Content-Based Image Retrieval Using Multiple-Instance Learning Qi Zhang

We Yu Sally A. Goldman Jason E. Fritts

Image Retrieval Systems

- Image Indexing using keywords earliest IR systems.
- Lipson et. al., 1997:
 hand aafted templates can be used to classify natural scenes.
- Search by content
 search-by-similarity
 - target search

Content Based Image Retrieval

- Retrieve images based of automatically derived features such as color, texture and shape.
- Existing CBIR Systems: Require user to specify salient regions in the guery image.
 - QBIC system [Flickner et. al., 1995]

Multiple Instance Learning

- · Traditional Supervised Learning
 - What if the teacher can only label collection of instances, and not individual instances?
- Multiple Instance Learning (MIL) [Dietterich et. Al., 1997]
 - Learn a concept given a collection of instances labeled positive or negative.

A Natural Scene Classification Example

Given a picture containing a waterfall, what is it about the image that causes it to be labeled as a waterfall?

At least one of the objects in the image is a waterfall.

Given a number of images (labeled waterfall or nonwaterfall), the authors attempt to find the intersections within the waterfall images, that do not appear in the non-waterfall images.

Problem Description

- Each bag corresponds to a single image and may contain many instances.
- Each instance in a bag corresponds to a description of some sub region of the image.
- A bag is labeled positive if it contains at least one positive instance and negative otherwise.
- From a collection of labeled bags, the learner tries to induce a concept that will label unseen bags correctly.

3

Steps for CBIR using MIL

- 1. Image Processing (extracting image features and generating bags).
- 2. Multiple Instance Learning using Diverse Density algorithm.

Image Processing Steps

- 1. Color representation: using one of the following systems
 - RGB
 - YCrCb
- 2. Bag Generator:
 - Segmentation
 - Subsampling

Segmentation

- Divide the image into regions called *blobs*.
- Each *blob* is represented by 6 values.
 - < R, G, B, HL(Y), LH(Y), HH(Y) > or < Y, Cr, Cb, HL(Y), LH(Y), HH(Y) >
- K names segmentation algorithm is used to segment the image.
- So we have one bag for each image, one 6 D point for each segment in the bag.

Subsampling

- Smoothes the image followed by subsampling.
- Applies a fixed segmentation method to generate the points within the bag for each image.
- Single blob with neighbors (sbn) to extract features.

Multiple-Instance Learning

Training Data:
 D = {<B₁, I₁>, ..., <B_m, I_m>}
 m bags where bag B_i has label I_i.

If bag $B_i = \{ B_{i1}, \dots, B_{ij}, \dots, B_{in} \}$, then B_{ij} is the jth instance in B_i . Positive Bags: B_i^+

Diverse Density Algorithm [Maron and Lozano-Perez, 1998]

Main idea:

Find a point in feature space that have a *high Diverse Density* –

- High density of positive instances
- Low density of negative instances

Higher diverse density = higher probability of being the target concept.

q

Diverse Density

Assuming that the target concept is a single point t and x is some point in feature space, $Pr(x = t | B_1^+, ..., B_n^+, B_1^-, ..., B_m^-)$ (1) represents the probability that x is the target concept given the training examples.

We can find t if we maximize the above probability over all points x.

13

Probabilistic Measure of Diverse Density

- Using Bayes' Rule, maximizing (1) is equivalent to maximizing Pr(B₁⁺,..., B_n⁺, B₁⁻,..., B_m⁻| x = t)
- Further assuming that the bags are conditionally independent given t, the best hypothesis is $\operatorname{argmax}_{x} \prod_{i} \Pr(B_{i}^{+}|x = t) \prod_{i} \Pr(B_{i}^{-}|x = t)$

14

EM-DD

- Expectation Maximization algorithm (Dempster, Laird and Rubin (1977))
 - Start with *h* set to some appropriate instance from a positive bag.
 - -E Step: *h* is used to pick one instance from each bag that is most likely to be responsible for its label.
 - M Step: two step gradient ascent search to find a new *h* that maximizes *DD(h)*.

Conclusion

- EM Dperformed better than DD for the drug discovery case.
- Future Work:
 - Explore other methods for feature selection (two bbb with neighbor bag generator)
 - Hierarchical segmentation technique.
 - Alternate ways to select best hypothesis.

31

References

- Content-Based Image Retrieval Using Multiple Instance Learning by Zhang, Yu, Goldman, Fritts
- Maron & Ratan (1998). Multiple Instance Learning for Natural Scene Classification
- Maron & Lozano-Perez (1998), A Framework for Multiple Instance Learning

32

Assumptions of Noisy-or model

- for x to be the target concept, it is caused by one of the instances in the bag.
- probability of j not being the target is independent of any other instance not being the target.

Content-Based Image Retrieval Using Multiple-Instance Learning

paper by Qi Zhang, Wei Yu, Sally Goldman, Jason Fritts

> presented by Navdeep Kaur

comments by Siddharth Patwardhan

An Interactive Learning Model

- "Four eyes" an interactive learning system.
- The system learns *groupings* of images or image "patches" based on positive and negative examples.
- It interactively provides the user with examples and improves the *groupings* based on user feedback.

Multiple Instance Learning

- User doesn't need to select a particular region of an image.
- Learning algorithm learns the region of interest and its characteristics, based on feedback.

References

- Zhang Q. et al. Content-Based Image Retrieval Using Multiple-Instance Learning. *International Conference on Machine Learning (ICML 2002)*, Sydney, Australia, July 2002.
- [2] Minka T. and Picard R. Interactive Learning Using a "Society of Models". In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR-1996). June 18 - 20, 1996 San Francisco, Ca.

Bag Generator	
 Key part of the system 	
Mechanism – takes image and generates a set of instances	
 Instance – possible description of the image 	
Observation- Better bag generator leads to simpler learning algorithm	

 Multiple-Instance Learning for Natural Scene Classification – Oded Maron, Aparna Lakshmi Ratan 	Reference	S		
	Multiple-Insta Classification	nce Learning for – Oded Maron, A	Natural Scene parna Lakshmi Rat	an

						CACHE DALORS
antagantagantagangangangan						
a darked a shadarked a shadarked						
W						
						- June
						. i
						ngan
						1 1 1