9/15/2010

CS 5541 (Al): A Few Quick
Thoughts on Emacs, Lisp

Rich Maclin
Computer Science Department
University of Minnesota Duluth

Running emacs

¢ To run, simply type emacs on the command
line of an xterm

e To run clisp in the ilisp package type Alt-X run-
ilisp, then when prompted to clisp, this will
break your windows into two windows (one
an editor and one the lisp interpreter)

¢ You can find many lists of emacs commands

online, this is a reasonable one:
http://www.physics.ohio-state.edu/~driver/Emacs Quick Reference.pdf

Some Useful emacs Commands

Most can be done with emacs menu
¢ C-x C-f—open or create file

¢ C-x C-s—savefile

¢ C-xs—save all buffers

¢ C-x C-w — write file

* C-x C-c —exit emacs

e C-g—cancel current command

¢ C-x C-b - list all buffers

¢ C-x b name — shift to named buffer
e C-x k—kill buffer

llisp menu options

Look for ilisp on menu
¢ Load file — load generally a definitions file

¢ Eval region — evaluate highlighted region in
buffer in lisp

¢ Eval defun — evaluate the surrounding defun
statement in the buffer

¢ Lots of other useful commands

Basics of Lisp

Basic data types

— Numbers

— Symbols ‘A is the symbol A

— Character is #\X — character X

— #(...)is a vector
—“.."“isastring

— nil is the null list - as is ‘()

— True is anything not nil (can use t)

— Lists can be lists of any type of object (can mix things
together)

Lisp List

¢ Alist consists of cons cell(s):

¢ A cons has a first and a rest part of it. Mostly
lists of items consists of one cons per item
with a pointer to the null list at the end

e ‘(1 A “string”) is ‘1.2)is
1 1 2
A
“string” nil

9/15/2010

Lisp List (cont)

¢ ‘before (or symbol is equally shorthand for
(quote ...) command, ‘A is the symbol A

¢ Can also construct list as (list 1 A “string”)

¢ Can have arbitrary lists within lists
(1 (2 A) (3 (“string”) 4) 5)

Running Lisp

e Lisp is generally run as an interpreter (though
it can be compiled)

e A Lisp program is generally a file or files
defining a set of functions (plus macros, global
parameters, etc.)

¢ The file(s) are loaded into the interpreter and
generally called from the command line

Programs in Lisp

e Programs in lisp are written as sets of
interacting functions

¢ Often the program is run by typing a function
call at the command line

¢ The basic syntax of Lisp is
(functionName argl arg2 arg3 ...)

* You can call Lisp functions or write your own

Simple Program

(defun factorial (X)
(f (<= x 0)
1
(* x (factorial (- x 1)))
)
)

Type in to define then try calling (factorial 5)

Function Definition (named)

(defun functionName (arguments)
body
)

Name is any reasonable name

Arguments are named pass by value arguments

The body (should) be a single function call where
the value of that call is returned as the value of
the function, in practice Lisp lets you list multiple
function calls in the body and then the value of
the function is the last one

Some Basic Functions

(+ number number ...) Assignment:

Also -, *,/ > (setqa 5)

(< number number) .

Also >, <=, >=, ==, >A

(and value value ...) 5

Also or setf a more powerful

version (macro that works

(not value)
on some function calls)

(eq valuel value2)
Also eql, equal, equalp
(null item)

List Manipulation

(setga‘(1(23)45(6)) (nth0a)is1
(nth3a)is5
(cara)is1 (nthcdr 3 a) is (5 (6))
(cdra)is((23)45(6)
(cadra)is (2 3)

(caadr a) is 2

(cdadr a) is (3)
(cddra)is (45 (6))
(caddr a)is 4

(cdddr a) is (5 (6))

first is equivalent to car
rest is equivalent to cdr

(cons a b) creates a cons cell of a
b

(list items) creates a list of the
items items

(append lists) glues lists together

9/15/2010

Multiple Command Structures

Temporary variable declaration
(series of variable names, values
in lists)

(let
((x 5)

& 6)

)
body of let
)

let* evaluates arguments in order
(can use earlier temporary
variable names in later variable
values)

Evaluate set of commands

(progn commands) — evaluate
commands in order, return value
of last

(progl commands) — evaluate
commands in order, return value
of first

Some dialects have other commands
(e-g., prog2)

Control Structures

(if expr truestmt falsestmt) — if expr is true evals truestmt, otherwise
evals falsestmt

(when expr form1 form2 ...) - if expr is true evals form1, etc. in order
(unless expr form1 form2 ...) — if expr is false evals form1, etc. in order
(cond

(exprl form11 form12 form13 ...)

(expr2 form21 form22 form23 ...)

(expr3 form31 form32 form33 ...)

) — evaluates expr1, if true evaluates form11, form12, etc. in order, if
exprl is false evaluates expr2 and if true evaluates form21, form22,
etc. in order, in all cases returns the value of the last form evaluated

Loop Structure — Do

(do
((varl vall nextvall)
(var2 val2 nextval2)

)
(endtest result)
commandlist

)

(do
((i0(+i1))

(x nil)

)
((null (nthedr i Ist)) x)
(push (nthi Ist) x)

)

do* is the same except the
variable list is declared
sequentially

Other Loops

(dolist (varname list) commands) — set the
variable name varname to each of the items in
list in turn and evals commands

(dotimes (varname integerarg result)
commands) — set the variable name varname
to each value from 1 to integerarg-1 evals
commands

Lots of others, mapcar, mapcan, and loop!

Another Data Structure - Arrays

(make-array listofdims) — lots of optional arguments
to control aspects such as initial element

(make-array ‘(2 2)) makes a 2x2 array of any type of
object (initial values are all nil), dimensions are

ordered starting from 0

Referring to an array element
(aref arrayname dim1 dim?2 ...)

Use setf to set the corresponding value
(setq a (make-array (2 2)))

(setf (arefa 00) 1)

Input/Output

(read) — reads a standard lisp object

(write obj) — writes an object out

Can use versions that understand escape characters (see for
example, prinl, print, pprint, princ)

(format dest controlstring args) — dest is t for the command
line, file handle otherwise, control string is a bit like a C
printf string, but we use ~S (any s-expression), ~D (integer),
~A (ascii like strings, chars), ~F (floating point), can use
width values after ~ before letter (more for some formats)

(format t “Hi ~Sis ~3D for ~4,1F\n” ‘a 12 61.353)

Produces

Hiais 12 for 61.3

9/15/2010

Useful Macros

setf — set value of object, can be used on aref,
on nth, etc.

incf — increments the value of its argument
decf — decrements value of argument
push — push first arg onto second arg list

pop — remore and return as value first element
of arg

