i

Tree-Structured Indexes

s

< As for any index, 3 alternatives for data entries k*:
= Data record with key value k
= <Kk, rid of data record with search key value k>
= <Kk, list of rids of data records with search key k>

Introduction

« Choice is orthogonal to the indexing technique
used to locate data entries k*.

« Tree-structured indexing techniques support
both range searches and equality searches.

% ISAM: static structure; B+ free: dynamic,
adjusts gracefully under inserts and deletes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Chapter 10
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1
Range Searches e

< “Find all students with gpa > 3.0”

= If data is in sorted file, do binary search to find first
such student, then scan to find others.

= Cost of binary search can be quite high.
< Simple idea: Create an “index’ file.

|
aa || | [W] Index File
|

H Page 1 H Page 2 H Page 3 ‘ ’PBQTH Data File

* Can do binary search on (smaller) index file!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Comments on ISAM D

% File creation: Leaf (data) pages allocated IS e

sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

Overflow pages

% Index entries: <search key value, page id>; they
“direct’ search for data entries, which are in leaf pages.

% Search: Start at root; use key comparisons to go to leaf.
Costoc log N ; F = # entries/index pg, N = # leaf pgs

% Insert: Find leaf data entry belongs to, and put it there.

% Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

* Static tree structure: inserts/deletes affect only leaf pages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

ISAM index entq‘ P

P

o | K1 |Pq| K2|P, o o o Km|Pm

« Index file may still lZbe quite large. But we can
apply the idea repeatedly!

Non-leaf
Pages

T A e e A i

Pages
l:ID Overflow ------- id l:ID N
page NI
Primary pages
* Leaf pages contain data entries.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Example ISAM Tree %ZE

< Each node can hold 2 entries; no need for
“next-leaf-page’ pointers. (Why?)

Root ~—a

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

iR In!.l
h

Pages

iy \ 7/

ezt ‘ 10° ‘ 15* ‘ J 20 | 27
Pages

Pages

©
8
©
g
IS
&
a
2
a
@
a
@
8
©
)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

... Then Deleting 42%, 51*, 97*

Root ~a

Lo o] (ol] oo] [[] [L] [=]]

| V

‘23.‘ ‘ ‘ “““' ‘

* Note that 51 appears in index levels, but not in leaf!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

B+ Tree: Most Widely Used Index

< Insert/delete at log N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

< Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

ek,

Example B+ Tree

% Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5%, 15%, all data entries >= 24* ...

Root

T ¥ T v T T
‘z' ‘ 3 ‘ 5 ‘ 7*‘ ‘14"15" ‘ ‘ ‘19*‘20*‘22*‘ ‘ ‘zm‘zr‘zr‘ ‘ ‘33"34"38*‘39"‘

* Based on the search for 15%, we know it is not in the tree!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

B+ Trees in Practice e

ey

< Typical order: 100. Typical fill-factor: 67%.
= average fanout = 133
< Typical capacities:
= Height 4: 133* = 312,900,700 records
= Height3:133% = 2,352,637 records
« Can often hold top levels in buffer pool:
= Levell= 1page = 8Kbytes
= Level2= 133 pages= 1 Mbyte
= Level 3 =17,689 pages = 133 MBytes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Inserting a Data Entry into a B+

« Find correct leaf L.
< Put data entry onto L.
= If L has enough space, done!

= Else, must split L (into L and a new node L2)
¢ Redistribute entries evenly, copy up middle key.
¢ Insert index entry pointing to L2 into parent of L.

< This can happen recursively

= To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

< Splits “grow” tree; root split increases height.
= Tree growth: gets wider or one level taller at top.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Inserting 8 into Example B+ Tre

% Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

-y
1) [EIrI=1]

<+ Note difference
between copy- I
up and push-up;
[0 = 11
/7

be sure you H 5 H 13{
understand the Vi /
reasons for this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Example B+ Tree After Inserting

AT Ny kA L. A e N Y
O O s O = s = R S S S

v Notice that root was split, leading to increase in height.

v In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Deleting a Data Entry from a B+

« Start at root, find leaf L where entry belongs.

% Remove the entry.
= If L is at least half-full, done!
» If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

e If re-distribution fails, merge L and sibling.
« If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.
% Merge could propagate to root, decreasing height.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Example Tree After (Inserting 8*

Then) Deleting 19* and 20* ...

Roo\

LT
=l 1
—Y

— " —N _— " N -
(O s S S S

< Deleting 19* is easy.
< Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

... And Then Deleting 24* '

| —
Must merge. T« T T T
> L=
‘ 22* ‘ 27"

‘29" “33"34"38"39"

< Observe “toss” of
index entry (on right),
and “pull down’ of
index entry (below).

& Y V. A A A a
O O 3 I s S S S

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Example of Non-leaf Re-distribu t

% Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

+ In contrast to previous example, can re-distribute
entry from left child of root to right child.

Root\A

SEAE Iﬁl.l.l.l
m Cane =

0 K O 56 e 0

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

After Re-distribution

% Intuitively, entries are re-distributed by “pushing
through’ the splitting entry in the parent node.

« It suffices to re-distribute index entry with key 20;

we’ve re-distributed 17 as well for illustration.
Root

5 13 20| 22| 30

K a K a KA T KA A
(2] [J[[r[s] Joefio] T][erfee]] Joofee] T Jffarfesf Jfefocpofe]
19

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

7| 8

o 9

5o =

Prefix Key Compression

« Important to increase fan-out. (Why?)

< Key values in index entries only “direct traffic’;
can often compress them.
= E.g., If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)

¢ Is this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

¢ In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.
+ Insert/ delete must be suitably modified.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Bulk Loading of a B+ Tree 'Iéj%

« If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

< Bulk Loading can be done much more efficiently.

< Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Rom

Sorted pages of data entries; not yet in B+ tree

8 O e . e

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Bulk Loading (Contd.) 0

et [R]F]
% Index entries for leaf |
pages always i T
entered into right-
most index page just

above leaf level. [#[#] [s]"] [tof1t] [12]15] [20f22] [25a1] [ssfae]
When this fills up, it
splits. (Split may go
up right-most path
to the root.) R
> Much faster than not yet in B+ tree
R I T 20 R E31 I 1 EC
especially when one / /
considers locking!

Database Management Systems 3et

Data entry pages
not yet in B+ tree

B

Summary of Bulk Loading ’

< Option 1: multiple inserts.

= Slow.

= Does not give sequential storage of leaves.
« Option 2: Bulk Loading

= Has advantages for concurrency control.
Fewer I/Os during build.

Leaves will be stored sequentially (and linked, of
course).

Can control “fill factor” on pages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

A Note on "Order’ éﬁ%ﬁ

<« Order (d) concept replaced by physical space
criterion in practice (“at least half-full’).
= Index pages can typically hold many more entries
than leaf pages.
= Variable sized records and search keys mean differnt
nodes will contain different numbers of entries.

= Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Summary St

% Tree-structured indexes are ideal for range-
searches, also good for equality searches.
< ISAM is a static structure.
= Only leaf pages modified; overflow pages needed.

= Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

« B+ tree is a dynamic structure.
» Inserts/deletes leave tree height-balanced; log ¢ N cost.
= High fanout (F) means depth rarely more than 3 or 4.
= Almost always better than maintaining a sorted file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

.\‘

Summary (Contd.)

= Typically, 67% occupancy on average.

= Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

» If data entries are data records, splits can change rids!
« Key compression increases fanout, reduces height.
< Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.
+ Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

