
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Tree-Structured Indexes

Chapter 10

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Introduction

As for any index, 3 alternatives for data entries k*:
Data record with key value k
<k, rid of data record with search key value k>
<k, list of rids of data records with search key k>

Choice is orthogonal to the indexing technique
used to locate data entries k*.
Tree-structured indexing techniques support
both range searches and equality searches.
ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Range Searches
``Find all students with gpa > 3.0’’

If data is in sorted file, do binary search to find first
such student, then scan to find others.
Cost of binary search can be quite high.

Simple idea: Create an `index’ file.

* Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

ISAM

Index file may still be quite large. But we can
apply the idea repeatedly!

* Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Comments on ISAM

File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.
Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf pages.
Search: Start at root; use key comparisons to go to leaf.
Cost log F N ; F = # entries/index pg, N = # leaf pgs
Insert: Find leaf data entry belongs to, and put it there.
Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

* Static tree structure: inserts/deletes affect only leaf pages.

∝

Data
Pages

Index Pages

Overflow pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example ISAM Tree

Each node can hold 2 entries; no need for
`next-leaf-page’ pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

42*

Overflow
Pages

Leaf

Index
Pages

Pages

Primary

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

... Then Deleting 42*, 51*, 97*

* Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

B+ Tree: Most Widely Used Index
Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)
Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.
Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Example B+ Tree

Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).
Search for 5*, 15*, all data entries >= 24* ...

* Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

B+ Trees in Practice

Typical order: 100. Typical fill-factor: 67%.
average fanout = 133

Typical capacities:
Height 4: 1334 = 312,900,700 records
Height 3: 1333 = 2,352,637 records

Can often hold top levels in buffer pool:
Level 1 = 1 page = 8 Kbytes
Level 2 = 133 pages = 1 Mbyte
Level 3 = 17,689 pages = 133 MBytes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Inserting a Data Entry into a B+ Tree
Find correct leaf L.
Put data entry onto L.

If L has enough space, done!
Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

This can happen recursively
To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.
Tree growth: gets wider or one level taller at top.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Inserting 8* into Example B+ Tree

Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.
Note difference
between copy-
up and push-up;
be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Example B+ Tree After Inserting 8*

v Notice that root was split, leading to increase in height.

v In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!
If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.
If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.
Merge could propagate to root, decreasing height.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

Deleting 19* is easy.
Deleting 20* is done with re-distribution.
Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

... And Then Deleting 24*

Must merge.
Observe `toss’ of
index entry (on right),
and `pull down’ of
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Example of Non-leaf Re-distribution

Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)
In contrast to previous example, can re-distribute
entry from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

After Re-distribution

Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.
It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Prefix Key Compression
Important to increase fan-out. (Why?)
Key values in index entries only `direct traffic’;
can often compress them.

E.g., If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)

• Is this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

Insert/delete must be suitably modified.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Bulk Loading of a B+ Tree
If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.
Bulk Loading can be done much more efficiently.
Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Bulk Loading (Contd.)

Index entries for leaf
pages always
entered into right-
most index page just
above leaf level.
When this fills up, it
splits. (Split may go
up right-most path
to the root.)
Much faster than
repeated inserts,
especially when one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Summary of Bulk Loading

Option 1: multiple inserts.
Slow.
Does not give sequential storage of leaves.

Option 2: Bulk Loading
Has advantages for concurrency control.
Fewer I/Os during build.
Leaves will be stored sequentially (and linked, of
course).
Can control “fill factor” on pages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

A Note on `Order’

Order (d) concept replaced by physical space
criterion in practice (`at least half-full’).

Index pages can typically hold many more entries
than leaf pages.
Variable sized records and search keys mean differnt
nodes will contain different numbers of entries.
Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Summary

Tree-structured indexes are ideal for range-
searches, also good for equality searches.
ISAM is a static structure.

Only leaf pages modified; overflow pages needed.
Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

B+ tree is a dynamic structure.
Inserts/deletes leave tree height-balanced; log F N cost.
High fanout (F) means depth rarely more than 3 or 4.
Almost always better than maintaining a sorted file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Summary (Contd.)

Typically, 67% occupancy on average.
Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.
If data entries are data records, splits can change rids!

Key compression increases fanout, reduces height.
Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.
Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

