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Terminology and Evaluating Hypotheses 

• Statistics
– Basic terms

– Sample error, true error

– Distributions

– Cost/utility

– Tests for significance

• Comparing Learning Methods
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Basic Statistics Terms
• Sample mean – average of a sample of numbers 

• Sample median – middle (in sorted order) of a 
sample of numbers

• Sample mode – sample value appearing most 
frequently
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Data Sets
• Data set – set of examples of a problem
• Feature (attribute,field,variable) – one value that defines an 

instance
– Categorical (nominal) with a set of possible values versus 

continuous (qualitative) – numeric range of possible values
– Input feature (independent variable) versus output feature 

(dependent variable)
– Can be missing (value not known)

• Example (instance, case, record, feature vector, tuple) – the 
values of the input (and in some cases output) features of 
variables

• Skewed data set – one class occurs far more than others 
• Multi-class problem – more than 2 output values
• Regression problem – output value is continuous
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Data Set Concepts

Purple

Green

Green

Yellow

Yellow Yes

Yes Yes

YesYes

Yes

No

No

No

YesRound

Round

Round

Square

Round

Square

Round

Square

Square

Round
Eyes FcolorNose Hair?Head Smile?

Triangle

Square

Triangle

Square

Triangle

CS 8751 ML & KDD Evaluating Hypotheses 5

Data Sets (continued)
• Training data set – the set of data used to learn 

(create) a model of a problem 
• Test data set – the set of data used to estimate 

some value (often accuracy) related to a model
• Validation set – a set of data used to select 

parameters for a model, often as follows
– Divide training data into a “sub” training set and 

validation set
– For each possible set of parameters

• Create a model using the “sub” training set
• Evaluate the model on the validation set and pick the one that 

performs the best
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Evaluating Models
• Need a measure of value – the cost (loss, utility) 

of a model
• Often use accuracy (or error)

– Accuracy – how many examples we get “right”
– Error – how many examples we get wrong

• Can be weighted
– If examples are not equal, could count the cost (or 

utility) of mispredicted (correct) examples
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Confusion Matrix

• Accuracy = (TP+TN) / #Examples
• Error = (FP+FN) / #Examples
• Recall (sensitivity, true positive rate) = TP / #Positives
• Precision = TP / (FP+TP)
• True Negative Rate (specificity) = TN / #Negatives
• False Positive Rate = FP / (FP+TP)
• False Negative Rate = FN / #Negatives

Predicted  
Positive Negative  Total 

Positive True Positive (TP)  False Negative (FN) #Positives 

A
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l 

Negative False Positive (FP) True Negative (TN) #Negatives 

 Total TP+FP FN+TN #Examples 
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Confusion Matrix – Multi Class
• For many problems (especially multiclass

problems), often useful to examine the sources of 
error

• Confusion matrix:

Predicted   
ClassA ClassB ClassC Total 

ClassA 25 5 20 50 

ClassB 0 45 5 50 

E
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ec
te

d 

ClassC 25 0 25 50 

 Total 50 50 50 150 
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Results Analysis: Confusion Matrix
• Building a confusion matrix

– Zero all entries
– For each data point add one in row corresponding to 

actual class of problem under column corresponding to 
predicted class

• Perfect prediction has all values down the 
diagonal

• Off diagonal entries can often tell us about what is 
being mis-predicted
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Problems Estimating Error
1. Bias: If S is training set, errorS(h) is optimistically 

biased

For unbiased estimate, h and S must be chosen 
independently

2. Variance: Even with unbiased S, errorS(h) may 
still vary from errorD(h)
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Two Definitions of Error
The true error of hypothesis h with respect to target function f

and distribution D is the probability that h will misclassify 
an instance drawn at random according to D.

The sample error of h with respect to target function f and 
data sample S is the proportion of examples h misclassifies

How well does errorS( h) estimate errorD( h)?
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Example
Hypothesis h misclassifies 12 of  40 examples in S.

What is errorD(h)?

30.
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Estimators
Experiment:
1. Choose sample S of size n according to 

distribution D
2. Measure errorS(h)
errorS(h) is a random variable (i.e., result of an 

experiment)
errorS(h) is an unbiased estimator for errorD(h)

Given observed errorS(h) what can we conclude 
about errorD(h)?
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Confidence Intervals
If
• S contains n examples, drawn independently of h and each 

other

•
Then
• With approximately N% probability, error D( h) lies in 

interval

30≥n

2.53    2.33    1.96    1.64    1.28    1.00   0.67     :
99%   98%   95%   90%   80%   68%   50%   :N%
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Confidence Intervals
If
• S contains n examples, drawn independently of h and each 

other

•
Then
• With approximately 95% probability, errorD( h) lies in 

interval

30≥n
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errorS(h) is a Random Variable
• Rerun experiment with different randomly drawn S (size n)
• Probability of observing r misclassified examples:

Binomial distribution for n=40, p=0.3
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Binomial Probability Distribution
Binomial distribution for n=40, p=0.3
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Normal Probability Distribution
Normal distribution with mean 0, standard deviation 1
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Normal Distribution Approximates Binomial
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Normal Probability Distribution
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Confidence Intervals, More Correctly
If
• S contains n examples, drawn independently of h and each 

other
•
Then
• With approximately 95% probability, errorS( h) lies in 

interval

• equivalently, error D( h) lies in interval

• which is approximately

30≥n
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Calculating Confidence Intervals
1. Pick parameter p to estimate
• errorD( h)
2. Choose an estimator

• errorS( h)
3. Determine probability distribution that governs estimator

• errorS( h) governed by Binomial distribution, approximated 
by Normal when 

4. Find interval (L,U) such that N% of probability mass falls 
in the interval

• Use table of zN values

30≥n
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Central Limit Theorem
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Difference Between Hypotheses
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Paired t test to Compare hA,hB
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N-Fold Cross Validation
• Popular testing methodology
• Divide data into N even-sized random folds
• For n = 1 to N

– Train set = all folds except n
– Test set = fold n
– Create learner with train set
– Count number of errors on test set

• Accumulate number of errors across N test sets 
and divide by N (result is error rate)

• For comparing algorithms, use the same set of 
folds to create learners (results are paired)
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N-Fold Cross Validation
• Advantages/disadvantages

– Estimate of error within a single data set
– Every point used once as a test point

– At the extreme (when N = size of data set), called 
leave-one-out testing

– Results affected by random choices of folds (sometimes 
answered by choosing multiple random folds –
Dietterich in a paper expressed significant reservations)

CS 8751 ML & KDD Evaluating Hypotheses 28

Receiver Operator Characteristic 
(ROC) Curves

• Originally from signal detection
• Becoming very popular for ML
• Used in:

– Two class problems
– Where predictions are ordered in some way (e.g., neural network 

activation is often taken as an indication of how strong or weaka 
prediction is)

• Plotting an ROC curve:
– Sort predictions (right) by their predicted strength
– Start at the bottom left
– For each positive example, go up 1/P units where P is the number

of positive examples
– For each negative example, go right 1/N units where N is the 

number of negative examples
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ROC Curve
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ROC Properties
• Can visualize the tradeoff between coverage and accuracy 

(as we lower the threshold for prediction how many more 
true positives will we get in exchange for more false 
positives)

• Gives a better feel when comparing algorithms
– Algorithms may do well in different portions of the curve

• A perfect curve would start in the bottom left, go to the top 
left, then over to the top right
– A random prediction curve would be a line from the bottom left to 

the top right
• When comparing curves:

– Can look to see if one curve dominates the other (is always better)
– Can compare the area under the curve (very popular – some people 

even do t-tests on these numbers)


