Instance Based Learning
- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

When to Consider Nearest Neighbor
- Instance map to points in \mathbb{R}^n
- Less than 20 attributes per instance
- Lots of training data

Advantages
- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages
- Slow at query time
- Easily fooled by irrelevant attributes

Behavior in the Limit
Define $p(x)$ as probability that instance x will be labeled 1 (positive) versus 0 (negative)

Nearest Neighbor
- As number of training examples approaches infinity, approaches Gibbs Algorithm
 - Gibbs: with probability $p(x)$ predict 1, else 0

k-Nearest Neighbor
- As number of training examples approaches infinity and k gets large, approaches Bayes optimal
 - Bayes optimal: if $p(x) > 0.5$ then predict 1, else 0
 - Note Gibbs has at most twice the expected error of Bayes optimal

Instance-Based Learning
Key idea: just store all training examples $\langle x, f(x) \rangle$

Nearest neighbor (1 - Nearest neighbor):
- Given query instance x_q, locate nearest example x_i, estimate
 $$\hat{f}(x_q) \leftarrow f(x_i)$$

k - Nearest neighbor:
- Given x_q, take vote among its k nearest neighbors (if discrete - valued target function)
 - Take mean of f values of k nearest neighbors (if real-valued)
 $$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}$$

k-NN Classification
5-Nearest Neighbor

1-NN Decision Surface

Distance-Weighted k-NN
Might want to weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where
$$w_i = \frac{1}{d(x_q, x_i)^2}$$
and $d(x_q, x_i)$ is distance between x_q and x_i

Note, now it makes sense to use all training examples instead of just k

→ Shepard's method
Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function.

Curse of dimensionality: nearest neighbor is easily misled when high-dimensional X.

One approach:
• Stretch jth axis by weight z_j, where z_1, z_2, \ldots, z_n chosen to minimize prediction error.
• Use cross-validation to automatically choose weights z_j.
• Note setting z_j to zero eliminates dimension j altogether see (Moore and Lee, 1994).

Locally Weighted Regression

k-NN forms local approximation to f for each query point x_q.
Why not form explicit approximation $\hat{f}(x)$ for region around x_q?
• Fit linear function to k nearest neighbors.
• Or fit quadratic, etc.
• Produces "piecewise approximation" to f.
Several choices of error to minimize:
• Squared error over k nearest neighbors $E_k(x_q) = \frac{1}{k} \sum_{x \in N_k(x_q)} (f(x) - \hat{f}(x))^2$.
• Distance-weighted squared error over all neighbors $E_d(x_q) = \frac{1}{d(x_q)} \sum_{x \in \text{all}} (f(x) - \hat{f}(x))^2 K(d(x, x_q))$.

Radial Basis Function Networks

• Global approximation to target function, in terms of linear combination of local approximations.
• Used, for example, in image classification.
• A different kind of neural network.
• Closely related to distance-weighted regression, but “eager” instead of “lazy”.

Training RBF Networks

Q1: What x_u to use for kernel function $K_u(d(x, x_u))$?
• Scatter uniformly through instance space.
• Or use training instances (reflects instance distribution).

Q2: How to train weights (assume here Gaussian K_u)?
• First choose variance (and perhaps mean) for each K_u—e.g., use EM.
• Then hold K_u fixed, and train linear output layer—efficient methods to fit linear function.

Case-Based Reasoning

Can apply instance-based learning even when $X \subseteq \mathbb{R}^n$; need different “distance” metric.
Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions:

((user-complaint error 53 on shutdown)
 (cpu-model PowerPC)
 (operating-system Windows)
 (network-connection PCIA)
 (memory 48meg)
 (installed-applications Excel Netscape VirusScan)
 (disk 1Gig)
 (likely-cause ???))
Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices
- each training example:
 \(<\text{qualitative function, mechanical structure}>\)
- new query: desired function
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

Case-Based Reasoning in CADET

A stored case:

- Structure:
 \(T\) = temperature
 \(Q\) = water flow

- Function:
 \(Q_1, T_1\)
 \(Q_2, T_2\)
 \(Q_3, T_3\)

A problem specification:

- Structure:
 ?
- Function:
 \(C\sum_{i=1}^{3} Q_i T_i\)

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:
- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing
- k-Nearest Neighbor, Case-Based Reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, etc.

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same \(H\), lazy can represent more complex functions (e.g., consider \(H=\text{linear functions}\))

kd-trees (Moore)

- Eager version of k-Nearest Neighbor
- Idea: decrease time to find neighbors
 - train by constructing a lookup (kd) tree
 - recursively subdivide space
 - ignore class of points
 - lots of possible mechanisms: grid, maximum variance, etc.
 - when looking for nearest neighbor search tree
 - nearest neighbor can be found in log(n) steps
 - k nearest neighbors can be found by generalizing process (still in log(n) steps if k is constant)
- Slower training but faster classification
Instance Based Learning Summary

- Lazy versus Eager learning
 - lazy - work done at testing time
 - eager - work done at training time
 - instance based sometimes lazy
- k-Nearest Neighbor (k-nn) lazy
 - classify based on k nearest neighbors
 - key: determining neighbors
 - variations:
 - distance weighted combination
 - locally weighted regression
 - limitation: curse of dimensionality
 - “stretching” dimensions

Instance Based Learning Summary

- k-d trees (eager version of k-nn)
 - structure built at train time to quickly find neighbors
- Radial Basis Function (RBF) networks (eager)
 - units active in region (sphere) of space
 - key: picking/training kernel functions
- Case-Based Reasoning (CBR) generally lazy
 - nearest neighbor when no continuous features
 - may have other types of features:
 - structural (graphs in CADET)