Concept Learning

• Learning from examples
• General-to-specific ordering over hypotheses
• Version Spaces and candidate elimination algorithm
• Picking new examples
• The need for inductive bias

Some Examples for SmileyFaces

Features from Computer View

- Eyes Nose Head Fcolor Hair
- Round Triangle Round Purple Yes Yes
- Square Square Square Green Yes No
- Square Triangle Round Yellow Yes Yes
- Round Triangle Round Green No No
- Square Square Round Yellow Yes Yes

Representing Hypotheses

- Many possible representations for hypotheses h
- Idea: h as conjunctions of constraints on features
- Each constraint can be:
 - a specific value (e.g., Nose = Square)
 - don’t care (e.g., Eyes = ?)
 - no value allowed (e.g., Water=Ø)
- For example,
 - Eyes Nose Head Fcolor Hair
 - <Round, ?, Round, ?, No>

Prototypical Concept Learning Task

Given:
- Instances X: Faces, each described by the attributes Eyes, Nose, Head, Fcolor, and Hair?
- Target function c: Smile? : X -> { no, yes }
- Hypotheses H: Conjuncts of literals such as
 - $<$Round, ?, Round, ?, No$>\ldots$
- Training examples D: Positive and negative examples of the target function
 - $<x_1,c(x_1)> <x_2,c(x_2)> \ldots <x_n,c(x_n)>$

Determine: a hypothesis h in H such that $h(x) = c(x)$ for all x in D.

Inductive Learning Hypothesis

- Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.
- What are the implications?
- Is this reasonable?
- What (if any) are our alternatives?
- What about concept drift (what if our views/tastes change over time)?
Instances, Hypotheses, and More-General-Than

Instances X

Hypotheses H

Specific

General

1. $h_1 = \langle \text{Round}, \text{Square}, \text{Square}, \text{Purple}, \text{Yes}\rangle$
2. $h_2 = \langle \text{Round}, \text{Square}, \text{Round}, \text{Green}, \text{Yes}\rangle$
3. $h_3 = \langle \text{Round}, \text{Triangle}, \text{Round}, \text{Yellow}, \text{Yes}\rangle$

The Find-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x
 For each attribute constraint a_i in h
 IF the constraint a_i in h is satisfied by x THEN
 do nothing
 ELSE
 replace a_i in h by next more general constraint satisfied by x
3. Output hypothesis h

Complaints about Find-S

• Cannot tell whether it has learned concept
• Cannot tell when training data inconsistent
• Picks a maximally specific h (why?)
• Depending on H, there might be several!

How do we fix this?

The List-Then-Eliminate Algorithm

1. Set VersionSpace equal to a list containing every hypothesis in H
2. For each training example, $<x, c(x)>$
 remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
3. Output the list of hypotheses in VersionSpace
 • But is listing all hypotheses reasonable?
 • How many different hypotheses in our simple problem?
 - How many not involving "?" terms?

Version Spaces

A hypothesis h is consistent with a set of training examples D of target concept c if and only if $h(x) = c(x)$ for each training example in D.

$\text{Consistent}(h, D) = (\forall <x, c(x) \in D) h(x) = c(x)$

The version space, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$VS_{H,D} = \{ h \in H \mid \text{Consistent}(h, D) \}$
Example Version Space

G: \{ \langle ?, ?, Round, ?, ? \rangle < ?, Triangle, ?, ?, ? \rangle \}

\langle ?, ?, Round, ?, Yes \rangle < ?, Triangle, Round, ?, ? \rangle < ?, Triangle, ?, ?, Yes \rangle

S: \{ \langle ?, Triangle, Round, ?, Yes \rangle \}

Representing Version Spaces

The **General boundary**, \(G \), of version space \(VS_{H,D} \) is the set of its maximally general members.

The **Specific boundary**, \(S \), of version space \(VS_{H,D} \) is the set of its maximally specific members.

Every member of the version space lies between these boundaries

\[VS_{H,D} = \{ h \in H \mid (\exists s \in S)(\exists g \in G)(g \supseteq h \supseteq s) \} \]

where \(x \supseteq y \) means \(x \) is more general or equal to \(y \)

Candidate Elimination Algorithm

\(G = \) maximally general hypotheses in \(H \)

\(S = \) maximally specific hypotheses in \(H \)

For each training example \(d \), do

If \(d \) is a positive example

Remove from \(G \) any hypothesis that does not include \(d \)

For each hypothesis \(s \) in \(S \) that does not include \(d \)

Add to \(S \) all minimal generalizations \(h \) of \(s \) such that

1. \(h \) includes \(d \), and
2. Some member of \(G \) is more general than \(h \)

Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)

If \(G \) or \(S \) ever becomes empty, data not consistent (with \(H \))

Example Trace

\[G_0: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_2 = S, S, S, G, Y \]

\[X_4 = R, T, R, G, N \]

\[G_4: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[S_5: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_5 = S, S, R, Y, Y \]

\[S_4: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_3 = S, R, Y, Y \]

\[S_3: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_1 = R, T, R, Y \]

\[S_2: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_1 = R, T, R, Y \]

\[S_1: \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

\[X_0 = S, O, O, O, O \]

Candidate Elimination Algorithm (cont)

If \(d \) is a negative example

Remove from \(S \) any hypothesis that does include \(d \)

For each hypothesis \(g \) in \(G \) that does include \(d \)

Remove \(g \) from \(G \)

Add to \(G \) all minimal generalizations \(h \) of \(g \) such that

1. \(h \) does not include \(d \), and
2. Some member of \(S \) is more specific than \(h \)

Remove from \(G \) any hypothesis that is less general than another hypothesis in \(G \)

If \(G \) or \(S \) ever becomes empty, data not consistent (with \(H \))

What Training Example Next?

\[G: \{ \langle ?, ?, ?, ?, ?, ? \rangle < ?, Triangle, ?, ?, ? \rangle \} \]

\[\langle ?, ?, ?, ?, Yes \rangle < ?, Triangle, Round, ?, ? \rangle < ?, Triangle, ?, ?, Yes \rangle \]

\[S: \{ \langle ?, Triangle, ?, ?, Yes \rangle \} \]
How Should These Be Classified?

S: \{ {?, Triangle, Round, ?, Yes} \}

G: \{ {?, ?, Round, ?, Yes}, {?, Triangle, ?, Yes} \}

What Justifies this Inductive Leap?

+ < Round, Triangle, Round, Purple, Yes >
+ < Square, Triangle, Round, Yellow, Yes >

S: < ?, Triangle, Round, ?, Yes >

Why believe we can classify the unseen?
< Square, Triangle, Round, Purple, Yes >?

An UN-Biased Learner

Idea: Choose \(H \) that expresses every teachable concept (i.e., \(H \) is the power set of \(X \))

Consider \(H' \) = disjunctions, conjunctions, negations over previous \(H \).

For example:
< ?, Triangle, Round, ?, Yes > v < Square, Square, ?, Purple, ? >

What are S, G, in this case?

Inductive Bias

Consider
- concept learning algorithm \(L \)
- instances \(X \), target concept \(c \)
- training examples \(D_c = \{ < x, c(x) > \} \)
- let \(L(x_i, D_c) \) denote the classification assigned to the instance \(x_i \) by \(L \) after training on data \(D_c \).

Definition:
The **inductive bias** of \(L \) is any minimal set of assertions \(B \) such that for any target concept \(c \) and corresponding training examples \(D_c \)

\[
(\forall x_i \in X))(B \land L(x_i, D_c)) \rightarrow L(x_i, D_c)
\]

where \(A \vdash B \) means \(A \) logically entails \(B \)

Three Learners with Different Biases

1. **Rote learner**: store examples, classify new instance iff it matches previously observed example (don’t know otherwise).
2. **Version space candidate elimination algorithm**.
3. **Find-S**