Convolution Kernels for Natural Language

Paper by: Michael Collins, Nigel Duffy Presented by: Ruinan (Renie) Lu

Outline Natural Language Processing (NLP) Tasks Introduction to Kernels A Tree Kernel Linear Models for Parsing and Tagging Experimental Results Conclusions

Applies tree kernel to parsing using perceptron algorithm

- Makes strong independence assumptions.
- Ignore substantial amounts of structural information (e.g. assume rules applied at level I in the parse tree are unrelated to those applied at level i+1).

maximum depth/ scaling factor of sub-tree						
Depth	1	2	3	4	5	6
Score	73 <u>+</u> 1	79	<mark>-80 ±</mark> 1	79±	79 <u>+</u>	78 <u>+</u>
Imp.	-1 ± 4	20±	23± 3	21±	19 ±	98 <u>9</u> 13
		6		4	4	
Scale	0.1	0.2	0.3	0.4	0.5	0.6
Score	77±1	78±	79± 1	79 <u>+</u>	79±	79 ± 1
Imp.	11±	17±	20± 4	21±	21±	22 ± 4
	6	5		3	4	

Applications

Noise Filters

- Filter out low frequency
- Filter out high frequency
- Applied in signal processing, image processing

Convolution: Edge detection

Convolution Kernel

Haussler, D. (1999). Convolution kernels on discrete structures. UCSC-CRL-99-10

- For classifying discrete structures, e.g., strings, trees, graphs etc.
- Often not feasible to extract real-valued features of structures
- Convolution kernel: compute inner product of features without explicitly extracting features
- With a convolution kernel we can compute distance between structures x and y
- similarity metrics introduced based on radial basis, exponential, ANOVA kernels, hidden Markov random fields

Convolution Kernels

- Obtained from other kernels by sum over products
- Can do this iteratively

Convolution Kernels for Natural Languages

By, Michael Collins Nigel Duffy

Comments by, Srikanth Varanasi

Representation

- · Linear combination of parse trees
- Search for sub trees that occur more than once
- Construct a weighted acyclic graph
- The common sub tree appears only one in this graph
- · Repeat the above process

Compressed representation

- The above process lead us to a compressed representation
- Perceptron may be evaluated on this new tree
- · Advantage:

Appears to save considerable amount of computation