Instance Based Learning

• k-Nearest Neighbor
• Locally weighted regression
• Radial basis functions
• Case-based reasoning
• Lazy and eager learning
Instance-Based Learning

Key idea: just store all training examples \(< x_i, f(x_i) > \)

Nearest neighbor (1 - Nearest neighbor):

- Given query instance \(x_q \), locate nearest example \(x_n \), estimate
 \[
 \hat{f}(x_q) \leftarrow f(x_n)
 \]

\(k \) – Nearest neighbor:

- Given \(x_q \), take vote among its \(k \) nearest neighbors (if discrete-valued target function)

- Take mean of \(f \) values of \(k \) nearest neighbors (if real-valued)
 \[
 \hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}
 \]
When to Consider Nearest Neighbor

- Instance map to points in R^n
- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes
k-NN Classification

5-Nearest Neighbor

x_q

1-NN Decision Surface
Behavior in the Limit

Define $p(x)$ as probability that instance x will be labeled 1 (positive) versus 0 (negative)

Nearest Neighbor

- As number of training examples approaches infinity, approaches Gibbs Algorithm

 Gibbs: with probability $p(x)$ predict 1, else 0

k-Nearest Neighbor:

- As number of training examples approaches infinity and k gets large, approaches Bayes optimal

 Bayes optimal: if $p(x) > 0.5$ then predict 1, else 0

- Note Gibbs has at most twice the expected error of Bayes optimal
Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note, now it makes sense to use all training examples instead of just k

\rightarrow Shepard's method
Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled when high-dimensional X

One approach:

- Stretch jth axis by weight z_j, where z_1, z_2, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, z_2, \ldots, z_n
- Note setting z_j to zero eliminates dimension j altogether

see (Moore and Lee, 1994)
Locally Weighted Regression

k-NN forms local approximation to f for each query point x_q

Why not form explicit approximation $\hat{f}(x)$ for region around x_q?

- Fit linear function to k nearest neighbors
- Or fit quadratic, etc.
- Produces "piecewise approximation" to f

Several choices of error to minimize:

- Squared error over k nearest neighbors

\[
E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors of } x_q} (f(x) - \hat{f}(x))^2
\]

- Distance-weighted squared error over all neighbors

\[
E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))
\]
Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, for example, in image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”
Radial Basis Function Networks

where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^{k} w_u K_u (d(x_u, x))$$

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$
Training RBF Networks

Q1: What x_u to use for kernel function $K_u(d(x_u, x))$?

- Scatter uniformly through instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_u)?

- First choose variance (and perhaps mean) for each K_u
 - e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function
Case-Based Reasoning

Can apply instance-based learning even when $X \subseteq \mathbb{R}^n$

→ need different “distance” metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions:

- ((user-complaint error 53 on shutdown)
 (cpu-model PowerPC)
 (operating-system Windows)
 (network-connection PCIA)
 (memory 48 meg)
 (installed-applications Excel Netscape VirusScan)
 (disk 1 Gig)
 (likely-cause ???))

CS 5751 Machine Learning Chapter 8 Instance Based Learning
Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

- each training example:
 <qualitative function, mechanical structure>
- new query: desired function
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions
Case-Based Reasoning in CADET

A stored case: T-junction pipe

Structure:

\[Q_1, T_1 \]
\[Q_3, T_3 \]
\[Q_2, T_2 \]

Function:

\[Q_1 \rightarrow \times \rightarrow Q_3 \]
\[Q_2 \rightarrow \times \rightarrow T_3 \]
\[T_1 \rightarrow \times \rightarrow T_3 \]

A problem specification: Water faucet

Structure:

Function:

\[C_c \rightarrow + \rightarrow Q_c \]
\[C_h \rightarrow + \rightarrow Q_h \]
\[T_c \rightarrow \times \rightarrow T_m \]
\[T_h \rightarrow \times \rightarrow T_m \]
Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:
- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research
Lazy and Eager Learning

Lazy: wait for query before generalizing
- k-Nearest Neighbor, Case-Based Reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, etc.

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider $H=$linear functions)
kd-trees (Moore)

- **Eager** version of k-Nearest Neighbor
- **Idea**: decrease time to find neighbors
 - train by constructing a lookup (kd) tree
 - recursively subdivide space
 - ignore class of points
 - lots of possible mechanisms: grid, maximum variance, etc.
 - when looking for nearest neighbor search tree
 - nearest neighbor can be found in $\log(n)$ steps
 - k nearest neighbors can be found by generalizing process (still in $\log(n)$ steps if k is constant)
- **Slower training but faster classification**
kd Tree
Instance Based Learning Summary

• Lazy versus Eager learning
 – lazy - work done at testing time
 – eager - work done at training time
 – instance based sometimes lazy

• k-Nearest Neighbor (k-nn) lazy
 – classify based on k nearest neighbors
 – key: determining neighbors
 – variations:
 • distance weighted combination
 • locally weighted regression
 – limitation: curse of dimensionality
 • “stretching” dimensions
Instance Based Learning Summary

• k-d trees (eager version of k-nn)
 – structure built at train time to quickly find neighbors

• Radial Basis Function (RBF) networks (eager)
 – units active in region (sphere) of space
 – key: picking/training kernel functions

• Case-Based Reasoning (CBR) generally lazy
 – nearest neighbor when no continuous features
 – may have other types of features:
 • structural (graphs in CADET)