td>
</tr>
<tr>
<td>CORPBF</td>
<td>0.95153</td>
<td>0.90540</td>
<td>0.02689</td>
<td>0.87912</td>
<td>-0.15462</td>
<td>-0.55669</td>
</tr>
<tr>
<td>CORPDIV</td>
<td>0.97774</td>
<td>0.95598</td>
<td>0.05058</td>
<td>0.93667</td>
<td>0.42586</td>
<td>0.45524</td>
</tr>
<tr>
<td>(CONSTANT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-11.70268</td>
<td></td>
</tr>
</tbody>
</table>
Shrinkage

Step 1: Construct Regression Equation using sample which has already graduated from college.

Step 2: Use the a, b1, b2, b3, b3 from this equation to Predict College GPA (Y-hat) of high school graduates/applicants.

The regression equation will do a better job of predicting College GPA (Y-hat) of the original sample because it factors in all the Idiosyncratic relationships (correlations) of the original sample.

Shrinkage: Original R^2 will be Larger than future R^2s.
Forced Order of Entry

Specify order in which PVs are added to the regression equation

Used to test (1) Hypotheses and to control for (2) Confounding Variables

E.G.: Is there gender bias in the salaries of lawyers?
 - Point-Biserial Correlation (r_{pb}) of Gender and Salary: $r_{pb} = 0.4$
 Correlation between Dichotomous and Continuous Variable
 - But females are younger, less experienced, & have fewer years on current job

1. Create Multiple Regression formula with all the other variables
2. Then Add the test variable (Gender)
3. Look at R^2: Does it Increase a lot or little at all?
 If R^2 goes up appreciably, then Gender has a Unique Influence
Other Types Of Correlation

Pearson Product-Moment Correlation:
 • Standard correlation
 • \(r = \) Ratio of shared variance to total variance
 • Requires two continuous variables of interval/ratio level

Point Biserial correlation (\(r_{pbs} \) or \(r_{pb} \)):
 • One Truly Dichotomous (only two values)
 • One continuous (interval/ratio) variable
 • Measures proportion of variance in the continuous variable
 Which can be related to group membership
 E.g., Biserial correlation between height and gender
Discriminant Function Analysis
Logistic Regression

Look at relationship between Group Membership (DV) and PVs Using a regression equation.

Depression = a + b_1 hours of sleep + b_2 blood pressure + b_3 calories consumed

Code Depression: 0 for No; 1 for Yes
If Y-hat >0.5, predict that subject has depression

Look at:
 Sensitivity: Percent of Depressed individuals found
 Selectivity: Percent of Positives which are Correct
Discriminant Function Analysis
Logistic Regression

Four possible outcomes for each prediction (Y-hat):

<table>
<thead>
<tr>
<th>Y = 0</th>
<th>Y = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-hat < 0.5</td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>Miss</td>
</tr>
<tr>
<td>Rejection</td>
<td></td>
</tr>
</tbody>
</table>

Y-hat > 0.5	
False	Hit
Positive	

↑ Sensitivity
% Hits
↓

↔ Selectivity
% Correct Hits
Discriminant Function Analysis
Logistic Regression

Expect Shrinkage:

Double Cross Validation:

1. Split sample in half
2. Construct Regression Equations for each
3. Use Regression Equations to predict Other Sample DV
 Look at Sensitivity and Selectivity
 If DV is continuous look at correlation between Y and Y-hat
 If IVs are valid predictors, both equations should be good
4. Construct New regression equation using combined samples
Discriminant Function Analysis
Logistic Regression

Can have more than two groups, if they are related quantitatively.

E.G.: Mania = 1
 Normal = 0
 Depression = -1
Logistic Regression produces a more efficient regression equation than does Discriminant Function Analysis:

Greater Sensitivity and Selectivity