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An Overview of the Talk
• Introduction to clustering and the common 

trends.
• The basic k-means algorithm.
• Applying constraints based on background 

knowledge.
• How do we evaluate?
• Experiment using artificial constraints.
• A GPS lane finding experiment.
• Related work.
• Conclusions.

Clustering!

• An unsupervised method for data analysis.
• Grouping of data with some notion of 

“similarity”.
• Uses just the data to determine which of the 

data points look alike.
• New instances of data are assigned to the 

closest cluster.

Background Knowledge

• Traditional clustering algorithms don’t use 
any background knowledge about the data 
in the clusters.

• If domain knowledge told us…
– Two data points are part of the same class.
– Or two data points are in different classes.

• … could we improve the clusters formed?

The K-means Algorithm

• Automatically partitions data points into k
groups.

• Starts with k initial “cluster centers”, 
iteratively assigns points to clusters and 
updates the “cluster centers”.

• Converges when there is no further change 
in assignment of points to clusters.

Using Background Knowledge

• Two types of constraints based on the 
domain knowledge.

• Must-link constraints specify that two 
instances must be in the same cluster.

• Cannot-link constraints specify that two 
instances cannot be in the same cluster.
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The Constrained K-means 
Algorithm

(1) Initialize the k cluster centers.
(2) For each data point di, assign di to its 

closest cluster such that none of the 
constraints are violated. If no such cluster 
exists, clustering fails.

(3) Update the cluster centers.
(4) Iterate (2) and (3) till convergence.

Testing Constraint Violation
• The distance of a data point d to each of the 

cluster-centers is computed.
• Constraint violation for d is tested for each 

cluster in ascending order of distance of d 
from the cluster-center.

Testing Constraint Violation

• For a cluster C, from the data-points that 
have been assigned to clusters, if the data 
points that “must-link” to d are not in C, 
then the must-link constraint for d is 
violated.

• For a cluster C, if any of the data points that 
“cannot-link” to d are in C, then the cannot-
link constraint for d is violated.

Evaluating Clusters

• Rand Index used to measure the agreement 
between partitions.

• In this case the partitions are 
– that formed by the clustering.
– that specified by the data point labels.

• Accuracy measured for the entire data set 
and for a “held-out” test set (subset of the 
non-constrained data point) using a 10-fold 
cross validation.

More Evaluation
• The constraints can be viewed as a partition 

of the data points and thus can be evaluated 
using the Rand Index.

• The accuracy of the partition of just the 
constraints determine how good the 
constraints by themselves are at forming the 
clusters.

• This analysis consequently determines how 
well the domain knowledge by itself 
clusters the data.

You Are Here!
• Introduction to clustering and the common 

trends.
• The basic k-means algorithm.
• Applying constraints based on background 

knowledge.
• How do we evaluate?
• Experiment using artificial constraints.
• A GPS lane finding experiment.
• Related work.
• Conclusions.
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An Experiment using Artificial 
Constraints

• Used 6 well-known test sets from the UCI 
repository to test the performance of the 
constrained k-means algorithm.

• Tested basic k-means on each data set to 
provide a baseline for comparison.

• Tested the constrained k-means on each 
data set, varying the number of constraints.

Generating the Constraints

• Randomly select a pair of data points.
• If the two points have the same label, create 

a must-link constraint between them.
• If the two points have a different label, 

create a cannot-link constraint between 
them.

• Repeat the above process n times to 
generate n constraints.

The soybean Data Set
• 47 instances, 35 attributes, 4 classes.
• Unconstrained k-means achieves an 

accuracy of 87 %.
• Accuracy of the constraints alone: 48 %.
• Accuracy of constrained k-means on entire 

data set increases with the number of 
constraints up to 99 %,  with 100 random 
constraints.

• With the held-out data set it increases at 
almost the same rate to 98 %.

The soybean Data Set

The mushroom Data Set
• 50 instances, 21 attributes, 2 classes.
• Unconstrained k-means achieves an 

accuracy of 69 %.
• Accuracy of the constraints alone: 73 %.
• Accuracy of constrained k-means on entire 

data set increases with the number of 
constraints up to 96 %,  with 100 random 
constraints.

• With the held-out data set it increases at 
almost the same rate to 83 %.

The mushroom Data Set
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Making a Point
• On the other data sets too (part-of-speech, 

tic-tac-toe, iris, wine) the overall accuracy 
rose sharply into the 90s.

• Held-out accuracy increased only 
marginally.

• Improvement in clustering accuracy 
depends on the data set in question.

• Improvements can be observed on 
unconstrained instances, if constraints are 
generalizable to the full data set.

You Are Here!
• Introduction to clustering and the common 

trends.
• The basic k-means algorithm.
• Applying constraints based on background 

knowledge.
• How do we evaluate?
• Experiment using artificial constraints.
• A GPS lane finding experiment.
• Related work.
• Conclusions.

GPS Lane Finding Experiment

• Representing the problem as a clustering 
problem.

• Extracting constraints from background 
knowledge.

• Applying k-means with and without using 
constraints.

• Comparison of the results.

Lane Finding

• Clustering data points gathered from GPS 
systems.

• Clusters indicate lanes – densely traveled 
spaces.

• Can be used to alert drivers drifting from 
their lane.

Data Description
• Each data point represented by two features:

– Distance along the road segment.
– Perpendicular offset from the road centerline.

Road Segment

Data Description

• For evaluation purposes, each data point is 
also classified by the lane in which the it 
lies.

• Data collected once per second from several 
drivers with GPS receivers.

• Drivers specified which lane they were in to 
help label each data point.
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The Background Knowledge

• Domain-specific heuristics – trace 
contiguity and maximum separation.

• Trace contiguity: In the absence of lane 
changes, all points from a vehicle should be 
in the same cluster.

• Maximum separation: If two points are at 
least 4m apart vertically, they cannot be in 
the same lane.

Applying the Knowledge

• Using trace contiguity – Data points 
generated from the same vehicle that didn’t 
change lanes in a particular segment 
constrained to the same cluster.

• Using maximum separation – Data points 
separated by a distance greater than 4m 
vertically are constrained to be in different 
clusters.

Cluster-Center Representation
Rather than a point:

Represented as a line:

Selecting the value of k

• Used a second measure to compute the best 
value of k.

• Randomly select a value of k from 1 to 5 
and apply the clustering algorithm.

• Minimize:
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Selecting the value of k

• Selected the best k across 30 trials each.
• The basic k-means never chose the correct 

value for k.
• The COP-KMEANS selected the correct 

value for k for all but one road segment.

The Data

• 20 data sets, i.e. 20 road segments.
• Different number of lanes in each segment –

i.e. different k for each data set.
• Number of data points for each segment 

ranging from 115 to 1160.
• Significantly larger than previous 

experiment.
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Results

• Average accuracy of 
unconstrained k-
means: 58.0 %.

• Un-constrained k-
means attained a 
maximum accuracy of 
75 % .

• Selected the wrong 
value for k for all sets.

• Average accuracy of 
constrained k-means: 
98.6 %.

• Constrained k-means 
attained 100 % 
accuracy for 17 out of 
the 20 data sets.

• Selected the wrong 
value for k for one set.

Results

• Experiment specifying the correct value of k
to the unconstrained k-means on data set #6 
showed that it still performs poorly.

• Seeks compact spherical clusters.
• Clusters formed span multiple lanes.

Conclusions

• General method to incorporate background 
knowledge in clustering by using instance 
level constraints.

• Successfully applied to a real world 
problem.

• Scalable to large data sets.

More Conclusions

• Might be argued that k-means is 
fundamentally a poor choice of algorithm 
for the task.

• The constraints by themselves do not 
achieve good clustering.

• Combination of the constraints and a poor 
clustering algorithm can boost its 
performance.

Order-sensitive Clustering

• A downside of the method is that the 
clustering is sensitive to the order of 
assignment of points to the clusters.

• A poor decision at the start can result in can 
result in poor clusters or “no possible 
clusters” later.

• Ideally, backtracking could be incorporated 
in the latter case.

Related Work – Some Other 
Techniques

• Some agglomerative clustering algorithms 
use contiguity constraints.

• These cover the entire data set and cannot 
handle partial constraints.

• No accommodation for constraints to 
separate data items.
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Related Work
• K-means can evolve empty clusters.
• This will result in fewer than k clusters.
• By imposing a minimum size on each 

cluster, this can be avoided.
• This is a cluster level constraint.
• Like instance level constraints, cluster level 

constraints can be used to incorporate 
domain knowledge.

Putting to the Test

• Using constrained k-means in text 
clustering – clustering contexts with the 
same sense of a target word.

• Using background knowledge from sources 
like dictionaries and statistical information 
from large corpora to generate constraints.

• Using background knowledge to select the 
initial k points.
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Soft Constraints (preferences)…

• Previously defined two Hard Constraints
must link
cannot link

• Augmenting strength factor to each relation
soft constraints or preferences

e.g. <di,dk,s>
0  <= |s| <= 1

Soft constraints , cont…

• Subsumes both soft and hard constraints
• s , +ve values : group together

-ve values : don’t group together 

<di,dk,1>  == must link hard constraint
<di,dk,-1> == cannot link hard constraint
< di,dk,0> == don’t care hard constraint

Soft constraint closure 
for all i, j, k : given                produce
di =m dJ and dJ =m dk di =m dk
di =m dJ and dJ !=c dk di !=c dk
di !=c dJ and dJ =m dk di !=c dk
for all i, j, k : given                produce
<di,dJ,s1>  < dJ,dk,s2> < di, dk,min(s1,s2)>
<di,dJ,s1>  < dJ,dk,-s2> < di, dk,-min(s1,s2)>
<di,dJ,-s1>  < dJ,dk,s2> < di, dk,-min(s1,s2)>

If both constraints negative ....conclusion ?..?..?
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Overview

• Integration  of Background knowledge in 
constrained K-means clustering

• Background knowledge incorporated in the form 
of instance level constraints

• Variant of k-means algorithm
• Significant improvements in accuracy

Evaluation Method

• Dataset used for evaluation has label for each instance
• Rand index used to calculate measure of agreement 

between cluster obtained and the actual classification
Let us take dataset with 6 instances {a,b,c,d,e,f}
Clusters by clustering algorithm { ( a,b,c), (d,e,f)
Actual classification  {(a,b), (c,d,e), (f)}

6******mixed

7*******separate

2**together

ΣefdfdecfcecdbfbebdbcafaeadacabPoint pair

Total no of pairs = n*(n-1)/2 = 15

Similarity = (2+7)/15 = 0.6


