Relational Algebra

Chapter 4, Part A

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Relational Query Languages

< Query languages: Allow manipulation and retrieval
of data from a database.
+ Relational model supports simple, powerful QLs:
= Strong formal foundation based on logic.
= Allows for much optimization.
% Query Languages != programming languages!
» QLs not expected to be “Turing complete”.
* QLs not intended to be used for complex calculations.
= QLs support easy, efficient access to large data sets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Formal Relational Query Lungua;ﬁ

< Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:
®= Relational Algebra: More operational, very useful

for representing execution plans.

= Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3)

Preliminaries

< A query is applied to relation instances, and the
result of a query is also a relation instance.

» Schemas of input relations for a query are fixed (but
query will run regardless of instance!)

= The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.
+ Positional vs. named-field notation:

= Positional notation easier for formal definitions,
named-field notation more readable.

= Both used in SQL

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

R1 |sid bid  day
Example Instances |22 |101 [10/10/56”
58 103 |11/12/96

% “Sailors” and “Reserves” : B
relations for our examples. 51 sid snarr'le rating age
<+ We'll use positional or 22 |dustin 7 45.0
named field notation, 31 |lubber | 8 55.5
assume that names of fields 58 |rusty 10 135.0

in query results are
\%nheryted fron} names of s2 [sid
fields in query input

. 28
relations.

sname |rating |age

yuppy | 9 35.0
31 |lubber | 8 55.5
44 | guppy 5 35.0
58 |rusty 10 [35.0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Relational Algebra

< Basic operations:

Selection (O) Selects a subset of rows from relation.
Projection (77) Deletes unwanted columns from relation.
Cross-product (X) Allows us to combine two relations.
Set-difference (—) Tuples in reln. 1, but not in reln. 2.
Union (U ) Tuples inreln. 1 and in reln. 2.

+ Additional operations:
= Intersection, join, division, renaming: Not essential, but
(very!) useful.
+ Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke




sname | rating

Projection g [
) ) lubber |8
Del'ete§ att'rlbutes that are not in guppy 5
projection list. rusty |10
% Schema of result contains exactly
the fields in the projection list, T SR (82)
with the same names that they > g
had in the (only) input relation.
%+ Projection operator has to
eliminate duplicates! (Why??) ae
= Note: real systems typically 35.0
don’t do duplicate elimination L8
unless the user explicitly asks
for it. (Why not?) T age(Sz)
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Y
. sid |sname rating age
Selection 28 yuppy |9 56
58 |rusty 10 35.0
+ Selects rows that satisfy
selection condition. o . 8(S2)
< No duplicates in result! rating>
(Why?)
% Schema of result
identical to schema of sname rating

(only) input relation.
% Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

”sname,mting(o-rating> 8(82))

Union, Intersection, Set—Dijj‘erenc\@

sid |sname |rating |age

« All of these operations take 22 |dustin |7 45.0

two input relations, which ~ |31 |lubber 8 5515

must be union-compatible: 58 |rusty |10 35.0

+ Same number of fields. |44 |guppy |5 35.0

= *Corresponding’ fields 28 |yuppy |9 35.0
have the same type. S1uS2

< What is the schema of result?
sid sname rating |age

sid 'sname rating age 31 |lubber |8 55.5
22 dustin |7 45.0 58 |rusty |10 35.0
S1-52 SInS2
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Cross-Product
< Each row of S1 is paired with each row of R1.

« Result schema has one field per field of S1 and R1,
with field names “inherited” if possible.

= Conflict: Both S1 and R1 have a field called sid.

(sid) sname rating age |(sid) bid day

22 |dustin | 7 450 | 22 101 10/10/9
22 |dustin | 7 |450 58 103 11/12/9
31 [lubber 8 (555 22 101 10/10/96
31 [lubber 8 555 58 103 11/12/9%
58 rusty | 10 (350 22 101 10/10/96
58 rusty | 10 (350 58 103 11/12/9

= Renaming operator:  p (C(1—> sidl,5— sid2), SIx Rl)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Joins W

+ Condition Join:  R>< .8 = o ,(RxS)
(sid) |sname |rating age |(sid) |bid |day

22 |dustin |7 450 58 103 |11/12/9%
31 |lubber |8 555 58 |103 |11/12/96
SI>< 6 sid<Risia K1

% Result schema same as that of cross-product.

+ Fewer tuples than cross-product, might be
able to compute more efficiently

< Sometimes called a theta-join.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Joins

< Equi-Join: A special case of condition join where
the condition c contains only equalities.

sid sname |rating lage |bid |day

22 dustin |7 450 |101 |10/10/96
58  |rusty |10 35.0 103 |11/12/96
Sll><1sidR1

< Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

< Natural Join: Equijoin on all common fields.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12




Division

< Not supported as a primitive operator, but useful for
expressing queries like:
Find sailors who have reserved all boats.

« Let A have 2 fields, x and y; B have only field y:

« A/B = {<x>| I(x,y)ed V(y) eB}
= i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.
= Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.
% In general, x and y can be any lists of fields; y is the
list of fields in B, and x Uy is the list of fields of A.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Expressing A/B Using Basic Ope;ﬁ

+ Division is not essential op; just a useful shorthand.
= (Also true of joins, but joins are so common that systems
implement joins specially.)
% Idea: For A/B, compute all x values that are not
“disqualified” by some y value in B.
= x value is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7 (7 x(A)XB)_A)
A/B: T x(A) — all disqualified tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Q%Q
Find names of sailors who ve reserved a redM

< Information about boat color only available in
Boats; so need an extra join:

V3 o Boats) >< Reserves>< Sailors
sname(( color=red' ) )

< A more efficient solution:

”S”ame(”sid((ﬂbido-color=' red' Boats) ><1 Res)><t Sailors)

A query optimizer can find this, given the first solution!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

<
Examples of Division A/B
sno |pno pno pno pno
sl |pl p2 P2 pl
sl |p2 B1 p4 p2
sl |p3 p4
B2
sl |p4 B3
s2  |pl sno
s2  |p2 sl
s3  |p2 s2 sno
s4 |p2 s3 sl sno ‘
s4 | p4 s4 s4 sl
A A/B1 A/B2 A/B3
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14
%QQ

Find names of sailors who've reserved boat #1

< Solution1: 7«

sname (& bid=103 Reserves) < Sailors)

« Solution 2: p (Templ, o Reserves)

bid=103
p (Temp2, Templ <1 Sailors)
(Temp2)

ﬂsname

% Solution3: 7 (Reserves>< Sailors))

sname © g 103

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

=
<
=

Find sailors who ve reserved a red or a green bo

< Can identify all red or green boats, then find
sailors who've reserved one of these boats:

p (Tempboats, (o Boats))

color=red' v color="green'
7 snamelTempboats>< Reserves><t Sailors)

< Can also define Tempboats using union! (How?)

+ What happens if v isreplaced by A in this query?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18




QQQ
Find sailors who ve reserved a red and a greem

< Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors
who've reserved green boats, then find the
intersection (note that sid is a key for Sailors):

p (Tempred, . d(( Boats)><1 Reserves))

o
color=red'

p (Tempgreen, T d((O‘ Boats)r<i Reserves))

color= green'

7 sname(Tempred N Tempgreen)>< Sailors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Find the names of sailors who ve reserved all b

« Uses division; schemas of the input relations
to / must be carefully chosen:

p (Tempsids, (ﬁsid’bidReserves) / (ﬂ-bid Boats))

T sname (Tempsids > Sailors)

« To find sailors who've reserved all ‘Interlake” boats:

Boats)

/ ﬂbid @ bname=Interlakée

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

20

=
=
@

< The relational model has rigorously defined
query languages that are simple and
powerful.

< Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

+ Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

Summary

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21




