## Terminology and Evaluating Hypotheses

- Statistics
- Basic terms
- Sample error, true error
- Distributions
- Cost/utility
- Tests for significance
- Comparing Learning Methods

CS 8751 ML \& KDD
Evaluating Hypotheses

## Basic Statistics Terms

- Sample mean - average of a sample of numbers mean $=\bar{y}=\frac{1}{n}\left(y_{1}+y_{2}+y_{3}+\ldots+y_{n}\right)$
- Sample median - middle (in sorted order) of a sample of numbers
- Sample mode - sample value appearing most frequently
- variance $=\operatorname{var}_{y}=\sigma_{y}=\frac{\left(y_{1}-\bar{y}\right)^{2}+\left(y_{2}-\bar{y}\right)^{2}+\left(y_{3}-\bar{y}\right)^{2}+\ldots+\left(y_{n}-\bar{y}\right)^{2}}{n-1}$
- standardle viatiof $\sigma_{y}=\sqrt{\sigma_{y}{ }^{2}}$


## Data Sets

- Data set - set of examples of a problem
- Feature (attribute,field,variable) - one value that defines an instance
- Categorical (nominal) with a set of possible values versus continuous (qualitative) - numeric range of possible values
- Input feature (independent variable) versus output feature (dependent variable)
- Can be missing (value not known)
- Example (instance, case, record, feature vector, tuple) - the values of the input (and in some cases output) features of variables
- Skewed data set - one class occurs far more than others
- Multi-class problem - more than 2 output values
- Regression problem - output value is continuous

CS 8751 ML \& KDD
Evaluating Hypotheses

## Data Sets (continued)

- Training data set-the set of data used to learn (create) a model of a problem
- Test data set - the set of data used to estimate some value (often accuracy) related to a model
- Validation set - a set of data used to select parameters for a model, often as follows
- Divide training data into a "sub" training set and validation set
- For each possible set of parameters
- Create a model using the "sub" training set
- Evaluate the model on the validation set and pick the one that performs the best


## Evaluating Models

- Need a measure of value - the cost (loss, utility) of a model
- Often use accuracy (or error)
- Accuracy - how many examples we get "right"
- Error - how many examples we get wrong
- Can be weighted
- If examples are not equal, could count the cost (or utility) of mispredicted (correct) examples


## Confusion Matrix

|  |  | Predicted |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Positive | Negative | Total |  |
| 2 | Positive | True Positive (TP) | False Negative (FN) | \#Positives |
|  | Negative | False Positive (FP) | True Negative (TN) | \#Negatives |
|  | Total | TP+FP | FN+TN | \#Examples |

- Accuracy $=(\mathrm{TP}+\mathrm{TN}) /$ \#Examples
- Error $=(\mathrm{FP}+\mathrm{FN}) /$ \#Examples
- Recall (sensitivity, true positive rate) $=\mathrm{TP} /$ \#Positives
- Precision = TP / $(\mathrm{FP}+\mathrm{TP})$
- True Negative Rate (specificity) = TN / \#Negatives
- False Positive Rate $=\mathrm{FP} /(\mathrm{FP}+\mathrm{TP})$
- False Negative Rate = FN / \#Negatives

CS 8751 ML \& KDD
Evaluating Hypotheses

## Confusion Matrix - Multi Class

- For many problems (especially multiclass problems), often useful to examine the sources of error
- Confusion matrix:

|  |  | Predicted |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ClassA | ClassB | ClassC |  |
| $\begin{aligned} & \text { ت} \\ & \frac{0}{0} \\ & 0 \\ & \text { 苗 } \end{aligned}$ | ClassA | 25 | 5 | 20 | 50 |
|  | ClassB | 0 | 45 | 5 | 50 |
|  | ClassC | 25 | 0 | 25 | 50 |
|  | Total | 50 | 50 | 50 | 150 |

## Problems Estimating Error

1. Bias: If $S$ is training set, $\operatorname{error}_{S}(h)$ is optimistically biased

$$
\text { bias } \equiv E\left[\operatorname{error}_{S}(h)\right]-\operatorname{error}_{D}(h)
$$

For unbiased estimate, $h$ and $S$ must be chosen independently
2. Variance: Even with unbiased $S$, error $_{s}(h)$ may still vary from $\operatorname{error}_{D}(h)$

## Example

Hypothesis $h$ misclassifies 12 of 40 examples in $S$.

$$
\operatorname{error}_{s}(h)=\frac{12}{40}=.30
$$

What is error $_{D}(h)$ ?

$$
\operatorname{error}_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))
$$

where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise

How well does $\operatorname{error}_{S}(h)$ estimate $\operatorname{error}_{D}(h)$ ?
CS 8751 ML \& KDD
Evaluating Hypotheses
11

## Estimators

Experiment:

1. Choose sample $S$ of size $n$ according to distribution $D$
2. Measure error $_{s}(h)$
$\operatorname{error}_{S}(h)$ is a random variable (i.e., result of an experiment)
$\operatorname{error}_{S}(h)$ is an unbiased estimator for $\operatorname{error}_{D}(h)$

Given observed $\operatorname{error}_{S}(h)$ what can we conclude about $\operatorname{error}_{D}(h)$ ?

## Confidence Intervals

If

- S contains $n$ examples, drawn independently of $h$ and each other
- $n \geq 30$

Then

- With approximately N\% probability, error $_{D}(h)$ lies in

$$
\begin{aligned}
& \text { interval } \\
& \text { error }_{S}(h) \pm z_{N} \sqrt{\frac{\text { error_ }_{S}(h)\left(1-\text { error }_{S}(h)\right)}{n}} \\
& \text { where } \\
& \begin{array}{|l|lllllll|}
\mathrm{N} \%: & 50 \% & 68 \% & 80 \% & 90 \% & 95 \% & 98 \% & 99 \% \\
z_{N}: & 0.67 & 1.00 & 1.28 & 1.64 & 1.96 & 2.33 & 2.53 \\
\hline
\end{array}
\end{aligned}
$$

## Confidence Intervals

If

- $S$ contains $n$ examples, drawn independently of $h$ and each other
- $n \geq 30$

Then

- With approximately $95 \%$ probability, error $_{D}(h)$ lies in interval
$\operatorname{error}_{S}(h) \pm \mathbf{1 . 9 6} \sqrt{\frac{\operatorname{error}_{S}(h)\left(1-\operatorname{error}_{S}(h)\right)}{n}}$

CS 8751 ML \& KDD
Evaluating Hypotheses

Binomial Probability Distribution


Probabilty $P(r)$ of $r$ headsin $n$ coinflips, if $p=\operatorname{Pr}($ heads $)$

- Expected, or mean value of $X: E[X] \equiv \sum_{i=0}^{n} i P(i)=n p$
- Variance of $X: \operatorname{Var}(X) \equiv E\left[(X-E[X])^{2}\right]=n p(1-p)$
- Standarddeviatiomf $X: \mathrm{s}_{X} \equiv \sqrt{E\left[(X-E[X])^{2}\right]}=\sqrt{n p(1-p)}$

CS 8751 ML \& KDD

## $\operatorname{error}_{S}(h)$ is a Random Variable

- Rerun experiment with different randomly drawn $S$ (size $n$ )
- Probability of observing $r$ misclassified examples:


$$
P(r)=\frac{n!}{r!(n-r)!} \operatorname{erro}_{D}(h)^{r}\left(1-\operatorname{error}_{D}(h)\right)^{n-r}
$$

CS 8751 ML \& KDD
Evaluating Hypotheses
16

## Normal Probability Distribution



The probabiliy that $X$ willfallintothe interva $(a, b$ is givenby $\int_{a}^{b} p(x) d x$

- Expected, or mean value of $X: E[X]=\mu$
- Variance of $X: \operatorname{Var}\left(X=\mathrm{s}^{2}\right.$
- Standard deviatiomf $X: \mathrm{s}_{X}=\mathrm{s}$


## Normal Distribution Approximates Binomial

 $\operatorname{error}_{s}(h)$ follows a Binomialdistributon, with- $\operatorname{mean} \mu_{\text {error }_{s}(h)}=\operatorname{error}_{D}(h)$
- standarddeviation

$$
\mathrm{s}_{\text {error }_{S}(h)}=\sqrt{\frac{\text { error }_{D}(h)\left(1-\text { error }_{D}(h)\right)}{n}}
$$

Approximate thisby a Normal distributon with

- $\operatorname{mean} \mu_{\text {errors }(h)}=$ error $_{D}(h)$
- standarddeviation
$\mathrm{s}_{\text {error }_{S}(h)} \approx \sqrt{\frac{\text { error }_{S}(h)\left(1-\text { error }_{S}(h)\right)}{n}}$
CS 8751 ML \& KDD
Evaluating Hypotheses


## Confidence Intervals, More Correctly

If

- S contains $n$ examples, drawn independently of $h$ and each other
- $n \geq 30$

Then

- With approximately $95 \%$ probability, error $_{s}(h)$ lies in interval

$$
\operatorname{error}_{D}(h) \pm \mathbf{1 . 9 6} \sqrt{\frac{\operatorname{error}_{D}(h)\left(1-\operatorname{error}_{D}(h)\right)}{n}}
$$

- equivalently, error $_{D}(h)$ lies in interval

$$
\operatorname{error}_{S}(h) \pm 1.96 \sqrt{\frac{\operatorname{error}_{\mathcal{D}}(h)\left(1-\operatorname{error}_{\mathcal{D}}(h)\right)}{n}}
$$

- which is approximately $\operatorname{error}_{s}(h) \pm \mathbf{1 . 9 6} \sqrt{\frac{\operatorname{error}_{s}(h)\left(1-\operatorname{error}_{s}(h)\right)}{n}}$


## Central Limit Theorem

Consider a set of independert, identicaly distribute randor variables $Y_{1} \ldots Y_{n}$, all governedby an arbitrary probability distributon with mean $\mu$ and finite variance $\sigma^{2}$. Define the sample mean

$$
\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Central Limit Theorem. As $n \rightarrow \infty$, the distribution governing $\bar{Y}$ approaches a Normal distributon, withmean $\mu$ and variance $\frac{\mathrm{s}^{2}}{\mathrm{n}}$.

## Normal Probability Distribution


$80 \%$ of area(probability)liesin $\mu \pm 1.28$
$\mathrm{N} \%$ of area (probabiliy) liesin $\mu \pm z_{N} \mathrm{~s}$

| $\mathrm{N} \%:$ | $50 \%$ | $68 \%$ | $80 \%$ | $90 \%$ | $95 \%$ | $98 \%$ | $99 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z_{N}:$ | 0.67 | 1.00 | 1.28 | 1.64 | 1.96 | 2.33 | 2.53 |

$\begin{array}{lll}\text { CS } 8751 \text { ML \& KDD } & \text { Evaluating Hypotheses } & 20\end{array}$

## Calculating Confidence Intervals

1. Pick parameter $p$ to estimate

- $\operatorname{error}_{D}(h)$

2. Choose an estimator

- errors $(h)$

3. Determine probability distribution that governs estimator

- $\operatorname{error}_{( }(h)$ governed by Binomial distribution, approximated by Normal when $n \geq 30$

4. Find interval $(L, U)$ such that $\mathrm{N} \%$ of probability mass falls in the interval

- Use table of $z_{N}$ values


## Difference Between Hypotheses

Test $h_{1}$ on sample $S_{1}$, test $h_{2}$ on $S_{2}$

1. Pick parameterto estimate
$d \equiv \operatorname{error}_{D}\left(h_{1}\right)-\operatorname{error}_{D}\left(h_{2}\right)$
2. Choose an estimator
$d \equiv \operatorname{error}_{S_{1}}\left(h_{1}\right)-\operatorname{error}_{S_{2}}\left(h_{2}\right)$
3. Determine probability distributi on that governs estimator

$$
\mathrm{s}_{\mathrm{d}} \approx \sqrt{\frac{\operatorname{error}_{S_{1}}\left(h_{1}\right)\left(1-\operatorname{error}_{S_{1}}\left(h_{1}\right)\right)}{n_{1}}+\frac{\operatorname{error}_{S_{2}}\left(h_{2}\right)\left(1-\operatorname{error}_{S_{2}}\left(h_{2}\right)\right)}{n_{2}}}
$$

4. Find interval(L, U) such that $\mathrm{N} \%$ of probability mass falls
in the interval

$$
\begin{aligned}
& \hat{d} \pm z_{N} \sqrt{\frac{\operatorname{error}_{S_{1}}\left(h_{1}\right)\left(1-\operatorname{error}_{S_{1}}\left(h_{1}\right)\right)}{n_{1}}+\frac{\operatorname{error}_{S_{2}}\left(h_{2}\right)\left(1-\operatorname{error}_{S_{2}}\left(h_{2}\right)\right)}{n_{2}}} \\
& \quad \text { Evaluating Hypotheses }
\end{aligned}
$$

## Paired $t$ test to Compare $h_{A}, h_{B}$

1.Partitiondatainto $k$ disjoint $๕$ stsets $T_{1}, T_{2}, \ldots, T_{k}$ of equalsize, wherethissizeis at least 30 .
2. For $i$ from 1 to $k$ do
$\mathrm{d}_{\mathrm{i}} \leftarrow \operatorname{error}_{\boldsymbol{r}_{i}}\left(h_{A}\right)-\operatorname{error}_{r_{i}}\left(h_{B}\right)$
3. Return thevalued, where

$$
\overline{\mathrm{d}} \equiv \frac{1}{\mathrm{k}} \sum_{i=1}^{k} \mathrm{~d}_{\mathrm{i}}
$$

$\mathrm{N} \%$ confidencentervaestimatefor $d$ :
$\overline{\mathrm{d}} \pm t_{N k-1} s_{\mathrm{T}}$
$s_{\mathrm{d}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k}\left(\mathrm{~d}_{\mathrm{i}}-\overline{\mathrm{d}}\right)^{2}}$
Note $d_{i}$ approximtely Normdly distriuted
CS 8751 ML \& KDD
Evaluating Hypotheses

## N-Fold Cross Validation

## - Advantages/disadvantages

- Estimate of error within a single data set
- Every point used once as a test point
- At the extreme (when $\mathrm{N}=$ size of data set), called leave-one-out testing
- Results affected by random choices of folds (sometimes answered by choosing multiple random folds Dietterich in a paper expressed significant reservations)



## ROC Properties

- Can visualize the tradeoff between coverage and accuracy (as we lower the threshold for prediction how many more true positives will we get in exchange for more false positives)
- Gives a better feel when comparing algorithms - Algorithms may do well in different portions of the curve
- A perfect curve would start in the bottom left, go to the top left, then over to the top right
- A random prediction curve would be a line from the bottom left to the top right
- When comparing curves:
- Can look to see if one curve dominates the other (is always better)
- Can compare the area under the curve (very popular - some people even do $t$-tests on these numbers)

