
1

On generalization bounds, 
projection profile, and margin 

distribution
(Garg, Peled and Roth, 2002)

Presented by Alex Kosolapov

Presentation Outline

Introduction
Base definitions and assumptions
A Margin Distribution based Bound
Comparison with some other bounds
Conclusion

Introduction

Generalization abilities and its 
dependence on sample complexity

Confidence of predictions
Understanding generalization

Relevant for learning in high dimensional 
spaces

Learning high dimensional data

High dimensional problems may be constrained 
in ways that make them lower dimensional 
problems (but learning is still in the initial, i.e., 
high dimensional, space)
For some high dimensional problems 
generalization may be dependent on lower 
dimensionality of the problem
Random projection of sample into lower 
dimension space preserving distances (Johnson 
and Lindenstrauss, 1984)

Contribution

Garg, Har-Peled and Roth (2002):
Project sample and linear classifying 
hypothesis
Generalization bounds for linear classifiers in 
high dimensional space
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Projection profile

Projection profile of D
“data dependent, 
complexity measure for 
learning”
ak : expected amount of 
error introduced when h
and data are projected into 
k-dimensions
v(x) : distance between x
and classifying hyperplane
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Projection profile contd.

Decreases monotonically
Tradeoff between dimension and accuracy
Takes into account distribution of 
geometric distances from classifier 
(margin distribution)
Overall performance will depend on

Estimation of projection profile
“standard” VC component

Definitions

Classification problem f: Rn- > {- 1,1}
S = {(x1, y1), …, (xm, ym)}

n- dimensional linear classifier
Assumed to pass through the origin, so

For an example x, 
Signed distance of x from h:
Empirical error:
Expected error:
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Random Projection Matrix

Random projection matrix:
R is matrix
Each entry is N(0, 1/k)

For , projection of x
Similar for a classifier h
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Margin Distribution based Bounds

Decision of classifier is based on the sign of

|v(x)| - a geometric distance between x and 
hyperplane orthogonal to h that passes through 
the origin
Given a set of samples with some distribution, 
induces margin distribution

))(()( xvsignxhxv T ==



3

Main Theorem (3.1)
Let S = {(x1, y1), …, (x2m, y2m)} be a set of n-dimensional labeled examples 

and h a linear classifier. Then, for all constants 0<δ<1, 0<k, with 
probability at least 1-4δ, the expected error of h is bound by
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Observations

1. If x is far from h, then projection of x 
should be far from projection of h

2. Empirical error in projection space: 
images of datapoints not consistent with 
image of h

3. Optimal bound: balance between penalty 
for projection and VC error term in that 
dimension

The probability of misclassifying x relative to its 
classification in original space:

Projection error (caused by projection matrix):
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Bounds on classification error

With probability ≥1- δ, the projection error 
satisfies 

Bounds on classification error with probability 
≥ 1- 4δ:
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Improved bounds
Important is the distance from classifier
Expected probability of error for an image of x:

Also possible to improve if R has entries {-1,+1} 
(Achlioptas, 2001)
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Projection error

Histogram of 
distances from h (for 
context sensitive 
spelling correction)
Contributions of 
points to 
generalization error 
as a function of 
distance from h
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Bounds Tradeoff

x from Normal 
distribution with mean 
0.3, variance 0.1

VC Bounds

VC bounds with probability ≥1- δ:

Worst-case generalization of classifier
Depend on the space of the data, independent of the 
actual data
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Bounds via margin

Deriving bounds via margin:

δ – min. margin

Linear functions case:
B is norm of the classifier
R is maximal norm of the data

Independent of the data space, depends on 
margin with the given data
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VC, margin based bounds

Drawback: Large number of observed 
datapoints before bounds are meaningful (<0.5)

i.e., margin-based: need at least 17 times the 
dimension of a datapoint

With 0.9 margin, need about 100,000 datapoints
high dimensional data : 17,000 dimensional data 
(context sensitive spelling correction experiment)

VC bounds: 120,000 datapoints before meaningful

Experiment 1

Context sensitive 
error correction with 
winnow based 
algorithm (Golding
and Roth, 1999)
17,000 dimensional 
data 

Experiment 2

Face detection 
problem
RBF kernel was used 
to learn classifier
No other details
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Conclusions

A new analysis method for linear learning 
algorithms
Data dependent complexity measure for 
learning and bound on error as a function 
of margin distribution of data relative to the 
classifier
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VC Dimension

Different machines have different amounts of “power”
Tradeoff

More power: Can model complex classifiers but might overfit
Less power: Do not overfit, but can model simple classifiers

How do we characterize the amount of power?

fx yest = f(x, w)

w

e.g. f(x, w) = sign(x*w) 
+1 or -1

CS8751 On generalization bounds, projection profile, 
and margin distribution
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Vapnik-Chervonenkis 
dimension
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This gives a way to estimate the error on future data based on training error 
and VC dimension of f

R is #training data points

•Given a machine f, let its VC dimension be h
•h is the measure of f’s power
•With probability η−1

CS8751 On generalization bounds, projection profile, 
and margin distribution
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How to compute h?
A machine f can shatter a set of points x1, x2, 
…..xr if and only if 

For every possible training set of the form (x1,y1),  
(x2,y2), …..(xr,yr)
There exists some value of w that gets 0 training 
error. 

NOTE: There are 2r such training sets to 
consider, each with a different combination of 
+1’s and -1’s for the y values. 
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Shattering

Can f shatter the following points?

Yes!!! 4 possible values for y

CS8751 On generalization bounds, projection profile, 
and margin distribution
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VC dimension definition
Given a machine f, the VC dimension h is 

The maximum number of points that can be 
arranged so that f shatters them
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VC Dimension

According to the VC theory, a meaningful 
separating hyper-plane can be found after 
training by 17n examples.
However, in most cases, not all attributes 
affect the classification result.
Q: How small can we shrink the input 
dimension?

Margin/Error probability Relationship

Shawe-Taylor’s paper shows there is a 
relationship between the margin and the 
error probability.
The confidence of whether we predict a 
point correctly can be represent as a 
function its margin.

Random Projection and Margin 
Distribution

This paper proves that 
the distance distortion can be represent as a 
function over the projection dimension.

Thus, given hypothesis h and the dimension 
of the projection space, we can 

calculate the error probability for a data 
example after the projection.

The Main Theorem

The main theorem (Theorem 3.1) shows the true 
error probability is bounded by 

the empirical error probability, 
plus the sum of

The projection penalty, and 
The VC dimension term.

We can build the Projection Profile, which give us 
a way to balance between the dimension of the 
projection space and the accuracy.

Contributions of this paper

Devise a new linear learning algorithm that 
uses random projection and margin 
distribution analysis.
Pointing out it’s possible to reduce the 
dimension of the training data set while not 
introducing too much distortion error.
Giving a way to balance between dimension 
and accuracy by the projection profile.
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