History of Computer Science

Blaise Pascal (approx. 1650)
- built a machine with 8 gears called the Pascaline to assist French government in compiling tax reports

Pascaline

J.M. Jacquard (early 1800’s)
- developed loom that used punched cards (the equivalent of stored programs)

Jacquard's Loom

Punched cards
- information coded on cards (forerunner of modern storage devices)
- cards could be linked in a series (forerunner of programs)
- Such programs can automate human tasks
Charles Babbage

- British scientist and inventor, 1860's
- Known as 'the Father of the Computer'

Babbage’s computer

- Difference Engine
- Could compute and print tables, but never got out of the 'working prototype' stage because of technological limits

Babbage’s dream machine

- The Analytical Engine
- Steam powered calculating machine using programs on punched cards.
- The analytical engine was never completed in his lifetime.

Analytical Engine plans

Analytical Engine, con't

- Contained all the elements of modern computers including
 - 'mill' (for calculating)
 - 'store' (for holding instructions)
 - 'operator' (for carrying out instructions)
 - Reading and writing device

Countess Ada Augusta Lovelace

- Lord Byron's daughter
- Mathematician
- Devised way to use punched cards to give instructions to Babbage's machines
- The 'first computer programmer'
Countess Ada Augusta Lovelace

Invented a tabulating machine using punched cards (same size as ours today).

Founded forerunner of IBM

Herman Hollerith (1890 census)

Invented a tabulating machine using punched cards (same size as ours today).

Founded forerunner of IBM

Hollerith’s machine

Thomas Watson, Sr. (head of IBM in 1924)

Made his fortune in punched card tabulating equipment and office equipment

Never convinced that computing machines were worth the risk.

Turned over the company to his son in mid 1950’s

Early Electronic Computers

- Konrad Zuse
 - German engineering student, 1930’s
 - Never allowed to complete his computer

- ABC Computer
 - Atanasof and Berry
 - 1937

- Mark I, Harvard, 1944
 - Automatic calculator used paper tapes

The ABC machine

1937
The first electronic computer

Dr. John V. Atanasof
Clifford Berry
John von Neumann

- invented the stored program concept (data and instructions stored in memory in binary form).
- 1940's

Computer Science History

- Alan Turing
 - WW II
 - Enigma
 - "Computers"
- John von Neumann
 - Programs as data
- ENIAC

ENIAC

Genesis of modern computing

Hardware “Generations”

- Hardware
 - vacuum tubes
 - transistors
 - printed circuits
 - integrated circuits
- Moore’s law
 - Circuit capacity doubles every 18 months
 - True from 1972 to the present day
The First Generation of Computers

- 1951-1958
- Vacuum tubes for internal operations
- Magnetic drums for memory
- Limited memory
- Heat and maintenance problems

ENIAC (19,000 vacuum tubes)

ENIAC Modular programming?

Age of the dinosaurs

1st Generation (con’t)

- Punched cards for input and output
- Slow input, processing and output
- Low-level symbolic languages for programming

UNIVAC

- UNIVAC I (1951)
- developed by Mauchley and Eckert for Remington Rand
- replaced IBM tabulating machines at the Census Bureau
UNIVAC

J. Presper Eckert and Walter Cronkite and the UNIVAC I on election night 1952

Machine language

- Machine language: 0’s and 1’s, the only language a computer can directly execute.

Assembly language

- Made programming easier.
- Uses abbreviations instead of binary code i.e., LD for load.
- Machine-dependent (not portable)

The Second Generation of Computers

- 1959-1964
- Transistors for internal operations
- Magnetic cores for memory
- Increased memory capacity

IBM 360

- Magnetic tapes and disks for storage
- Reductions in size and heat generation
- Increase in processing speed and reliability
- Increased use of high-level languages

Second Generation (con’t)
High-level languages

- The first high-level programming languages were
 - FORTRAN (1954)
 - COBOL (1956)
 - LISP (1961)
 - BASIC (1964)

Admiral Grace Hopper

- 1952: She introduces the new concept that computers could be programmed using symbols on paper (languages).
- Later writes the COBOL language.

The Third Generation of Computers

- 1965-1970
- Integrated circuits on silicon chips for internal operations (IC’s)
- Increased memory capacity
- Common use of minicomputers

Third generation (con’t)

- Emergence of the software industry
- Reduction in size and cost
- Increase in speed and reliability
- Introduction of families of computers

Key term: LSI

- LSI (Large Scale Integration) - method by which circuits containing
 - thousands of components are packed on a single chip

Third generation (con’t)

- Compatibility problems (languages, I/O devices, etc. were informally standardized)
- Minicomputers popular in offices.
The Fourth Generation of Computers

- 1971-today
- VLSI (100,000's of components/chip)
- Development of the microprocessor
- Microcomputers and supercomputers

Ted Hoff, Intel
Designer of first microprocessor

4th generation design

VLSI (each wafer has 100-400 IC's with millions of transistors on each one)

Fourth Generation (con’t)

- Greater software versatility
- Increase in speed, power and storage capacity
- Parallel processing
- Artificial intelligence and expert systems
- Robotics

Graphic User Interfaces (GUI)

Macintosh, 1984
Lisa, 1983
Sun, 1988

Key term: Microprocessor

Microprocessor: programmable unit on a single silicon chip, containing all essential CPU components (ALU, controller)
Key term: Microcomputer

Microcomputer: small, low-priced, personal computer.

Early microcomputers

- Apple I, 1976
- Apple II, 1977

Apple computer company

Steve Wozniak and Steve Jobs

Early IBM microcomputers

- IBM PC, 1981
- IBM XT, 1983 w/10M Hard drive

Software giants
Programming language giants

Niklaus Wirth
Pascal, 1972

BASIC, 1964
David Kennedy,
Dartmouth U

Key term: Supercomputer

Supercomputer: perform millions of operations per second and process enormous amounts of data
Costs in tens of millions of dollars

Supercomputers

(l to r) Cray xmp, ymp and Cray 2

Cray T90, 40gigaflops

Processor speed growth

Environment “Generations”

Environments
- single process
- batch process
- time-shared
 - one powerful computer serving multiple users
- personal computer
 - multiple individual computers
- client/server
 - individual computers (clients) interacting with powerful computer providing services to multiple users (server)