Intermediate Code and Optimizations

- We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation
- Our compiler goes directly from AST to assembly language
 - And does not perform optimizations
- Most real compilers use intermediate languages

Why Intermediate Languages?

- When to perform optimizations
 - On AST
 - **Pro**: Machine independent
 - **Con**: Too high level
 - On assembly language
 - **Pro**: Exposes optimization opportunities
 - **Con**: Machine dependent
 - **Con**: Must re-implement optimizations when re-targetting
 - On an intermediate language
 - **Pro**: Machine independent
 - **Pro**: Exposes optimization opportunities
Intermediate Languages

- Each compiler uses its own intermediate language
 - IL design is still an active area of research
- Intermediate language = high-level assembly language
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses op-codes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most op-codes correspond directly to assembly op-codes

Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 - \(y \) and \(z \) can be only registers or constants
 - Just like assembly
- Common form of intermediate code
- The AST expression \(x + y \times z \) is translated as
 \[t_1 := y \times z \]
Generating Intermediate Code

- Similar to assembly code generation
- Major difference
 - Use any number of IL registers to hold intermediate results

Generating Int. Code (Cont.)

- Igen(e, t) function generates code to compute the value of e in register t
- Example:

 \[
 \text{igen}(e_1 + e_2, t) = \begin{array}{l}
 \text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 \text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 t := t_1 + t_2
 \end{array}
 \]
- Unlimited number of registers
 \[\Rightarrow\] simple code generation
An Intermediate Language

P → S P | ε
S → id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

Definition: Basic Blocks

A basic block is a maximal sequence of instructions with:

- no labels (except at the first instruction), and
- no jumps (except in the last instruction)

Idea:

- Cannot jump into a basic block (except at beginning)
- Cannot jump out of a basic block (except at end)
- Each instruction in a basic block is executed after all the preceding instructions have been executed
Basic Block Example

Consider the basic block

1. L:
2. \(t := 2 \times x \)
3. \(w := t + x \)
4. if \(w > 0 \) goto L

No way for (3) to be executed without (2) having been executed right before

- We know we can change (3) to \(w := 3 \times x \)
- Can we eliminate (2) as well?

Definition. Control-Flow Graphs

A control-flow graph is a directed graph with

- Basic blocks as nodes
- An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B
- E.g., the last instruction in A is jump \(L_B \)
- E.g., the execution can fall-through from block A to block B
Control-Flow Graphs. Example.

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal

Optimization Overview

- Optimization seeks to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.
- Optimization should not alter what the program computes
 - The answer must still be the same
A Classification of Optimizations

For languages like C and Java there are three granularities of optimizations

1. Local optimizations
 - Apply to a basic block in isolation

2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
 - Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)

Cost of Optimizations

In practice, a conscious decision is made not to implement the fanciest optimization known

Why?
- Some optimizations are hard to implement
- Some optimizations are costly in terms of compilation time
- The fancy optimizations are both hard and costly

The goal: maximum improvement with minimum of cost
Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification

Algebraic Simplification

- Some statements can be deleted
 - $x := x + 0$
 - $x := x \times 1$
- Some statements can be simplified
 - $x := x \times 0 \Rightarrow x := 0$
 - $y := y \times 2 \Rightarrow y := y \times y$
 - $x := x \times 8 \Rightarrow x := x \ll 3$
 - $x := x \times 15 \Rightarrow t := x \ll 4; x := t - x$
 (on some machines \ll is faster than \times; but not on all!)
Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
- Example: if \(2 < 0 \) jump \(L \) can be deleted
- When might constant folding be dangerous?

Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or “fall through” from a conditional
 - Such basic blocks can be eliminated
- Why would such basic blocks occur?
- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)
Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment.
- Intermediate code can be rewritten to be in single assignment form:

 \[
 x := z + y \\
 a := x \\
 x := 2 \times x
 \]

 \[
 \Rightarrow \\
 b := z + y \\
 a := b \\
 x := 2 \times b
 \]

 (\(b\) is a fresh register)

- More complicated in general, due to loops.

Common Sub-expression Elimination

- Assume
 - Basic block is in single assignment form
 - A definition \(x :=\) is the first use of \(x\) in a block.
- If any assignment have the same rhs, they compute the same value:

 \[
 x := y + z \\
 w := y + z
 \]

 \[
 \Rightarrow \\
 x := y + z \\
 w := x
 \]

 (the values of \(x\), \(y\), and \(z\) do not change in the code)
Copy Propagation

- If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \)

Example:

\[
\begin{align*}
b &:= z + y & b &:= z + y \\
a &:= b & a &:= b \\
x &:= 2 \times a & x &:= 2 \times b
\end{align*}
\]

- This does not make the program smaller or faster but might enable other optimizations
 - Constant folding
 - Dead code elimination

Copy Propagation and Constant Folding

- Example:

\[
\begin{align*}
a &:= 5 & a &:= 5 \\
x &:= 2 \times a & x &:= 10 \\
y &:= x + 6 & y &:= 16 \\
t &:= x \times y & t &:= x \ll 4
\end{align*}
\]
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs appears in a basic block} \]
\[w \text{ does not appear anywhere else in the program} \]

Then

the statement \(w := \text{rhs} \) is dead and can be eliminated

- Dead = does not contribute to the program’s result

Example: (\(a \) is not used anywhere else)

\[
\begin{align*}
x &:= z + y & b &:= z + y & b &:= x + y \\
a &:= x & a &:= b & x &:= 2 * b \\
x &:= 2 * x & x &:= 2 * b
\end{align*}
\]

Applying Local Optimizations

- Each local optimization does very little by itself
- Typically optimizations interact
 - Performing one optimizations enables other optimizations
- Typical optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time
An Example

- **Initial code:**

 \[
 \begin{align*}
 a & := x \times 2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f \\
 \end{align*}
 \]

An Example

- **Algebraic optimization:**

 \[
 \begin{align*}
 a & := x \times 2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f \\
 \end{align*}
 \]
An Example

- Algebraic optimization:

 \[
 \begin{align*}
 a &= x \times x \\
 b &= 3 \\
 c &= x \\
 d &= c \times c \\
 e &= b \ll 1 \\
 f &= a + d \\
 g &= e \times f
 \end{align*}
 \]

- Copy propagation:

 \[
 \begin{align*}
 a &= x \times x \\
 b &= 3 \\
 c &= x \\
 d &= c \times c \\
 e &= b \ll 1 \\
 f &= a + d \\
 g &= e \times f
 \end{align*}
 \]
An Example

- **Copy propagation:**

  ```
  a := x * x
  b := 3
  c := x
  d := x * x
  e := 3 << 1
  f := a + d
  g := e * f
  ```

- **Constant folding:**

  ```
  a := x * x
  b := 3
  c := x
  d := x * x
  e := 3 << 1
  f := a + d
  g := e * f
  ```
An Example

- Constant folding:

  ```
  a := x * x  
b := 3       
c := x       
d := x * x   
e := 6       
f := a + d   
g := e * f
  ```

An Example

- Common subexpression elimination:

  ```
  a := x * x  
b := 3       
c := x       
d := x * x   
e := 6       
f := a + d   
g := e * f
  ```
An Example

- Common subexpression elimination:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Copy propagation:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- Copy propagation:

  ```
  a := x * x
  b := 3
  c := x
  d := a
  e := 6
  f := a + a
  g := 6 * f
  ```

An Example

- Dead code elimination:

  ```
  a := x * x
  b := 3
  c := x
  d := a
  e := 6
  f := a + a
  g := 6 * f
  ```

Note: assume b, c, d, e are temporaries (introduced by the compiler) and hence are not used outside this basic block
An Example

- Dead code elimination:
 \[a := x \times x \]

 \[f := a + a \]
 \[g := 6 \times f \]

- This is the final form

Peephole Optimizations on Assembly Code

- The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also

- **Peephole optimization** is an effective technique for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules

\[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]

where the rhs is the improved version of the lhs

- **Example:**
 move a b, move b a \rightarrow move a b
 - Works if move b a is not the target of a jump

- **Another example**
 addiu a a i, addiu a a j \rightarrow addiu a a $i+j$

Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations

 - Example: addiu a b 0 \rightarrow move a b
 - Example: move a a \rightarrow
 - These two together eliminate addiu a a 0

- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect
Local Optimizations. Notes.

- Intermediate code is helpful for many optimizations
- Many simple optimizations can still be applied on assembly language
- “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term