
1

Symbol Table Implementations
Symbol table will be used to answer 
two questions: 
1. Given a declaration of a name, is there 

already a declaration of the same name in 
the current scope 

i.e., is it multiply declared? 
2. Given a use of a name, to which 

declaration does it correspond (using the 
"most closely nested" rule), or is it 
undeclared?

Note
Generally, symbol table is only needed 
to answer those two questions, i.e.,

once all declarations have been processed 
to build the symbol table, 
and all uses have been processed to link 
each ID node in the abstract-syntax tree 
with the corresponding symbol-table entry, 
then the symbol table itself is no longer 
needed

because no more lookups based on name will 
be performed



2

Assumptions
For this work, assume we:

use static scoping
require that all names be declared before they are 
used 
do not allow multiple declarations of a name in the 
same scope 

even for different kinds of names
do allow the same name to be declared in multiple 
nested scopes 

but only once per scope
use the same scope for a method's parameters 
and for the local variables declared at the 
beginning of the method 

What operations do we need?
Given the above assumptions, we will need:

1. Look up a name in the current scope only 
to check if it is multiply declared

2. Look up a name in the current and enclosing 
scopes 

to check for a use of an undeclared name, and 
to link a use with the corresponding symbol-table entry

3. Insert a new name into the symbol table with its 
attributes

4. Do what must be done when a new scope is 
entered

5. Do what must be done when a scope is exited



3

Some possible symbol table 
implementations
1. a list of tables
2. a table of lists 

For each approach, we will consider 
what must be done when entering and exiting a 
scope, 
when processing a declaration, and 
when processing a use

Simplification: 
assume each symbol-table entry includes only: 

the symbol name 
its type 
the nesting level of its declaration

Method 1: List of Hashtables
The idea:

symbol table = a list of hashtables, 
one hashtable for each currently visible scope. 

When processing a scope S:

front of list end of list

declarations 
made in S

declarations made in 
scopes that enclose S



4

Example: 
void f(int a, int b) { 

double x; 
while (...) { int x, y; ... }

} 
void g() { f(); } 

After processing declarations inside the while 
loop:

x: int, 3
y: int, 3 

a: int, 2
b: int, 2
x: double, 2

f: (int, int) void, 1

List of Hash Tables - Operations
• On scope entry: 

• increment the current level number and 
add a new empty hashtable to the front of 
the list. 

• To process a declaration of x: 
• look up x in the first table in the list 

If it is there, then issue a "multiply declared 
variable" error; 
otherwise, add x to the first table in the list 



5

List of Hash Tables - Operations
• To process a use of x: 

• look up x starting in the first table in the 
list; 

if it is not there, then look up x in each 
successive table in the list
if it is not in any table then issue an 
"undeclared variable" error 

• On scope exit, 
• remove the first table from the list and 

decrement the current level number

Inserting Method/Function Names
Method names belong in the hashtable for 
the outermost scope

Not in the same table as the method's variables

For example, in the previous example:
Method name f is in the symbol table for the 
outermost scope
Name f is not in the same scope as parameters a 
and b, and variable x 
This is so that when the use of name f in method 
g is processed, the name is found in an enclosing 
scope's table 



6

Running times for each operation:
1. Scope entry: 

• time to initialize a new, empty hashtable; 
• probably proportional to the size of the hashtable 

2. Process a declaration:
• using hashing, constant expected time (O(1)) 

3. Process a use: 
• using hashing to do the lookup in each table in the 

list, the worst-case time is O(depth of nesting), 
when every table in the list must be examined 

4. Scope exit: 
• time to remove a table from the list, which should 

be O(1) if garbage collection is ignored

Scoping Example
C++ does not use exactly the scoping rules that we 
have been assuming 

In particular, C++ does allow a function to have both a 
parameter and a local variable with the same name 

any uses of the name refer to the local variable
Consider the following code. What is the symbol table as it 
would be after processing the declarations in the body of f
under: 

the scoping rules we have been assuming 
C++ scoping rules 

void g(int x, int a) { } 
void f(int x, int y, int z) { 

int a, b, x; ... 
}



7

Scoping Example (cont)
Questions: 

Which of the four operations described above
scope entry, 
process a declaration, 
process a use, 
scope exit

would we need to change to use the following 
rules for name reuse instead of C++ rules: 

the same name can be used within one scope as long as 
the uses are for different kinds of names, and
the same name cannot be used for more than one 
variable declaration in a nested scope

Method 2: Hash Table of Lists
the idea: 

when processing a scope S, the structure 
of the symbol table is: 

x:

y:

z:



8

Definition
There is just one big hashtable, containing an 
entry for each variable for which there is 

some declaration in scope S or 
in a scope that encloses S

Associated with each variable is a list of 
symbol-table entries 

The first list item corresponds to the most closely 
enclosing declaration; 
the other list items correspond to declarations in 
enclosing scopes

Example
int f (int a) {

float x, y;
while (…) {
char x, y, z;

}
}
void g () {

int x;
f(1);

}

After processing the 
declarations inside the 
while loop:

f:

a:

x:

y:

z:

int int, 1

int, 2

char, 3 float, 2

char, 3

float, 2char, 3



9

Nesting level information is 
crucial

the level-number attribute stored in 
each list item enables us to determine 
whether the most closely enclosing 
declaration was made 

in the current scope or 
in an enclosing scope 

Hash Table of Lists: Operations
• On scope entry: 

• increment the current level number 

• To process a declaration of x: 
• look up x in the symbol table 

If x is there, fetch the level number from the 
first list item. 

• If that level number = the current level then issue a 
"multiply declared variable" error; 

• otherwise, add a new item to the front of the list 
with the appropriate type and the current level 
number 



10

Hash Table of Lists: Operations
• To process a use of x: 

• look up x in the symbol table 
• If it is not there, then issue an "undeclared 

variable" error 
• On scope exit:

• scan all entries in the symbol table, looking at the 
first item on each list

• If that item's level number = the current level 
number, then remove it from its list (and if the list 
becomes empty, remove the entire symbol-table 
entry)

• Finally, decrement the current level number 

Running times
1. Scope entry: 

• time to increment the level number, O(1) 
2. Process a declaration: 

• using hashing, constant expected time O(1) 
3. Process a use: 

• using hashing, constant expected time O(1) 
4. Scope exit: 

• time proportional to the number of names in the 
symbol table (or perhaps even the size of the 
hashtable if no auxiliary information is maintained 
to allow iteration through the non-empty 
hashtable buckets) 



11

Symbol Table Example
Assume symbol table is implemented using a hash 
table of lists 
How does symbol table change in processing the 
following?

void g(int x, int a) { 
double d; 
while (...) { 

int d, w; 
double x, b; 
if (...) { int a,b,c; } 

} 
while (...) { int x,y,z; } 

}


