Bayesian Learning

• Bayes Theorem
• MAP, ML hypotheses
• MAP learners
• Minimum description length principle
• Bayes optimal classifier
• Naïve Bayes learner
• Bayesian belief networks

Two Roles for Bayesian Methods

Provide practical learning algorithms:
• Naïve Bayes learning
• Bayesian belief network learning
• Combine prior knowledge (prior probabilities) with observed data

Requires prior probabilities:
• Provides useful conceptual framework:
• Provides “gold standard” for evaluating other learning algorithms
• Additional insight into Occam’s razor

Bayes Theorem

\[P(h | D) = \frac{P(D | h)P(h)}{P(D)} \]

• \(P(h) \) = prior probability of hypothesis \(h \)
• \(P(D) \) = prior probability of training data \(D \)
• \(P(h|D) \) = probability of \(h \) given \(D \)
• \(P(D|h) \) = probability of \(D \) given \(h \)

Choosing Hypotheses

\[P(h | D) = \frac{P(D | h)P(h)}{P(D)} \]

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis \(h_{MAP} \):

\[h_{MAP} = \arg \max_{h \in H} P(h | D) \]
\[= \arg \max_{h \in H} \frac{P(D | h)P(h)}{P(D)} \]
\[= \arg \max_{h \in H} P(D | h)P(h) \]

If we assume \(P(h_j | P(h_i) \) then can further simplify, and choose the **Maximum likelihood** (ML) hypothesis

\[h_{ML} = \arg \max_{h \in H} P(D | h) \]

Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.

The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.8% of the entire population have this cancer.

\[P(\text{cancer}) = P(\neg \text{cancer}) = \]
\[P(+|\text{cancer}) = P(-|\text{cancer}) = \]
\[P(+|\neg \text{cancer}) = P(-|\neg \text{cancer}) = \]
\[P(\text{cancer}|+) = P(\neg \text{cancer}|+) = \]

Some Formulas for Probabilities

• **Product rule**: probability \(P(A \land B) \) of a conjunction of two events \(A \) and \(B \):
 \[P(A \land B) = P(A | B) P(B) = P(B | A) P(A) \]

• **Sum rule**: probability of disjunction of two events \(A \) and \(B \):
 \[P(A \lor B) = P(A) + P(B) - P(A \land B) \]

• **Theorem of total probability**: if events \(A_1, \ldots, A_n \) are mutually exclusive with \(\sum_{i=1}^{n} P(A_i) = 1 \), then
 \[P(B) = \sum_{i=1}^{n} P(B | A_i) P(A_i) \]
Brute Force MAP Hypothesis Learner

1. For each hypothesis \(h \) in \(H \), calculate the posterior probability

\[
P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}
\]

2. Output the hypothesis \(h_{\text{MAP}} \) with the highest posterior probability

\[
h_{\text{MAP}} = \arg \max_h P(h \mid D)
\]

Relation to Concept Learning

Consider our usual concept learning task

- instance space \(X \), hypothesis space \(H \), training examples \(D \)
- consider the \texttt{FindS} learning algorithm (outputs most specific hypothesis from the version space \(V_{S(h,D)} \))

What would Bayes rule produce as the MAP hypothesis?

Does \texttt{FindS} output a MAP hypothesis?

Learning a Real Valued Function

Consider any real-valued target function \(f \)

Training examples \((x_i,d_i)\), where \(d_i \) is noisy training value

- \(d_i = f(x_i) + e_i \)
- \(e_i \) is random variable (noise) drawn independently for each \(x_i \) according to some Gaussian distribution with mean 0

Then the maximum likelihood hypothesis \(h_{\text{ML}} \) is the one that minimizes the sum of squared errors:

\[
h_{\text{ML}} = \arg \min_h \sum_{i=1}^{m} (d_i - h(x_i))^2
\]

Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis \(h \) that minimizes

\[
h_{\text{MDL}} = \arg \min_h L_C(h) + L_C(D \mid h)
\]

where \(L_C(x) \) is the description length of \(x \) under encoding \(C \)

Example:

- \(H = \) decision trees, \(D = \) training data labels
- \(L_C(h) \) is \# bits to describe tree \(h \)
- \(L_C(D \mid h) \) is \# bits to describe \(D \) given \(h \)
 - Note \(L_C(D \mid h) = 0 \) if examples classified perfectly by \(h \). Need only describe exceptions

Hence \(h_{\text{MDL}} \) trades off tree size for training errors
Minimum Description Length Principle

\[h_{\text{opt}} = \arg \max_h P(D|h)P(h) \]
\[= \arg \max_h \log P(D|h) + \log P(h) \]
\[= \arg \min_h -\log P(D|h) - \log P(h) \quad (1) \]

Interesting fact from information theory:
The optimal (shortest expected length) code for an event with probability \(p \) is \(\log_2 p \) bits.

So interpret (1):
- \(-\log_2 P(h) \) is the length of \(h \) under optimal code
- \(-\log_2 P(D|h) \) is length of \(D \) given \(h \) in optimal code

→ prefer the hypothesis that minimizes

\[\text{length}(h) + \text{length}(\text{misclassifications}) \]

Bayes Optimal Classifier

Bayes optimal classification

\[\arg \max_{h \in H} \sum_{v_j} P(v_j | h)P(h | D) \]

Example:

- \(P(h_1 | D) = .4 \), \(P(- | h_1) = 0 \), \(P(+) | h_1) = 1 \)
- \(P(h_2 | D) = .3 \), \(P(- | h_2) = 1 \), \(P(+) | h_2) = 0 \)
- \(P(h_3 | D) = .3 \), \(P(- | h_3) = 1 \), \(P(+) | h_3) = 0 \)

therefore

\[\sum_{v_j} P(v_j | h_1)P(h_1 | D) = .4 \]
\[\sum_{v_j} P(v_j | h_2)P(h_2 | D) = .6 \]
and

\[\arg \max_{h \in H} \sum_{v_j} P(v_j | h)P(h | D) = \star \]

Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to \(P(h | D) \)
2. Use this to classify new instance

Surprising fact: assume target concepts are drawn at random from \(H \) according to priors on \(H \). Then:

\[E[\text{error}_{\text{Gibbs}}] \leq 2E[\text{error}_{\text{BayesOptimal}}] \]

Suppose correct, uniform prior distribution over \(H \), then:
- Pick any hypothesis from VS, with uniform probability
- Its expected error no worse than twice Bayes optimal

Naïve Bayes Classifier

Along with decision trees, neural networks, nearest neighbor, one of the most practical learning methods.

When to use
- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

Successful applications:
- Diagnosis
- Classifying text documents

Naïve Bayes Classifier

Assume target function \(f: \mathcal{X} \rightarrow \mathcal{V} \), where each instance \(x \) described by attributed \((a_1,a_2,...,a_n)\).

Most probable value of \(f(x) \) is:

\[v_{\text{MAP}} = \arg \max_{v_j} P(v_j | a_1,a_2,...,a_n) \]
\[= \arg \max_{v_j} \frac{P(a_1,a_2,...,a_n | v_j)P(v_j)}{P(a_1,a_2,...,a_n)} \]
\[= \arg \max_{v_j} \prod_{a_i} P(a_i | v_j) \]

Naïve Bayes assumption:

\[P(a_1,a_2,...,a_n | v_j) = \prod_{a_i} P(a_i | v_j) \]
which gives

Naïve Bayes classifier:

\[v_{\text{NB}} = \arg \max_{v_j} P(v_j) \prod_{a_i} P(a_i | v_j) \]
Naïve Bayes Example
Consider CoolCar again and new instance
(Color=Blue, Type=SUV, Doors=2, Tires=WhiteW)
Want to compute
\[P(+)*P(Blue|+)*P(SUV|+)*P(2|+)*P(WhiteW|+)= \]
\[= \frac{5}{14} * \frac{1}{5} * \frac{2}{5} * \frac{4}{5} * \frac{3}{5} = 0.0137 \]
\[P(-)*P(Blue|-)*P(SUV|-)*P(2|-)*P(WhiteW|-)= \]
\[= \frac{9}{14} * \frac{3}{9} * \frac{4}{9} * \frac{3}{9} * \frac{3}{9} = 0.0106 \]

Naïve Bayes Subtleties
1. Conditional independence assumption is often violated
 \[P(a_1, a_2, ..., a_n | v_j) = \prod_i P(a_i | v_j) \]
 \[\text{... but it works surprisingly well anyway. Note} \]
 \[\text{that you do not need estimated posteriors to be} \]
 \[\text{correct; need only that} \]
 \[\text{see Domingos & Pazzani (1996) for analysis} \]
 \[\text{Naïve Bayes posteriors often unrealistically close} \]
 \[\text{to 1 or 0} \]

2. What if none of the training instances with target value \(v_j \) have attribute value \(a_i \)? Then
 \[\hat{P}(v_j) = \frac{1}{m} \]
 \[\hat{P}(a_i | v_j) = \frac{n_i}{n+m} \]
 Typical solution is Bayesian estimate for \(\hat{P}(a_i | v_j) \)
 \[\hat{P}(a_i | v_j) = \frac{n_i + mp}{n + m} \]
 \[n \] is number of training examples for which \(v=v_j \)
 \[n_i \] is number of examples for which \(v=v_j \) and \(a=a_i \)
 \[p \] is prior estimate for \(\hat{P}(a_i | v_j) \)
 \[m \] is weight given to prior (i.e., number of
 \[\text{“virtual” examples)} \]

Bayesian Belief Networks
Interesting because
• Naïve Bayes assumption of conditional
 independence is too restrictive
• But it is intractable without some such
 assumptions…
• Bayesian belief networks describe conditional
 independence among subsets of variables
• allows combing prior knowledge about
 (in)dependence among variables with observed
 training data
• (also called Bayes Nets)

Conditional Independence
Definition: \(X \) is conditionally independent of \(Y \)
 given \(Z \) if the probability distribution governing \(X \)
 is independent of the value of \(Y \) given the value of
 \(Z \); that is, if
 \[P(X|Y,Z) = P(X|Z) \]
 more compactly we write
 \[P(X,Y,Z) = P(X,Z) \]
Example: Thunder is conditionally independent of
 Rain given Lightning
 \[P(Thunder|Rain,Lightning) = P(Thunder|Lightning) \]
 Naïve Bayes uses conditional ind. to justify
 \[P(X,Y,Z) = P(X|Y,Z)P(Y,Z) = P(X|Z)P(Y|Z) \]

Bayesian Belief Network
Network represents a set of conditional independence assumptions
• Each node is asserted to be conditionally independent of its
 nondescendants, given its immediate predecessors
• Directed acyclic graph
Bayesian Belief Network
- Represents joint probability distribution over all variables
- e.g., $P(\text{Storm}, \text{BusTourGroup}, ..., \text{ForestFire})$
- in general,
 $P(y_1, ..., y_n) = \prod_{j=1}^{n} P(y_j | \text{Parents}(Y_j))$
 where $\text{Parents}(Y_j)$ denotes immediate predecessors of Y_j in graph
- so, joint distribution is fully defined by graph, plus the $P(y_j|\text{Parents}(Y_j))$

Inference in Bayesian Networks
How can one infer the (probabilities of) values of one or more network variables, given observed values of others?
- Bayes net contains all information needed
- If only one variable with unknown value, easy to infer it
- In general case, problem is NP hard
 In practice, can succeed in many cases
- Exact inference methods work well for some network structures
- Monte Carlo methods “simulate” the network randomly to calculate approximate solutions

Learning of Bayesian Networks
Several variants of this learning task
- Network structure might be known or unknown
- Training examples might provide values of all network variables, or just some
 If structure known and observe all variables
 Then it is easy as training a Naïve Bayes classifier

Learning Bayes Net
Suppose structure known, variables partially observable
 e.g., observe $\text{ForestFire}, \text{Storm}, \text{BusTourGroup}, \text{Thunder}$, but not $\text{Lightning}, \text{Campfire}$, …
- Similar to training neural network with hidden units
- In fact, can learn network conditional probability tables using gradient ascent!
 Converge to network h that (locally) maximizes $P(D|h)$

Gradient Ascent for Bayes Nets
Let w_{ijk} denote one entry in the conditional probability table for variable Y_j in the network
 $w_{ijk} = P(Y_i=y_{ij}|\text{Parents}(Y_j)=\text{the list } u_{ik} \text{ of values})$
 e.g., if $Y_j = \text{Campfire}$, then u_{ik} might be ($\text{Storm}=T$, $\text{BusTourGroup}=F$)
Perform gradient ascent by repeatedly
1. Update all w_{ijk} using training data D
 $w_{ijk} \leftarrow w_{ijk} + \eta \sum_{d \in D} A(\{x_i, u_{ik}\}, d) \cdot w_{ijk}$
2. Then renormalize the w_{ijk} to assure
 $\sum_{k} w_{ijk} = 1 \ , \ 0 \leq w_{ijk} \leq 1$

Summary of Bayes Belief Networks
- Combine prior knowledge with observed data
- Impact of prior knowledge (when correct!) is to lower the sample complexity
- Active research area
 - Extend from Boolean to real-valued variables
 - Parameterized distributions instead of tables
 - Extend to first-order instead of propositional systems
 - More effective inference methods