INFERENCe IN BAYESIAN NETWORKS

CHAPTER 14.4–5
Outline

- Exact inference by enumeration
- Exact inference by variable elimination
- Approximate inference by stochastic simulation
- Approximate inference by Markov chain Monte Carlo
Inference tasks

Simple queries: compute posterior marginal \(P(X_i|E=e) \)
 e.g., \(P(\text{NoGas}|\text{Gauge} = \text{empty}, \text{Lights} = \text{on}, \text{Starts} = \text{false}) \)

Conjunctive queries: \(P(X_i, X_j|E=e) = P(X_i|E=e)P(X_j|X_i, E=e) \)

Optimal decisions: decision networks include utility information;
 probabilistic inference required for \(P(\text{outcome}|\text{action}, \text{evidence}) \)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
\[
P(B|j, m) = \frac{P(B, j, m)}{P(j, m)} = \alpha P(B, j, m) = \alpha \sum_e \sum_a P(B, e, a, j, m)
\]

Rewrite full joint entries using product of CPT entries:
\[
P(B|j, m) = \alpha \sum_e \sum_a P(B)P(e)P(a|B, e)P(j|a)P(m|a) = \alpha P(B) \sum_e P(e) \sum_a P(a|B, e)P(j|a)P(m|a)
\]

Recursive depth-first enumeration: \(O(n)\) space, \(O(d^n)\) time
function **Enumeration-Ask**(*X*, *e*, *bn*) returns a distribution over *X*

inputs:
- *X*, the query variable
- *e*, observed values for variables *E*
- *bn*, a Bayesian network with variables \{*X*\} ∪ *E* ∪ *Y*

1. **Q**(*X*) ← a distribution over *X*, initially empty
2. **for each** value *x*ᵢ of *X* do
 - extend *e* with value *x*ᵢ for *X*
 - **Q**(xᵢ) ← **Enumerate-All**(VARS[bn], *e*)
3. **return** **Normalize**(**Q**(X))

function **Enumerate-All**(*vars*, *e*) returns a real number

if Empty?(*vars*) **then** return 1.0

Y ← First(*vars*)

if *Y* has value *y* in *e*

- **then return** \(P(y \mid Pa(Y)) \times \text{Enumerate-All}(\text{Rest}(vars), e) \)
- **else return** \(\Sigma_y P(y \mid Pa(Y)) \times \text{Enumerate-All}(\text{Rest}(vars), e_y) \)

where *e_y* is *e* extended with *Y* = *y*
Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes \(P(j|a)P(m|a) \) for each value of \(e \)
Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

\[P(B|j, m) = \alpha \underbrace{P(B)}_{\bar{B}} \sum_e \underbrace{P(e)}_{\bar{E}} \sum_a \underbrace{P(a|B, e)}_{\bar{A}} \underbrace{P(j|a)}_{\bar{J}} \underbrace{P(m|a)}_{\bar{M}} \]

\[= \alpha P(B) \sum_e P(e) \sum_a P(a|B, e) P(j|a)f_M(a) \]

\[= \alpha P(B) \sum_e P(e) \sum_a f_A(a, b, e) f_J(a)f_M(a) \]

\[= \alpha P(B) \sum_e P(e) f_{\bar{A}JM}(b, e) \text{ (sum out } A) \]

\[= \alpha P(B) f_{\bar{E}\bar{A}JM}(b) \text{ (sum out } E) \]

\[= \alpha f_B(b) \times f_{\bar{E}\bar{A}JM}(b) \]
Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

\[\sum_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}} \]

assuming \(f_1, \ldots, f_i \) do not depend on \(X \)

Pointwise product of factors \(f_1 \) and \(f_2 \):

\[f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l) = f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l) \]

E.g., \(f_1(a, b) \times f_2(b, c) = f(a, b, c) \)
Variable elimination algorithm

```plaintext
function ELIMINATION-ASK(X, e, bn) returns a distribution over X
  inputs: X, the query variable
           e, evidence specified as an event
           bn, a belief network specifying joint distribution \( P(X_1, \ldots, X_n) \)

  factors ← []; vars ← REVERSE(VARS[bn])
  for each var in vars do
    factors ← [MAKE-FACTOR(var, e)] | factors
    if var is a hidden variable then factors ← SUM-OUT(var, factors)
  return NORMALIZE(POINTWISE-PRODUCT(factors))
```

Chapter 14.4-5 9
Consider the query $P(\text{JohnCalls}|\text{Burglary} = \text{true})$

$$P(J|b) = \alpha P(b) \sum_e P(e) \sum_a P(a|b, e) P(J|a) \sum_m P(m|a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in \text{Ancestors}(\{X\} \cup E)$

Here, $X = \text{JohnCalls}$, $E = \{\text{Burglary}\}$, and
$\text{Ancestors}(\{X\} \cup E) = \{\text{Alarm, Earthquake}\}$
so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
Irrelevant variables contd.

Defn: **moral graph** of Bayes net: marry all parents and drop arrows

Defn: \(A \) is \(m \)-separated from \(B \) by \(C \) iff separated by \(C \) in the moral graph

Thm 2: \(Y \) is irrelevant if \(m \)-separated from \(X \) by \(E \)

For \(P(\text{JohnCalls}|\text{Alarm}=\text{true}) \), both \(\text{Burglary} \) and \(\text{Earthquake} \) are irrelevant
Complexity of exact inference

Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:
- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. A v B v C
2. C v D v \neg A
3. B v C v \neg D
Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:
- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior
Sampling from an empty network

function `PRIOR-SAMPLE(bn)` **returns** an event sampled from `bn`
inputs: `bn`, a belief network specifying joint distribution $P(X_1, \ldots, X_n)$

\[
x \leftarrow \text{an event with } n \text{ elements}
\]

for $i = 1$ **to** n **do**

\[
x_i \leftarrow \text{a random sample from } P(X_i \mid \text{parents}(X_i)) \\
\text{given the values of } \text{Parents}(X_i) \text{ in } x
\]

return x
Example

Cloudy

Sprinkler

Wet Grass

Rain

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

- **Cloudy**
 - $P(C)$: 0.50
 - $P(S|C)$:
 - T: 0.10
 - F: 0.50

- **Sprinkler**
 - $P(W|S,R)$:
 - T T: 0.99
 - T F: 0.90
 - F T: 0.90
 - F F: 0.01

- **Rain**
 - $P(R|C)$:
 - T: 0.80
 - F: 0.20

- **Wet Grass**
Example

\[
P(C) = 0.50
\]

\[
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array}
\]

\[
\begin{array}{c|c}
P(W|S,R) & \ \\
\hline
T T & 0.99 \\
T F & 0.90 \\
F T & 0.90 \\
F F & 0.01 \\
\end{array}
\]

\[
P(R|C) = \begin{cases}
0.80 & \text{if } C = T \\
0.20 & \text{if } C = F
\end{cases}
\]
Example

| C | P(S|C) |
|----|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|----|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|----|----|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

Cloudy

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

Sprinkler

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Rain

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

Wet Grass
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Probability that \texttt{PRIORSAMPLE} generates a particular event
\[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) = P(x_1 \ldots x_n) \]
i.e., the true prior probability

E.g., \[S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t) \]

Let \(N_{PS}(x_1 \ldots x_n) \) be the number of samples generated for event \(x_1, \ldots, x_n \)

Then we have
\[
\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} \frac{N_{PS}(x_1, \ldots, x_n)}{N} = S_{PS}(x_1, \ldots, x_n) = P(x_1 \ldots x_n)
\]

That is, estimates derived from \texttt{PRIORSAMPLE} are \textbf{consistent}

Shorthand: \(\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n) \)
Rejection sampling

\(\hat{P}(X|e) \) estimated from samples agreeing with \(e \)

```latex
\textbf{function} \texttt{REJECTION-Sampling}(X, e, bn, N) \textbf{returns} an estimate of \( P(X|e) \)
\textbf{local variables}: N, a vector of counts over X, initially zero

\textbf{for} j = 1 \textbf{to} N \textbf{do}
  \textbf{x} \leftarrow \texttt{Prior-Sample}(bn)
  \textbf{if} \text{x} \text{ is consistent with } e \text{ then}
    N[x] \leftarrow N[x]+1 \text{ where } x \text{ is the value of } X \text{ in } x

\textbf{return} \texttt{Normalize}(N[X])
```

E.g., estimate \(P(Rain|Sprinkler = true) \) using 100 samples

27 samples have \(Sprinkler = true \)

Of these, 8 have \(Rain = true \) and 19 have \(Rain = false \).

\(\hat{P}(Rain|Sprinkler = true) = \texttt{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle \)

Similar to a basic real-world empirical estimation procedure
Analysis of rejection sampling

\[\hat{P}(X|e) = \alpha N_{PS}(X, e) \quad \text{(algorithm defn.)} \]
\[= N_{PS}(X, e)/N_{PS}(e) \quad \text{(normalized by } N_{PS}(e)\text{)} \]
\[\approx P(X, e)/P(e) \quad \text{(property of PRIORSAMPLE)} \]
\[= \bar{P}(X|e) \quad \text{(defn. of conditional probability)} \]

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if \(P(e) \) is small

\(P(e) \) drops off exponentially with number of evidence variables!
Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

function **Likelihood-Weighting**(*X*, *e*, *bn*, *N*) returns an estimate of *P(*X*|*e*)

local variables: **W**, a vector of weighted counts over *X*, initially zero

for *j* = 1 to *N* do
 x, *w* ← **Weighted-Sample**(*bn*)
 W[*x*] ← **W**[*x*] + *w* where *x* is the value of *X* in *x*

return **Normalize**(**W**[*X*])

Function Definition

function **Weighted-Sample**(*bn*, *e*) returns an event and a weight

x ← an event with *n* elements; *w* ← 1

for *i* = 1 to *n* do
 if *X*_i has a value *x*_i in *e*
 then *w* ← *w* × *P(*X*_i = *x*_i | parents(*X*_i))
 else *x*_i ← a random sample from *P(*X*_i | parents(*X*_i))

return *x*, *w*
Likelihood weighting example

\[w = 1.0 \]
Likelihood weighting example

\begin{array}{|c|c|}
\hline
C & P(S|C) \\
\hline
T & .10 \\
F & .50 \\
\hline
\end{array}

\begin{array}{|c|c|}
\hline
C & P(R|C) \\
\hline
T & .80 \\
F & .20 \\
\hline
\end{array}

\begin{array}{|c|c|c|}
\hline
S & R & P(W|S,R) \\
\hline
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\hline
\end{array}

\[w = 1.0 \]
Likelihood weighting example

Cloudy

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

Wet Grass

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Sprinkler

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

\[w = 1.0 \]
Likelihood weighting example

\[
w = 1.0 \times 0.1
\]
Likelihood weighting example

\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\[
w = 1.0 \times 0.1
\]
Likelihood weighting example

\[w = 1.0 \times 0.1 \times 0.99 = 0.099 \]
Likelihood weighting analysis

Sampling probability for \texttt{WEIGHTEDSAMPLE} is

\[S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i | \text{parents}(Z_i)) \]

Note: pays attention to evidence in \texttt{ancestors} only

\[\Rightarrow \text{ somewhere “in between” prior and posterior distribution} \]

Weight for a given sample \(z, e \) is

\[w(z, e) = \prod_{i=1}^{m} P(e_i | \text{parents}(E_i)) \]

Weighted sampling probability is

\[S_{WS}(z, e)w(z, e) \]

\[= \prod_{i=1}^{l} P(z_i | \text{parents}(Z_i)) \prod_{i=1}^{m} P(e_i | \text{parents}(E_i)) \]

\[= P(z, e) \text{ (by standard global semantics of network)} \]

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight
Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e, bn, N) returns an estimate of $P(X|e)$

local variables: $N[X]$, a vector of counts over X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for $j = 1$ to N
do
for each Z_i in Z
do
sample the value of Z_i in x from $P(Z_i|mb(Z_i))$
given the values of $MB(Z_i)$ in x
$N[x] ← N[x] + 1$ where x is the value of X in x
return $\text{NORMALIZE}(N[X])$

Can also choose a variable to sample at random each time
The Markov chain

With $\text{Sprinkler} = \text{true}, \text{WetGrass} = \text{true}$, there are four states:

Wander about for a while, average what you see
MCMC example contd.

Estimate $P(Rain|Sprinkler = true, WetGrass = true)$

Sample $Cloudy$ or $Rain$ given its Markov blanket, repeat. Count number of times $Rain$ is true and false in the samples.

E.g., visit 100 states

- 31 have $Rain = true$, 69 have $Rain = false$

$\hat{P}(Rain|Sprinkler = true, WetGrass = true) = \text{Normalize}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution:

- long-run fraction of time spent in each state is exactly proportional to its posterior probability
Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy, Sprinkler, and WetGrass*

Probability given the Markov blanket is calculated as follows:

\[
P(x'_i|mb(X_i)) = P(x'_i|\text{parents}(X_i)) \prod_{Z_j \in \text{Children}(X_i)} P(z_j|\text{parents}(Z_j))
\]

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

\[
P(X_i|mb(X_i)) \text{ won't change much (law of large numbers)}
\]
Summary

Exact inference by variable elimination:
- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:
- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables