s S€mantic Analysis

= Scoping (Readings 7.1,7.4,7.6)

= Static

= Dynamic
= Parameter passing methods (7.5)
= Building symbol tables (7.6)

= How to use them to find
= multiply-declared and
» undeclared variables

= Type checking (6.1-6.6)

i‘ The Compiler So Far

= Lexical analysis
= Detects inputs with illegal tokens
= €.g.: main$ ();
= Parsing

= Detects inputs with ill-formed parse trees
= €.g.: missing semicolons

= Semantic analysis
= Last “front end” phase
= Catches all remaining errors

w Classes of Errors

= Lexical — detected by scanner

= Examples:
= Illegal character in input
= Illegal comments
= Unterminated string constants

= Syntactic — detected by the parser
= Input is not a legal program, because it
cannot be parsed by CFG
« Example: a = *5

w Classes of Errors

= Static Semantic - can be detected in
parser or in separate semantic analysis
passes
= Input can be parsed by CFG but some non
context-free error
=« Examples
= Multiply declared variables
« Undeclared variables
« Function call with wrong number of arguments
= Type mismatches

w Classes of Errors

= Semantic - may be detected at compile time,
may also add checks in code for runtime
= Examples
= Division by 0
« Array index out-of-bounds
= Dereference of NULL pointer

= Can include code to check for conditions and not
allow them to occur

» Advantage: error message instead of error
behavior

= Disadvantage: object code is longer and slower

«: Classes of Errors

= Semantic - may be detected at compile time,
may also add checks in code for runtime
= Examples
= Division by 0
= Array index out-of-bounds
= Dereference of NULL pointer
= Can include code to check for conditions and not
allow them to occur
= Advantage: error message instead of error
behavior

= Disadvantage: object code is longer and slower

w Classes of Errors

= Logical — hardest to detect

= Program is syntactically and semantically
correct but does not do the “correct” thing
= Compiler can sometimes detect problem
things
if (x=0)result =1;
result = 2;
= Assignment in the body of the if is
“useless” — immediately overwritten by
next assignment

$ Static Semantic Errors

= multiple declarations: a variable should be
declared (in the same scope) at most once

» undeclared variable: a variable should not be
used before being declared.

= type mismatch: type of the left-hand side of
an assignment should match the type of the
right-hand side

= wrong arguments: methods should be called
with the right number and types of
arguments

An sample semantic analyzer

= works in two phases

= i.e., it traverses the AST created by the parser:

1. For each scope in the program:
=« process the declarations =
add new entries to the symbol table and
report any variables that are multiply declared
= process the statements =
find uses of undeclared variables, and
update the "ID" nodes of the AST to point to the
appropriate symbol-table entry.
2. Process all of the statements in program again,

= use the symbol-table information to determine the type
of each expression, and to find type errors

Symbol Table = set of entries

= purpose:
= keep track of names declared in the program
= names of
= variables, classes, fields, methods,

= symbol table entry:

= associates a name with a set of attributes, e.qg.:
= kind of name (variable, class, field, method, etc)
« type (int, float, etc)
= nesting level
=« memory location (i.e., where will it be found at runtime).

iScoping

= symbol table design influenced by what
kind of scoping is used by the compiled
language

= In most languages, the same name can be
declared multiple times

= if its declarations occur in different scopes,
and/or

= involve different kinds of names

* Scoping: example

= Java: can use same name for
= a class,
= field of the class,
= a method of the class, and

= a local variable of the method
m legal Java program:

class Test {
int Test;
void Test() { double Test; }

iScoping: overloading

= Java and C++ (but not in Pascal or C):

= can use the same name for more than one
method

= as long as the number and/or types of
parameters are unique.

int add(int a, int b);
float add(float a, float b);

s SCOPINg: general rules

= The scope rules of a language:

= determine which declaration of a nhamed object
corresponds to each use of the object

= i.e., scoping rules map uses of objects to their
declarations

= C++ and Java use static scoping:.

= mapping from uses to declarations is made at
compile time.

= C++ uses the "most closely nested" rule

= a use of variable x matches the declaration in the most
closely enclosing scope

= such that the declaration precedes the use

e SCOpE levels

= Each function has two or more scopes:
= one for the parameters,
= one for the function body,

= and possibly additional scopes in the
function
=« for each forloop and
= each nested block (delimited by curly braces)

== Example
void f(int k) { // k is a parameter
intk =0; // also a local variable
while (k) {
intk =1; // another local variable, in a loop
by
b

» the outmost scope includes just the name "f", and
=« function f itself has three (nested) scopes:
1. The outer scope for f just includes parameter k

». The next scope is for the body of f, and includes the
variable k that is initialized to 0

3. The innermost scope is for the body of the while loop,
and includes the variable k that is initialized to 1

we EXample

= Match uses and declarations
int k=10, x=20;
void foo(int k) {
int a = x;
int x = k;
int b = x;
while (...) {
int x;
if (x == k) {
int k, y;
k=y=x;
}
if (x == k) { int x = y; }
}

$‘ Dynamic Scoping

= Not all languages use static scoping

= Lisp, APL, and Snobol use dynamic
scoping
= Dynamic scoping:
= A use of a variable that has no
corresponding declaration in the same

function corresponds to the declaration in

the most-recently-called still active
function

s Example

= For example, consider the following
code:

void main() { £1(); £2(); }

void £1() { int x = 10; g(); }

void £2() { String x = "hello"; £3(); g():

void £3() { double x = 30.5; }

void g() { print(x); }

$ Example: Dynamic Scoping

= Assuming dynamic scoping is used,
what is output by this program?

void main() { int x = 0; £1(); g(); £2(),; }

void f1() { int x

10; g(); }

void £2() { int x = 20; £1(); g(); }

void g() { print(x); }

&FScoping Comparison

= Static vs dynamic scoping

= generally, dynamic scoping is a bad idea
= can make a program difficult to understand
= a single use of a variable can correspond to

many different declarations
with different types!

= Can a name be used before they are defined?

= Java: a method or field name can be used before
the definition appears,
= nottrue for a variable!

$N Example

class Test {

void £ () {
val = 0;
// field val has not yet been declared -- OK
g();
// method g has not yet been declared -- OK
x =1;
// var x has not yet been declared -- ERROR!
int x;

}

void g() {}
int val;

