A Tutorial on Learning with Bayesian Networks

David Heckerman

Presented by: Krishna V Chengavalli April 21 2003

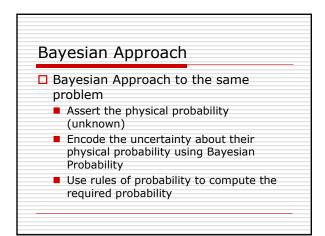
] Intro	duction
Differ	ent Approaches
Bayes	sian Networks
🗆 Learn	ing Probabilities and Structure
	sian Networks and Supervised Insupervised Learning
Concl	usion

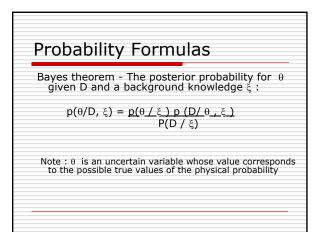
D C	lassical
	The probability that a coin lands head
	(also called True or Physical Probability)
🗆 B	ayesian
	Person's belief in the event
	(also called Personal Probability)

Example	
Telephone Example	
Consider listening to a friend phone to some person x. We try to guess who is he ta Based on what they talk, lar and tone we assign a certain some persons. (Background	alking to. nguage they use n probability to Info)
We update probability till we maximum likely person.	e assign a

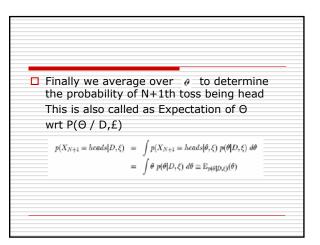
Probability Assessment
The process of measuring one's degree of belief
A wheel with shaded region analogy

	Classical Approach
С	ommon Thumbtack Problem.
	Assert some physical probability
	Estimate the probability of head/tail from N observations.
	Estimate for N+1th trial.

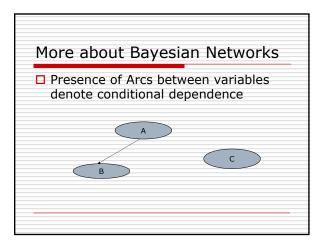


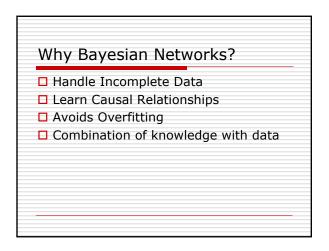


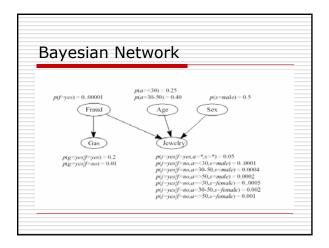
low good is a particular value of θ ?
low likely it is capable of generating the observed data (θ :D) = P(D/ θ)
he likelihood of the sequence H, T,H,T ,T (θ :D) = θ . (1- θ). θ . (1- θ). (1- θ).



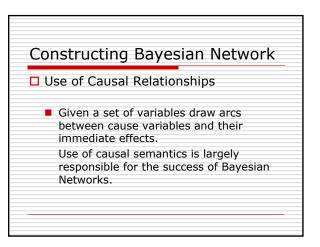
Ba	ayesian Network
	A directed acyclic graph Encodes set of conditional assertions
	about variables
	Encodes set of local probability for each variable
	Together they define the joint probability distribution for the structure.





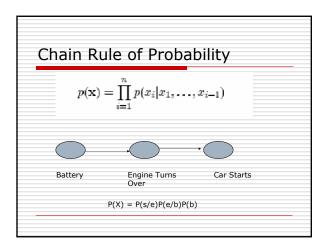


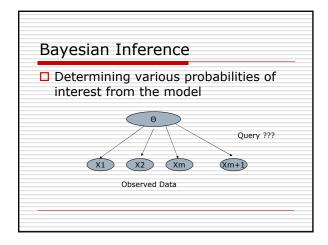
p(a f)	=	p(a)	
p(s f,a)			
p(g f,a,s)	=	p(g f)	
p(j f,a,s,g)	=	p(j f, a, s)	

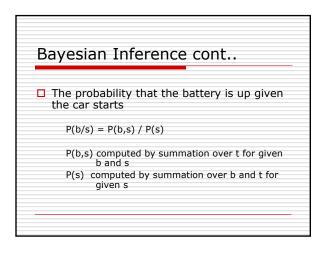


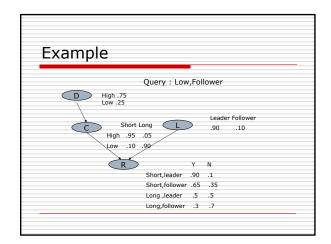
Identify as n possible	nany observations as
	ne subset that is o model
2	ose observations into clusive and collectively tates

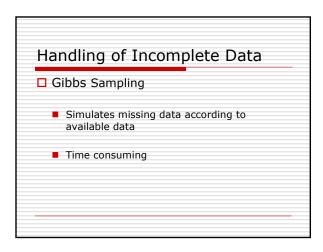
model the system of interest with random variables
arrange nodes that represent the random variables by influence
number the nodes in order of influence and depth (roots have lowest numbers)
obtain prior probabilities at root nodes
construct CPT's at non-root nodes
compute the joint probabilities
program Bayes' rules and other equations to be used for the query nodes

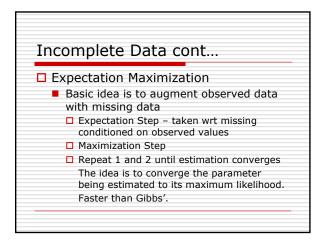


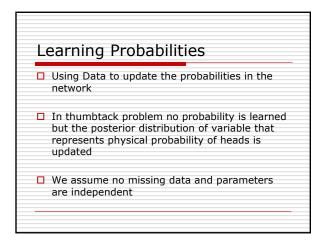


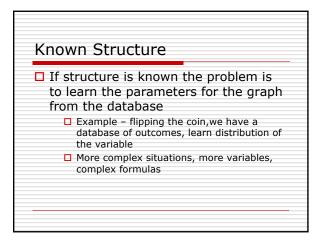




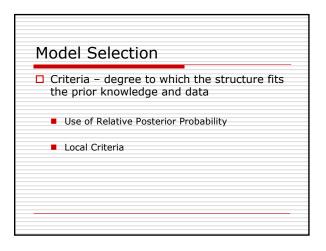


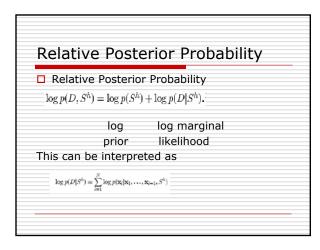


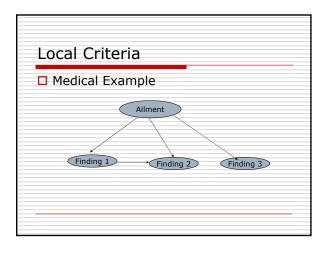


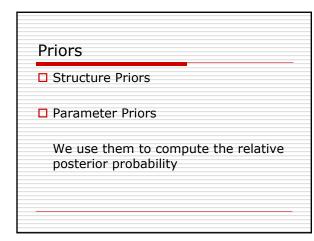


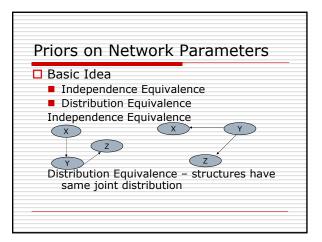
🗆 First	select the model.
Don Spac	e by generating a model search e.
	uate the models given the value le dataset









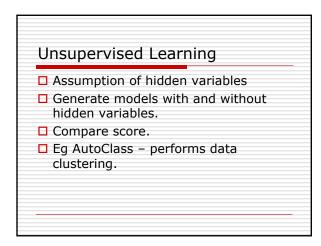


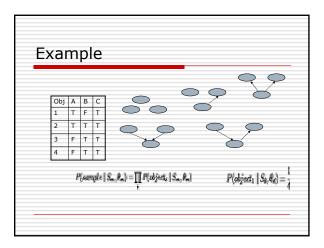
Search Methods	
□ Greedy Search	
Greedy Search with restar	ts
Best First Search	
Monte Carlo Methods	

earch Method
Variable Specific Criteria
Make successive Arc Changes
Make changes according to valid
changes e in E
Compute $C(X_i, Pa_i, D)$ to determine
Δ(e)

Gr	eedy Search
(Δ(e) is computed for all edges and change e is done where it is maximum
0	If criterion is separable we need to compute only for that change to determine $\Delta(e)$
	Problem – local maximum
	Way out – Random restarts, Simulated annealing

upervised Learning Vs Bayesian	
When input variables cause outcome,data is complete – identica approaches	al
If cause-effect is not found or incomplete data – differences arise	
Small sample sizes handled well by Bayesian Nets.	

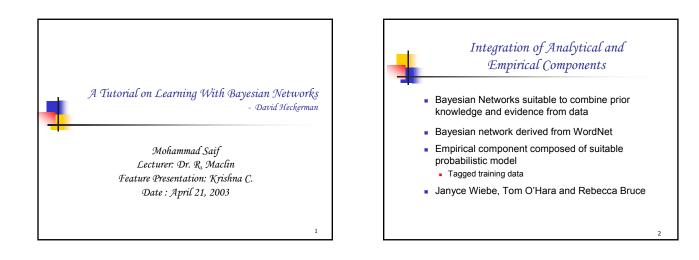


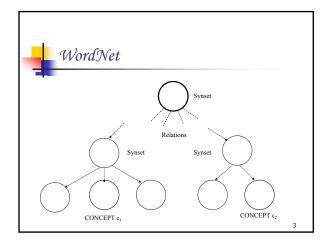


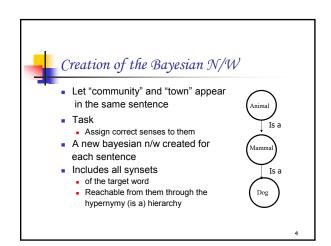
~	pplications
In	pplementations in real life :
	Used in the Microsoft products(Microsoft
	Office)
•	Medical applications and Biostatistics (BUGS)
•	In NASA Autoclass project for data analysis
•	Collaborative filtering (Microsoft – MSBN)
•	Fraud Detection (ATT)
•	Speech recognition (UC , Berkeley)

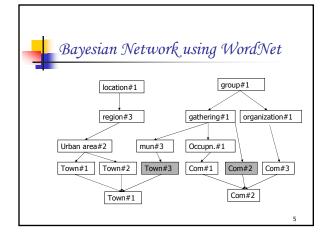
Limitations		
	Require initial knowledge of many probabilitiesquality and extent of prior knowledge play an important role	
	Significant computational cost(NP hard task)	
۰	Unanticipated probability of an event is not taken care of.	

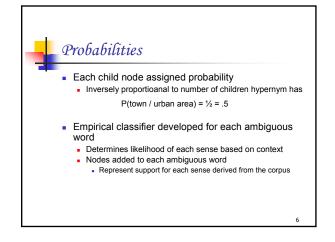
eferences
A tutorial to Learning Bayesian Networks http://www.stat.duke.edu/~chris/research/EM. pdf











A Tutorial on Learning with Bayesian Networks

paper by David Heckerman

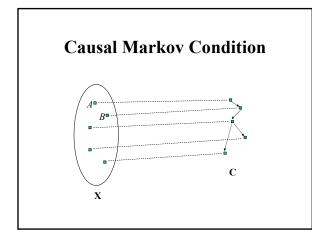
presented by Krishna V Chengavalli

commentary by Siddharth Patwardhan

Learning Causal Relationships

Causal Markov Condition

Directed Acyclic Graph C is a causal graph for variables X if the nodes in C have a oneto-one correspondence with the variables in X, and there is an arc from node A to node B in C if and only if A is a direct cause of B.



Learning Causal Relations

- Learn Bayesian Network Structure from Data.
- Infer Causal Relationships from network structure.

An Illustration

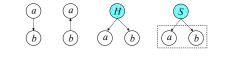
- Given data containing 2 variables *a* and *b*.
- *a* is independent of *b*, if $p(b|a) = p(b|\bar{a}) = p(b|\bar{a})$

$$p(b|a) = p(b|\bar{a}) = p(b)$$

• If we observe

 $p(b|a) \neq p(b|\bar{a})$

we can conclude (by Causal Markov Condition)



Learning Network Structure

- To learn a structure on a set of variables X.
- Consider a random variable *z*, who's states correspond to the various network configurations.
- Using Bayesian methods, determine the posterior probability distribution of *z*.
- Structures with highest probability are the learnt structures.

