Machine Learning for Sequential Data

Sequential Supervised Learning

Sequential Supervised Learning

- Supervised learning
- Statistical learning problems
- Sequential Supervised Learning(SSL)
- · Research issues in SSL
- · Methods for addressing SSL problems

Examples Character recognition $x : image, y = \{A, B, ..., Z\}$ Cellular telephone fraud detection $x : telephone call, y = \{0,1\}$ Part of speech tagging x : a word y: part of speech Word Recognition Problem x: sequence of letters y: word

Sequential Supervised Learning

 $\{(x_i, y_i)\}$ for i = 1 to N : Set of N training examples

 $\begin{aligned} & \mathbf{x}_i = (\mathbf{x}_{i,1}, \mathbf{x}_{i,2}, \dots, \mathbf{x}_{i,Ti}) \ \mathbf{y}i = (\mathbf{y}_{i,1}, \mathbf{y}_{i,2}, \dots, \mathbf{y}_{i,Ti}) \\ & \text{Goal : construct classifier } \mathbf{h}(\mathbf{x}) \text{ ,that predicts} \\ & \text{new label sequence } \mathbf{y} \text{ given an input} \\ & \text{sequence } \mathbf{x} \end{aligned}$

Examples

Telephone fraud detection $distribution \ of \ legitimate \ call$ Part of speech tagging $x = (do \ you \ want \ fries)$ $y = (verb \ pronoun \ verb \ noun)$

Research Issues in Sequential Supervised Learning

three basic research issues:

- Loss functions
- Feature selection
- Computational efficiency

Loss Functions

Classical Supervised Learning **0/1 Loss** : Loss = 0 if correctly classified Loss = 1 incorrectly classified Non Uniform Loss functions represented by "*cost matrix*" C(i,j) C(i,j) : cost when true value = j predicted value = i

Different types of Loss Functions

Basic Idea : different errors = different costs

 Depends on goal different goals = different loss functions
 e.g. goalA : predict entire error sequence correctly

goalB : predict as many correct individual labels as possible

Examples

Cell Phone fraud detection goal : predict $t^* = time$ when cell phone was stolen If predicted time = t, then if $t < t^*$ penalty, Ca(t* - t) : cost of lost business else penalty, Cb(t - t*) : cost of fraudulent calls

Feature Selection

- A "**must**" for any method of sequential supervised learning
- Break overall problem of predicting y_i given x_i into subproblems of predicting individual output labels y_{i,i}, given a subset of x_i and y_i

Feature Selection Problem

identify relevant subset for making accurate predictions

Feature selection problem : Solutions

Four Strategies :

Strategy One: (Wrappers Approach)

- Make various subsets of features
- Run learning algorithm and find hypothesis
- · Measure the accuracy of the hypothesis

Feature subsets are selected by

- Forward Selection
- Backward Elimination

Feature selection problem, cont..

Strategy Two:

- · Include all possible features in the model
- Place Penalty on the values of parameters
 Causes parameters with useless features to become small
- e.g. Neural Network weight elimination, ridge regression, support vector machines

Strategy three :

- · Compute some measure of feature relevance
- Remove low scoring features e.g. through mutual information between a feature and the class

Strategy four :

- · First fit a simple model
- Analyze the simple model to identify feature importance

A general approach : **Assumption** \rightarrow *a fixed sized neighborhood is relevant* $eg x_{i,t-1}, x_{i,t-1}, x_{i,t+1}$ predict $y_{i,t}$

Two Drawbacks

- not all features relevant
- Longer range interactions "missed" *e.g. thought and though*

** Any successful feature selection methodology needs human expertise and statistical methodology "both"

Computational Efficiency

- Most of the Sequential Learning algorithm are computationally expensive
- Applying learned classifier is expensive too...

One approach:

- apply cheapest methods first
- generate set of possible candidates
- apply expensive methods progressively

Machine Learning methods for SSL

- 1. Sliding window methods
- 2. Recurrent sliding window methods
- 3. Hidden Markov models
- 4. Maximum Entropy Markov Models
- 5. Input-Output Markov Models
- 6. Conditional random fields
- 7. Graph transformer networks

Sliding window method

Basic Idea : convert sequential supervised learning problem into classical supervised learning

Construct a window classifier h_w
 h_w maps window of width w → y

classification

Add d ((w-1)/2) **"null"** values on each end of x_i Convert them into N separate examples Predict y_t for each example Concatenate all y_t 's to form y

Sliding Window method, cont...

Advantage:

Any supervised learning algorithm can be applied **Drawback :**

Correlation between nearby y values not taken into account.

Example : Sejnowski and Rosenberg used..

7 letter sliding window for the task of pronouncing English words.

Recurrent sliding window

Only difference : predicted $y_{i,t}$ is fed as input to predict $y_{i,t+1}$ Most recent d predictions

 $\begin{array}{l} y_{i,t\text{-d}} \; y_{i,t\text{-d}+1} \; \; y_{i,t\text{-l}} \\ and \\ x_{i,t\text{-d}} \; \; x_{i,t\text{-d}+1} \; \; x_{i,t} \; \; x_{i,t\text{+d}-1} \end{array}$

to predict y_{i,t}

Hidden Markov Models(HMM)

A probabilistic model

represents P(**x**,**y**)

Defined by: Transition probability

 $P(y_t|y_{t-1})$: how adjacent y are related

Observation probability

 $P(\mathbf{x}|y)$: how observed x are related to hidden y (**both stationary distributions**)

HMM , cont...

How x_i and y_i are generated

- if K possible labels (1 K) ,then augment start label = 0 and
 - end label = K+1
- Generate y values , using P(y_{i,t} | y_{i,t-1}) until y_{i,t} = K+1 Set T = t, at this time
- For t = 1.. T
 Generate x, according to P(x_{i,l} | y_{i,l})

HMM in sequential learning problems

 $P(y_{i,t} | y_{i,t-l})$: by looking at all pairs of adjacent y labels $P(x_{i,t} | y_{i,t})$: by looking at al pairs of x_i y

$$\overline{\mathbf{y}} = \operatorname*{argmin}_{\mathbf{z}} \sum_{\mathbf{y}} P(\mathbf{y} | \mathbf{x}) L(\mathbf{z}, \mathbf{y}).$$

HMM, limitations

- Relationship between separated y values not communicated(e.g y₁ and y₅) solution : sliding window of x_t values
- x_t is only generated from $y_t \rightarrow$ more difficult to use an input window

Maximum Entropy Markov Models(MEMM)

• Conditional probabilistic models represents : P(y |x)

Learns $P(y_t | y_{t-1}, x_t)$

Trained using Maximum entropy method

$$P(y_t|y_{t-1}, \mathbf{x}) = \frac{1}{Z(y_{t-1}, \mathbf{x})} \exp\left(\sum_{\alpha} \lambda_{\alpha} f_{\alpha}(\mathbf{x}, y_t)\right)$$

 $Z(y_{t-1}, \mathbf{x})$: normalizing factor f_a : boolean feature, depends on y_t and "any" properties of x (input sequence)

"supports long distance interactions"

Input Output HMM(IOHMM)

- Similar to MEMM
- with additional "*hidden state variables*" s_t
- s_t : hidden states permit "memory" of long distance effects

Limitation of MEMM and IOHMM

• Label bias problem

probability mass received by y_{t-1} "must be" Transmitted to y_t (at time t) regardless x_t

Label Bias problem , example ... $y = \{1,2\}$ for $\mathbf{x} = "rob"$ $\mathbf{y} = "111"$ & for $\mathbf{x} = "rib"$ $\mathbf{y} = "222"$ "rib" and "rob" has equal probability $\mathbf{x} = \frac{1}{1}$

CRF Advantages:

- Overcomes Label Bias Problem
- Takes care of long distance interactions

Drawback :

• Training is expensive

Results

Problem : Part of Speech tagging error rates HMM : 5.69%, MEMM : 6.37%, CRF : 5.55%

Graph Transformer Networks

Neural network methodology for solving sequential supervised learning problems

Graph Transformer Network

is a neural network, (input graph \rightarrow output graph) Input graph : linear sequence of x_t (feature Vector) Output graph : collection of u_t values $u_t = (class label , score)$

Viterbi transformer : finds "lowest score path" Training by "gradient descent"

Current Research Issues

How to :

- Capture and exploit sequential correlations
- Represent and incorporate complex loss functions
- · Identify long distance interactions
- Make learning algorithms fast

summary....

- · Supervised learning
 - Some problems don't fit in supervised learning
- Sequential supervised learning
- Fundamental issues in sequential supervised learning .. Like Loss functions , feature selection , computational efficiency

summary....

- · Machine learning methods for SSL problems
 - HMM, IOHMM, MEMM ,CRF, GTN , sliding window and recurrent sliding window
 - Advantages and drawbacks for these methods
- Research issues
 - Capture sequential relations , increasing computational efficiency ..etc.

Machine Learning For Sequential Data: A Review

Commentator: Krishna 04-02-2003

- Supervised Learning
- Construct Classifier that can predict the classes.
- · Consider scenarios where the correlation between data matters

Example : Text To Speech Pronunciation depends on characters encountered or some character that is at a distance. eg. Rich / Rice Though / Thought

Loss Function

- · Predicting the Class
- · Scenario based consideration
- · Role of Loss Function

Scenarios

Two Class – simple Multi-Class Problems- M x M array of possible classifications. Rock / Diamond Problem Fraud Detection – Not to loose a potential customer Blood Type Match - No room for even a minor error

Sliding Windows

Recurrent Sliding Windows

- Include y_t as input feature when computing y_{t+1} .
- During training:
 - Use the correct value of y_t
 - Or train iteratively (especially recurrent neural networks)
- During evaluation:
 - Use the predicted value of y_t

Recurrent Sliding Window Method

 English pronunciation problem
 e.g. for pairs of words like "photograph" and "photography".