
1

Convolution Kernels for
Natural Language

Paper by: Michael Collins, Nigel Duffy
Presented by: Ruinan (Renie) Lu

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
Conclusions

NLP tasks
Assume: some training set of structures.

An “observed” string (a sentence)
Hidden structure (an underlying state sequence or tree)

Task: learn mapping from an input string to its
hidden structure.

Parsing – tasks involving trees
Tagging– tasks involving hidden state sequence

Three typical structures from
NLP tasks

Parse tree:
Lou Gerstner is chairman of IBM
[S [NP Lou Gerstner] [VP is [NP chairman [PP of [NP IBM]]]]]

Underlying state sequence:
Lou Gerstner is chairman of IBM
Lou/SP Gerstner/CP is/N chairman/N of/N IBM/SC

Part-of-speech tags:
Lou/N Gerstner/N is/V chairman/N of/P IBM/N

NLP Key Issue

Key issue: ambiguity
Although only one analysis is plausible,

there may be many many possible
analyses.

Dealing with Ambiguity…

Stochastic grammar:
-- PCFG (Probabilistic Context Free Grammar) for

parsing
-- HMM (Hidden Markov Model) for tagging

Probabilities are attached to rules in the grammar.
Rule probabilities are estimated using MLE (Maximum
likelihood estimation).
Probabilities are used to rank the competing analyses
for the same sentence.

2

PCFGs as a parsing method
Counts the relative # of occurrences of a given rule.

Uses the count to represent its learned knowledge.

Makes strong independence assumptions.

Ignores substantial amounts of structural information
(e.g. assume rules applied at level i in the parse tree
are unrelated to those applied at level i+1).

Dealing with Ambiguities …

Alternative suggested by the paper: Kernels
Kernel approach in this paper:

sensitive to larger sub-structures of trees or state sequences;
discriminative parameter estimation method;
optimizes a criterion directly related to error rate.

Other applications of Kernels:
PCA over discrete structures
Classification
regression problems

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
Conclusions

Introduction to Kernels

Algorithms involving kernel methods:
Perceptron.
SVM (Support Vector Machine).
PCA (Principal Component Analysis).

Key property of these algorithms:
Dot product is the only operation required.

Mercer kernels: nd ℜ→ℜ

Applying kernel methods to
NLP problems – this paper

Problem in many NLP tasks:
input domain cannot be neatly represented as a subset of
strings/trees/discrete structures

In this paper:
Provides a mechanism to convert the objects into feature
vectors
Allow computationally feasible representations in high
dimensional feature spaces (e.g. parse tree representation
tracks all sub-trees)
Applies tree kernel to parsing using perceptron algorithm
Recursive calculation over the “parts” of a discrete

dℜ

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
Conclusions

3

Recall: PCFGs as a parsing
method

Counts the relative # of occurrences of a given rule.

Uses the count to represent its learned knowledge.

Makes strong independence assumptions.

Ignore substantial amounts of structural information
(e.g. assume rules applied at level I in the parse tree
are unrelated to those applied at level i+1).

More Structural Information!

Why?
Capture higher order dependencies between
grammar rules.

How?
Consider all tree fragments.

An example tree and some
sub-trees

S NP NP NP
NP

NP VP D N D N D N
D N

N V NP the apple the
apple

Jeff ate D N D N

the apple the apple

Representations

Enumerate (implicitly) all tree fragments:
1,…,n.
Represent each tree by an n-d vector:

of occurrences of the i’th tree fragment in
tree T
Tree T is represented as:

Note: n will be huge.

=)(Th i

).)(,...,)(),(()(21 ThThThTh n=

Previous work on the
representation

Bod, R. (1998). Beyond Grammar: An Experience-Based
Theory of Language. CSLI Publications/Cambridge University
Press.
Comments:

Exact implementation is infeasible.
Training and decoding algorithms depending on # of sub-trees.
Lack justification of the parameter estimation technique.

Goodman, J.(1996). Efficient algorithms for parsing the DOP
model. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP 96), pages 143-152 .

Approximately implement Bod’s method efficiently.
Still lack justification of the parameter estimation techniques.

Key: definition of an
appropriate kernel

Define:
: # of occurrences of the i’th tree

fragment in tree T

Inner product between two trees

Problem: the sum is over an exponential number
of sub-trees.

.21 TandT

∑=⋅=
i

ii ThThThThTTK)()()()(),(212121

)(Thi

4

Definitions – cont.

Cure :
Indicator function:

set of nodes in
Therefore,

:21 NandN .21 TandT

∑∑
∈∈

==
2211

)()(,)()(2211
Nn

ii
Nn

ii nIThnITh





=
otherwise

nnodeatrootsisubtreeif
nIi ,0

,1
)(

Definitions – cont.
And

Where

Define recursively:
If the productions at are different,
If the productions at are the same and are pre-
terminals then
Else if the productions at are the same and
are not pre-terminals,

This is the # of common sub-trees that are found rooted at both

∑ ∑∑∑ ∑∑
∈ ∈∈∈

===⋅
11 222211

),()()()()()()(21212121
Nn Nni

ii
i NnNn

ii nnCnInIThThThTh

∑=
i

ii nInInnC)()(),(2121

),(21 nnC
21 nandn

21 nandn 21 nandn
.0),(21 =nnC

∏
=

+=
)(

1
2121

1

).)),(),,((1(),(
ncn

j

jnchjnchCnnC

21 nandn 21 nandn
.1),(21 =nnC

21 nandn

Observations
Observation from

and the recursive definition of

can be calculated time – pessimistic
estimate.

Will run in time linear in the # of members
s.t. the productions at are the same.

∑ ∑
∈ ∈

=⋅
11 22

),()()(2121
Nn Nn

nnCThTh

⇒),(21 nnC)()(21 ThTh ⋅

|)||(| 21 NNO

21 nandn
2121),(NNnn ×∈

Issues remain
Value of will depend greatly on the size of the
trees
Cure: normalize the kernel

Peaked kernel (large kernel value when same trees)
Cure:

Radialize the kernel (Haussler) – not actually helps
Down-weight the contribution of larger tree fragments to the
kernel.

Restrict the depth of the tree fragment
Scale the importance according to size, pick

Modified kernel:

∏
=

+==
)(

1
212121

1

).)),(),,((1(),(),(
ncn

j

jnchjnchCnnCandnnC λλ

,10 ≤< λ

),(21 TTK

∑=⋅
i

ii
ezis ThThThTh i)()()()(2121 λ

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
Conclusions

Set up
Training data in parsing : ,

sentence , correct tree for

Enumerate a set of candidates for a particular
sentence:

j’th candidate for the i’th sentence.
set of candidates for .

Take to be the correct parse for (i.e.,
).

feature vector of in the space
: parameters of the model.

ki f h l

{ }ii ts ,
is:it:is

jix

...},{)(21 iii xxsC = is

is1ix ii tx =1

jix:)(jixh .nℜ
nw ℜ∈
:)(jixhw ⋅

5

Goal and Approach

Goal:

Observation:

Approach: modified Perceptron and
SVM to search for “dual” parameters to
determine

)(maxarg)(jisCx xhw ⋅∈

2,0))()((1 ≥∀∀>−⋅ jixhxhw iji

))()((1
),(

,

*

jii
ji

ji xhxhaw −= ∑

*
w

Modified Perceptron Algorithm

Define:
Initialization: Set dual parameters
For

If do nothing ;
else

))()()()(()(1
),(

, xhxhxhxhaxF jii
ji

ji −= ∑

)()(1 jii xFxF >

injni ...2,...1 ==

1+= jiji αα

0=jiα

Calculate Score of Parse

0))()()()((21
),(

,

*
>−=⋅ ∑ xhxhxhxhaxw ii

ji
ji

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
Conclusions

Experiment Design
Problem: parsing the Penn tree-bank ATIS corpus.
Data preparation: split tree-bank randomly into

A training set of size 800
A development set of size 200
A test set of size 336

Apply PCFG to training set –> 100 top candidate parse
tree.
Beam search to get a set of (20) parses.
Apply Voted Perceptron using tree kernel to the test set.

Two parameters to consider:
Maximum depth of sub-tree examined
Scaling factor to down-weight deeper trees

Experiment Design cont.
Report a parse score:

Where
of correctly placed constituents in the i’th test tree
of constituents proposed
of constituents in the true parse tree

Constituent: non-terminal label and its span.

Use the development set to choose the best parameter
settings
Use the best parameter settings (on the development
sets) for each split to train on both the training and
development sets.
Test on the test set.

)(
2
11*%100

i

i

i

i
i i

i i g
c

p
cg

g
+×∑∑

ic
ip
ig

6

Parse score varies with
maximum depth/ scaling
factor of sub-tree

18 319
4

21
4

23 320
6

-1 4Imp.
78
0.01

79
1

79
1

80 1 79
1

73 1Score
654321Depth

±
±

±±
± ±

±
±

±
±

±
±

22 421
4

21
3

20 417
5

11
6

Imp.
79 179

1
79
1

79 1 78
1

77 1Score
0.60.50.40.30.20.1Scale

±
±

±
± ±

± ±
± ±

± ±
±

Result Comparison

PCFG:
Best choice of maximum depth
Best choice of scaling factor 1%80 ±

1%80 ±

%74

Outline

Natural Language Processing (NLP)
Tasks
Introduction to Kernels
A Tree Kernel
Linear Models for Parsing and Tagging
Experimental Results
A Compressed Representation
Conclusions

Conclusions

Conclusions
Convolution kernels applied to NLP parsing
Tree structure
Example domain: parsing English sentences

Future Work
Compare with other methods that perform better than a
PCFG for NLP parsing.
Convolution kernels combined with other kernel based
algorithms (kernel PCA and spectral clustering) to achieve
computational attraction.

Thank you!

1

Convolution Kernels
Overview

Presented by Alex Kosolapov

Convolution
Math

Continuous

Descrete

Properties:
Associative
Commutative
Distributive

∑ −==)()()(*)()(xfuxgxfxgxh

∫
∞

∞−

−== dxxfuxgxfxgxh)()()(*)()(

Applications

Noise Filters
Filter out low frequency
Filter out high frequency

Applied in signal processing, image
processing

Convolution: Edge detection
Edge detection (Laplacian
kernel, Sobel kernel),
smoothing

Kernel – a matrix
applied to an image

Sobel edge detection kernel
Vertical: Horizontal:
-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 -1

Convolution Kernel
Haussler, D. (1999). Convolution kernels on discrete structures. UCSC-CRL-99-10

For classifying discrete structures, e.g., strings, trees, graphs
etc.
Often not feasible to extract real-valued features of
structures
Convolution kernel: compute inner product of features
without explicitly extracting features
With a convolution kernel we can compute distance between
structures x and y
similarity metrics introduced based on radial basis,
exponential, ANOVA kernels, hidden Markov random fields

Convolution Kernels

Obtained from other kernels by sum over
products
Can do this iteratively

1

Convolution Kernels for
Natural Languages

By,
Michael Collins
Nigel Duffy

Comments by,
Srikanth Varanasi

Representation
• Linear combination of parse trees
• Search for sub trees that occur more than

once
• Construct a weighted acyclic graph
• The common sub tree appears only one in

this graph
• Repeat the above process

Compressed representation

• The above process lead us to a
compressed representation

• Perceptron may be evaluated on this new
tree

• Advantage:
Appears to save considerable amount
of computation

