
1

Semantic Analysis
Scoping (Readings 7.1,7.4,7.6)

Static
Dynamic

Parameter passing methods (7.5)
Building symbol tables (7.6)

How to use them to find
multiply-declared and
undeclared variables

Type checking (6.1-6.6)

The Compiler So Far
Lexical analysis

Detects inputs with illegal tokens
e.g.: main$ ();

Parsing
Detects inputs with ill-formed parse trees

e.g.: missing semicolons

Semantic analysis
Last “front end” phase
Catches all remaining errors

2

Classes of Errors
Lexical – detected by scanner

Examples:
Illegal character in input
Illegal comments
Unterminated string constants

Syntactic – detected by the parser
Input is not a legal program, because it
cannot be parsed by CFG
Example: a = * 5

Classes of Errors
Static Semantic - can be detected in
parser or in separate semantic analysis
passes

Input can be parsed by CFG but some non
context-free error
Examples

Multiply declared variables
Undeclared variables
Function call with wrong number of arguments
Type mismatches

3

Classes of Errors
Semantic - may be detected at compile time,
may also add checks in code for runtime

Examples
Division by 0
Array index out-of-bounds
Dereference of NULL pointer

Can include code to check for conditions and not
allow them to occur
Advantage: error message instead of error
behavior
Disadvantage: object code is longer and slower

Classes of Errors
Semantic - may be detected at compile time,
may also add checks in code for runtime

Examples
Division by 0
Array index out-of-bounds
Dereference of NULL pointer

Can include code to check for conditions and not
allow them to occur
Advantage: error message instead of error
behavior
Disadvantage: object code is longer and slower

4

Classes of Errors
Logical – hardest to detect

Program is syntactically and semantically
correct but does not do the “correct” thing
Compiler can sometimes detect problem
things
if (x = 0) result = 1;
result = 2;

Assignment in the body of the if is
“useless” – immediately overwritten by
next assignment

Static Semantic Errors
multiple declarations: a variable should be
declared (in the same scope) at most once
undeclared variable: a variable should not be
used before being declared.
type mismatch: type of the left-hand side of
an assignment should match the type of the
right-hand side
wrong arguments: methods should be called
with the right number and types of
arguments

5

An sample semantic analyzer
works in two phases

i.e., it traverses the AST created by the parser:
1. For each scope in the program:

process the declarations =
add new entries to the symbol table and
report any variables that are multiply declared

process the statements =
find uses of undeclared variables, and
update the "ID" nodes of the AST to point to the
appropriate symbol-table entry.

2. Process all of the statements in program again,
use the symbol-table information to determine the type
of each expression, and to find type errors

Symbol Table = set of entries
purpose:

keep track of names declared in the program
names of

variables, classes, fields, methods,

symbol table entry:
associates a name with a set of attributes, e.g.:

kind of name (variable, class, field, method, etc)
type (int, float, etc)
nesting level
memory location (i.e., where will it be found at runtime).

6

Scoping

symbol table design influenced by what
kind of scoping is used by the compiled
language

In most languages, the same name can be
declared multiple times

if its declarations occur in different scopes,
and/or
involve different kinds of names

Scoping: example
Java: can use same name for

a class,
field of the class,
a method of the class, and
a local variable of the method

legal Java program:

class Test {
int Test;
void Test() { double Test; }

}

7

Scoping: overloading
Java and C++ (but not in Pascal or C):

can use the same name for more than one
method
as long as the number and/or types of
parameters are unique.

int add(int a, int b);
float add(float a, float b);

Scoping: general rules
The scope rules of a language:

determine which declaration of a named object
corresponds to each use of the object
i.e., scoping rules map uses of objects to their
declarations

C++ and Java use static scoping:
mapping from uses to declarations is made at
compile time.
C++ uses the "most closely nested" rule

a use of variable x matches the declaration in the most
closely enclosing scope
such that the declaration precedes the use

8

Scope levels
Each function has two or more scopes:

one for the parameters,
one for the function body,
and possibly additional scopes in the
function

for each for loop and
each nested block (delimited by curly braces)

Example
void f(int k) { // k is a parameter

int k = 0; // also a local variable
while (k) {

int k = 1; // another local variable, in a loop
}

}
the outmost scope includes just the name "f", and
function f itself has three (nested) scopes:

1. The outer scope for f just includes parameter k
2. The next scope is for the body of f, and includes the

variable k that is initialized to 0
3. The innermost scope is for the body of the while loop,

and includes the variable k that is initialized to 1

9

Example
Match uses and declarations

int k=10, x=20;
void foo(int k) {

int a = x;
int x = k;
int b = x;
while (...) {

int x;
if (x == k) {

int k, y;
k = y = x;

}
if (x == k) { int x = y; }

}

}

Dynamic Scoping
Not all languages use static scoping
Lisp, APL, and Snobol use dynamic
scoping
Dynamic scoping:

A use of a variable that has no
corresponding declaration in the same
function corresponds to the declaration in
the most-recently-called still active
function

10

Example
For example, consider the following
code:

void main() { f1(); f2(); }

void f1() { int x = 10; g(); }

void f2() { String x = "hello"; f3(); g(); }

void f3() { double x = 30.5; }

void g() { print(x); }

Example: Dynamic Scoping
Assuming dynamic scoping is used,
what is output by this program?

void main() { int x = 0; f1(); g(); f2(); }

void f1() { int x = 10; g(); }

void f2() { int x = 20; f1(); g(); }

void g() { print(x); }

11

Scoping Comparison
Static vs dynamic scoping

generally, dynamic scoping is a bad idea
can make a program difficult to understand
a single use of a variable can correspond to

many different declarations
with different types!

Can a name be used before they are defined?
Java: a method or field name can be used before
the definition appears,

not true for a variable!

class Test {
void f() {

val = 0;
// field val has not yet been declared -- OK
g();
// method g has not yet been declared -- OK
x = 1;
// var x has not yet been declared -- ERROR!
int x;

}
void g() {}
int val;

}

Example

