Artificial Neural Networks

* Threshold units

+ Gradient descent

* Multilayer networks

» Backpropagation

» Hidden layer representations
» Example: Face recognition

» Advanced topics

CS 8751 ML & KDD Artificial Neural Networks

Connectionist Models

Consider humans

* Neuron switching time ~.001 second

* Number of neurons ~10'?

+ Connections per neuron ~10+3

» Scene recognition time ~.1 second

* 100 inference step does not seem like enough
must use lots of parallel computation!
Properties of artificial neural nets (ANNSs):
* Many neuron-like threshold switching units

* Many weighted interconnections among units
» Highly parallel, distributed process

» Emphasis on tuning weights automatically

CS 8751 ML & KDD Artificial Neural Networks 2

When to Consider Neural Networks

* Input is high-dimensional discrete or real-valued (e.g., raw
sensor input)

* Output is discrete or real valued

» Output is a vector of values

* Possibly noisy data

* Form of target function is unknown

* Human readability of result is unimportant
Examples:

* Speech phoneme recognition [Waibel]

» Image classification [Kanade, Baluja, Rowley]
* Financial prediction

CS 8751 ML & KDD Artificial Neural Networks 3

ALVINN drives 70 mph on highways

30x32 Sensor
Input Retina

€S 8751 ML & KDD Artificial Neural Networks 4

Perceptron

i=1
{- 1 otherwise

Lif wy +wx, +...+w,x, >0
-1otherwise

0(X,,...,X,) ={

Sometimes we will use simpler vector notation :

) 1if w-Xx>0
ox) =
-1otherwise
CS 8751 ML & KDD Artificial Neural Networks 5

Decision Surface of Perceptron

Represents some useful functions

* What weights represent g(x,,x,) = AND(x,x,)?
But some functions not representable

* e.g., not linearly separable

« therefore, we will want networks of these ...

CS 8751 ML & KDD Artificial Neural Networks 6

Perceptron Training Rule
W, <= w, +Aw,
where
Aw, =1 (t—0)x;
o ¢ =c(X)is target value
e ois perceptron output
o pissmallconstant (e.g.,.1) called learning rate

Can proveit will converge
o If training data is linearly separable

o and 7 is sufficiently small

CS 8751 ML & KDD Artificial Neural Networks

Gradient Descent

To understand, consider simple /inear unit, where
0=Wy+ WX, +..+Wx

nn

Idea :learn w,'s that minimize the squared error

E["T’]:%Z(td _Od)z

deD
Where D is the set of training examples

CS 8751 ML & KDD Artificial Neural Networks 8

Gradient Descent

CS 8751 ML & KDD Artificial Neural Networks

Gradient Dqscent

. - E OE E
Gradient VE[w]= a—,a—,...,a—
ow, Ow, ow,
Training rule: Aw, = -1 VE[W]
. OF
ie., Aw, =—n—
n ow,
CS 8751 ML & KDD Artificial Neural Networks 10

Gradient Descent

OE 01)
_— —__— t, -
ow, Oow, 2;“ o)

1 0 5
=5 ", -
2;5%(” 0,4)

1 0
=3 ;2(% _Od)%(td -0,)

0 -
:Z(ld—od) (t,—w-x,)
7 ow,
OE
—= Z(’d —0,)(=x,,)
ow, G

CS 8751 ML & KDD Artificial Neural Networks

Gradient Descent

GRADIENT - DESCENT (training _examples,n)
Each training examples is a pair of the form <X,t >, where X is the vector of
input values and t is the targ et output value. nis the learning rate (e.g., 05).
o Initialize each w, to some small random value
e Until the termination condition is met, do
- Initialize each Aw, to zero.
- For each < X,t > in training _examples, do
* Input the instance X and compute output o
* For each linear unit weight w;, do
Aw, <= Aw, +77(t—0)x,
- For each linear unit weight w, do

W, <~ w, +Aw,

CS 8751 ML & KDD Artificial Neural Networks 12

Summary

Perceptron training rule guaranteed to succeed if
» Training examples are linearly separable
+ Sufficiently small learning rate 77

Linear unit training rule uses gradient descent

» Guaranteed to converge to hypothesis with
minimum squared error

* Given sufficiently small learning rate 7,
» Even when training data contains noise
» Even when training data not separable by H

CS 8751 ML & KDD Artificial Neural Networks 13

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:

Do until satisfied:

1. Compute the gradient VE, /W] E,[W] %Z(zd -0,)’
2.3« i—n VE,[¥] a<p

Incremental mode Gradient Descent:
Do until satisfied:
- For each training example d in D
1. Compute the gradient VE, /W] E[[W]=1(t,~0,)
2.w<« w—nVE,[w]

Incremental Gradient Descent can approximate Batch Gradient
Descent arbitrarily closely if 77 made small enough

CS 8751 ML & KDD Artificial Neural Networks 14

Multilayer Networks of Sigmoid Units

)
&

<1

CS 8751 ML & KDD Artificial Neural Networks 15

Multilayer Decision Space

X Sigmoid Unit

o:G(ner):#
1+

—net
e

"
net = Zw,x,
i=0

o (x) is the sigmoid function
1
1+e™

Nice property : @ =o(x)(1-0(x))
x

‘We can derive gradient descent rules to train
e Onesigmoid unit
o Multilayer networks of sigmoid units — Backpropagation

CS 8751 ML & KDD Artificial Neural Networks 17

4000
o head
« hid
+ hod
* had
* haved
2000 * heard
© heed
- < hud
£2 (Hz) whatd
- hood
1000,
500
F1 (Hz)
CS 8751 ML & KDD Artificial Neural Networks 16
The Sigmoid Function
1
1 09
o(x)= — 08
1+e 07
= 06
2 05
3 04
034
02
0414
0 ——
6 5 4 3 2 -1 0 1 2 3 4 5 &
net input

Sort of a rounded step function
Unlike step function, can take derivative (makes learning
possible)

CS 8751 ML & KDD Artificial Neural Networks 18

Error Gradient for a Sigmoid Unit

OE 01 s But we know :
—=—D>(t,-0 A
ow, Ow, 2,;(”) 0o, 0o (net))
i i — - =——%=0,(1-0,)
1] ; Onet, Onet,
==>—(t,-0,) o
2;0W,(" o) Onet, :G(W-xd)zv
Is) 8 ow,ow
==>"2(t,~0,)—(t,~o,
2d (d Al)av‘/’(d d SO:
=Y (t,~0,) _0o, 6—E=—Z(t —0,)0,(1-0,)x,
=2 0, o, ow, P a4 7049 a) Xia
do, Onet
=3y o) L e
7 Onet, Ow,
CS 8751 ML & KDD Artificial Neural Networks 19

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, do
e For each training example, do
1. Input the training example and compute the outputs
2.For each output unit &
6, <o, (1-0,)(5, —0,)
3.For each hidden unit
6, < 0,(1-0,) Z Wi k0

keoutputs
4. Update each network weight w, ;
Wy Wyt AW
where
Aw, ;=16 x,

JTig

CS 8751 ML & KDD Artificial Neural Networks 20

More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum
— In practice, often works well (can run multiple times)
Often include weight momentum o.
Aw, ;(n)=n0x, ;+a Aw, (n-1)
Minimizes error over training examples
Will it generalize well to subsequent examples?
Training can take thousands of iterations -- slow!

— Using network after training is fast

CS 8751 ML & KDD Artificial Neural Networks 21

Learning Hidden Layer Representations

Input Output
10000000 — 10000000
01000000 — 01000000]
00100000 — 00100000]
00010000 — 00010000]
00001000 — 00001000]
00000100 — 00000100]
00000010 — 00000010]
00000001 — 00000001

CS 8751 ML & KDD Artificial Neural Networks 22

Learning Hidden Layer Representations

Input Output
10000000 —.89.04.08 — 10000000
01000000—.01.11.88 — 01000000
00100000—.01.97.27 — 00100000
00010000—.99.97.71— 00010000
00001000—.03.05.02 — 00001000
00000100—.22.99.99 — 00000100
00000010—.80.01.98 — 00000010
00000001 —.60.94.01— 00000001

CS 8751 ML & KDD Artificial Neural Networks 23

Output Unit Error during Training

Sum of squared errors for each output unit

0.9

08 ﬁ\
0.7 4
o .\ N\ WA NN

ggz* NN

CS 8751 ML & KDD Artificial Neural Networks 24

Hidden Unit Encoding

Hidden unit encoding for one input

0.9
0.8
0.7
06
05
0.4
03
0.2
0.1 T T

T T
0 500 1000 1500 2000 2500

CS 8751 ML & KDD Artificial Neural Networks 25

Input to Hidden Weights

Weights from inputs to one hidden unit

4

3

24

14

0 _/

14

2 |

3

-4

5

0 500 1000 1500 2000 250

CS 8751 ML & KDD Atificial Neural Networks 26

Convergence of Backpropagation

Gradient descent to some local minimum
* Perhaps not global minimum
* Momentum can cause quicker convergence

 Stochastic gradient descent also results in faster
convergence

 Can train multiple networks and get different results (using
different initial weights)

Nature of convergence
« Initialize weights near zero
» Therefore, initial networks near-linear

* Increasingly non-linear functions as training progresses
CS 8751 ML & KDD Artificial Neural Networks 27

Expressive Capabilities of ANNs

Boolean functions:

» Every Boolean function can be represented by network
with a single hidden layer

» But that might require an exponential (in the number of
inputs) hidden units

Continuous functions:

» Every bounded continuous function can be approximated
with arbitrarily small error by a network with one hidden
layer [Cybenko 1989; Hornik et al. 1989]

* Any function can be approximated to arbitrary accuracy by
a network with two hidden layers [Cybenko 1988]

CS 8751 ML & KDD Artificial Neural Networks 28

Overfitting in ANNs

0.01
0.009
0.008
0.007
0.006 -

Error versus weight updates (example 1)
0.005 -
0.004

‘—Training set [
| — Validation set| |
0.003

0.002 T T T
0 5000 10000 15000 20000

g

Error

Number of weight updates

CS 8751 ML & KDD Artificial Neural Networks 29

Overfitting in ANNs

Error versus weight updates (Example 2)

0.08

007 1 —— Training set

0.06
. 0.05 —— Validation set
2 0.04
W 0.03 4

0.02

0.01

0 T T T T T T
0 1000 2000 3000 4000 5000 6000
Number of weight updates

CS 8751 ML & KDD Artificial Neural Networks 30

Neural Nets for Face Recognition

QP
NAXTY
Ve
\A}‘/ 30x32

inputs

o
w
-

90% accurate learning
head pose, and recognizing
1-0f-20 faces

]
; %
‘ ¥

Typical Input Images

CS 8751 ML & KDD Artificial Neural Networks 31

Learned Network Weights

up

Learned Weights

bl
inputs i |

L
;)
‘ o

Typical Input Images

CS 8751 ML & KDD Artificial Neural Networks 32

Alternative Error Functions

Penalize large weights :
E(w) E%Z z(tkd _Okd)z +y zwzif
deD keoutputs i,j

Train on target slopes as well as values:

o, o,)
E(w)=7 Ly —0) + (ifij
() zgkgg,;m{(. Ad) a ox’a Ox'a

Tie together weights :

e e.g.,in phoneme recognition

CS 8751 ML & KDD Artificial Neural Networks 33

Recurrent Networks

y(t+1) y(t+1)
~
\
\
1
4/

x(1) x(1) h
Feedforward Recurrent
Network Network

)

(1)
=77 D Recurrent Network
unfolded in time

x(t-2)
CS$ 8751 ML & KDD Artificial Neural Networks 34

y(t+1)
)

