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NLP tasks
Assume: some training set of structures.

An “observed” string (a sentence)
Hidden structure (an underlying state sequence or tree)

Task: learn mapping from an input string to its 
hidden structure.

Parsing – tasks involving trees
Tagging– tasks involving hidden state sequence

Three typical structures from 
NLP tasks

Parse tree:
Lou Gerstner is chairman of IBM 
[S [NP Lou Gerstner] [VP is [NP chairman [PP of [NP IBM] ] ] ] ]

Underlying state sequence:
Lou Gerstner is chairman of IBM 
Lou/SP  Gerstner/CP  is/N  chairman/N  of/N  IBM/SC

Part-of-speech tags:
Lou/N  Gerstner/N  is/V  chairman/N  of/P IBM/N

NLP Key Issue

Key issue: ambiguity
Although only one analysis is plausible, 

there may be many many possible 
analyses.

Dealing with Ambiguity…

Stochastic grammar:
-- PCFG (Probabilistic Context Free Grammar) for 

parsing
-- HMM (Hidden Markov Model) for tagging

Probabilities are attached to rules in the grammar.
Rule probabilities are estimated using MLE (Maximum 
likelihood estimation).
Probabilities are used to rank the competing analyses 
for the same sentence.
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PCFGs as a parsing method
Counts the relative # of occurrences of a given rule.

Uses the count to represent its learned knowledge.

Makes strong independence assumptions.

Ignores substantial amounts of structural information 
(e.g. assume rules applied at level i in the parse tree 
are unrelated to those applied at level i+1).

Dealing with Ambiguities …

Alternative suggested by the paper: Kernels
Kernel approach in this paper:

sensitive to larger sub-structures of trees or state sequences;
discriminative parameter estimation method;
optimizes a criterion directly related to error rate.

Other applications of Kernels:
PCA over discrete structures
Classification
regression problems
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Introduction to Kernels

Algorithms involving kernel methods:
Perceptron.
SVM (Support Vector Machine).
PCA (Principal Component Analysis).

Key property of these algorithms:
Dot product is the only operation required.

Mercer kernels: nd ℜ→ℜ

Applying kernel methods to 
NLP problems – this paper

Problem in many NLP tasks:
input domain cannot be neatly represented as a subset of 
strings/trees/discrete structures

In this paper:
Provides a mechanism to convert the objects into feature 
vectors
Allow computationally feasible representations in high 
dimensional feature spaces (e.g. parse tree representation 
tracks all sub-trees)
Applies tree kernel to parsing using perceptron algorithm
Recursive calculation over the “parts” of a discrete

dℜ
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Recall: PCFGs as a parsing 
method

Counts the relative # of occurrences of a given rule.

Uses the count to represent its learned knowledge.

Makes strong independence assumptions.

Ignore substantial amounts of structural information 
(e.g. assume rules applied at level I in the parse tree 
are unrelated to those applied at level i+1).

More Structural Information!

Why?
Capture higher order dependencies between 
grammar rules.

How?
Consider all tree fragments.

An example tree and some 
sub-trees

S                                  NP               NP          NP   
NP

NP       VP                    D       N         D      N   D     N    
D     N

N      V        NP           the     apple                  the       
apple

Jeff   ate   D       N                            D          N      

the     apple                       the       apple 

Representations

Enumerate (implicitly) all tree fragments: 
1,…,n.
Represent each tree by an n-d vector:

# of occurrences of the i’th tree fragment in 
tree T
Tree T is represented as:

Note: n will be huge.

=)(Th i

).)(,...,)(),(()( 21 ThThThTh n=

Previous work on the 
representation

Bod, R. (1998).  Beyond Grammar:  An Experience-Based 
Theory of Language. CSLI Publications/Cambridge University 
Press.
Comments:

Exact implementation is infeasible.
Training and decoding algorithms depending on # of sub-trees.
Lack justification of the parameter estimation technique.

Goodman, J.(1996).  Efficient algorithms for parsing the DOP 
model.  In Proceedings of the Conference on Empirical Methods 
in Natural Language Processing (EMNLP 96), pages 143-152 .

Approximately implement Bod’s method efficiently.
Still lack justification of the parameter estimation techniques.

Key:  definition of an 
appropriate kernel

Define:
: # of occurrences of the i’th tree 

fragment in tree T

Inner product between two trees

Problem: the sum is over an exponential number 
of sub-trees.                       

.21 TandT
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Definitions – cont. 

Cure :
Indicator function:

set of nodes in
Therefore,
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Definitions – cont.
And

Where

Define                   recursively:
If the productions at                   are different,
If the productions at                   are the same and        are pre-
terminals then  
Else if the productions at                      are the same and
are  not pre-terminals, 

This is the # of common sub-trees that are found rooted at both  
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Observations
Observation from

and the recursive definition of

can be calculated                        time – pessimistic 
estimate.

Will run  in time linear in the # of members
s.t. the productions at                    are the same.
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Issues remain
Value of              will depend greatly on the size of the 
trees
Cure: normalize the kernel

Peaked kernel (large kernel value when same trees)
Cure:

Radialize the kernel (Haussler) – not actually helps
Down-weight the contribution of larger tree fragments to the 
kernel.

Restrict the depth of the tree fragment
Scale the importance according to size, pick

Modified kernel:
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Set up
Training data in parsing :             ,      

sentence ,               correct tree for     

Enumerate a set of candidates for a particular 
sentence:

j’th candidate for the i’th sentence.
set of candidates for      .

Take         to be the correct parse for      (i.e.,            
).

feature vector  of          in the space 
: parameters of the model.
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Goal and Approach

Goal:

Observation:

Approach: modified Perceptron and 
SVM to search for “dual” parameters to 
determine 

)(maxarg )( jisCx xhw ⋅∈

2,0))()(( 1 ≥∀∀>−⋅ jixhxhw iji

))()(( 1
),(

,

*

jii
ji

ji xhxhaw −= ∑

*
w

Modified Perceptron Algorithm

Define:
Initialization:  Set dual parameters
For

If                            do nothing ;
else
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Experiment Design
Problem: parsing the Penn tree-bank ATIS corpus.
Data preparation: split tree-bank randomly into

A training set of size 800
A development set of size 200
A test set of size 336

Apply PCFG to training set –> 100 top candidate parse 
tree.
Beam search to get a set of (20) parses.
Apply Voted Perceptron using tree kernel to the test set.

Two parameters to consider:
Maximum depth of sub-tree examined
Scaling factor to down-weight deeper trees

Experiment Design cont.
Report a parse score:

Where
# of correctly placed constituents in the i’th test tree
# of constituents proposed
# of constituents in the true parse tree

Constituent: non-terminal label and its span.

Use the development set to choose the best parameter 
settings
Use the best parameter settings (on the development 
sets) for each split to train on both the training and 
development sets.
Test on the test set.
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Parse score varies with 
maximum depth/ scaling 
factor  of sub-tree 
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Result Comparison

PCFG:
Best choice of maximum depth
Best choice of scaling factor 1%80 ±

1%80 ±

%74
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Conclusions

Conclusions
Convolution kernels applied to NLP parsing
Tree structure
Example domain: parsing English sentences

Future Work
Compare with other methods that perform better than a 
PCFG for NLP parsing.
Convolution kernels combined with other kernel based 
algorithms (kernel PCA and spectral clustering) to achieve 
computational attraction.

Thank you!
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Convolution Kernels 
Overview

Presented by Alex Kosolapov

Convolution
Math

Continuous

Descrete

Properties:
Associative
Commutative
Distributive

∑ −== )()()(*)()( xfuxgxfxgxh
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Applications

Noise Filters
Filter out low frequency
Filter out high frequency

Applied in signal processing, image 
processing

Convolution: Edge detection
Edge detection (Laplacian
kernel, Sobel kernel), 
smoothing

Kernel – a matrix 
applied to an image

Sobel edge detection kernel
Vertical: Horizontal:
-1 0 1 1  2  1
-2 0 2 0  0  0
-1 0 1 -1 -2 -1

Convolution Kernel
Haussler, D. (1999). Convolution kernels on discrete structures. UCSC-CRL-99-10

For classifying discrete structures, e.g., strings, trees, graphs 
etc.
Often not feasible to extract real-valued features of 
structures
Convolution kernel: compute inner product of features 
without explicitly extracting features
With a convolution kernel we can compute distance between 
structures x and y
similarity metrics introduced based on radial basis, 
exponential, ANOVA kernels, hidden Markov random fields

Convolution Kernels

Obtained from other kernels by sum over 
products
Can do this iteratively



1

Convolution Kernels for 
Natural Languages

By, 
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Comments by,
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Representation
• Linear combination of parse trees
• Search for sub trees that occur more than 

once
• Construct a weighted acyclic graph
• The common sub tree appears only one in 

this graph
• Repeat the above process

Compressed representation

• The above process lead us to a 
compressed representation 

• Perceptron may be  evaluated on this new 
tree

• Advantage: 
Appears to save considerable amount 
of computation


