A Study of Two Sampling Methods for
Analyzing Large Datasets With ILP

Ashwin Srinivasan
Oxford University Computing Laboratory,
Oxford,UK

Presented by
Anand Sivaraman (04/23/2003)

i Agenda

Introduction
An ILP Algorithm

Two Sampling Methods
= Subsampling
= Logical Windowing

Empirical Evaluation

Concluding Remarks

Introduction

= Large quantities of data available
= Analyzing data to obtain some sense

= Methods to analyze this data
= Deal with sheer bulk of data

= Programs developed within framework of Inductive
Logic Programming(ILP)

ILP

ILP — Program attempts to construct a concise theory
(set of rules) for the observations presented
Time taken by an ILP program - Dominated by
theorem proving effort to evaluate theory
Motivates two methods

= Subsampling

= Logical Windowing
Allow for theory construction by sampling fractions of
the data

Sampling Hypothesis

= Test utility of methods
= Compare
= Estimated predictive accuracy
= Time for theory construction
= Sampling Hypothesis:

“An ILP system equipped with a sampling method
constructs, in lesser time, a theory that is no worse in
predictive accuracy to that obtained from the same
algorithm without a sampling method”

i Agenda

Introduction

= | An ILP Algorithm

= Two Sampling Methods

= Subsampling
= Logical Windowing

= Empirical Evaluation

= Concluding Remarks

An ILP Algorithm

= Specifications:
= B —background knowledge - a set of clauses ={C,,C,,....... ¥
= I —optional set of constraints on acceptable hypotheses
« E - finite set of examples = E* U E” where

« Positive examples - E* = {e,e,,....} — set of definite
clauses;

= Negative Examples - E = {f,,f2,.....} — consistent set of
Horn clauses

« Prior Necessity - B "does not entail” E*
=« H={D,,D,,...} — output of the algorithm given B,I,E is
an explanation for E

An ILP Algorithm (contd....)

m A hypothesis H is an explanation for E = E* U E’ if
the following conditions are met:

- Weak Sufficiency - Each D; in H is a definite clause s.t.
BU{D,} "entails” e; v e,v..., where {e,e,,...} C E*

- Strong Sufficiency =B U H "entails” E*
- Weak Consistency— B U H "does not entail” O

- Strong Consistency —(1) BU H U E "does not entail” O
-(2)BUHUTI "does not entail” O

-
T

An ILP Implementation

generalise(B,1,L,E): Given background knowledge B, hypothesis constraints £,
a finite training set £ = E+ U =, returns a hypothesis Jf in £ such that I
encplains the E.
L i=0

2 =E H;=0

3. i B} =0 retumn H; otherwise continue

4. increment i

5 Train;=E!, UE-

6. Let e;* € EX,, D; be the “best” definite clause in £ s.t. BU H;y U

{D;} E{ef}, BUH U{D;} £ O, BUH; ., U{D;}UE" £ O, and

BUII;_IU{D‘}UI%D

Hy=Hiy U{D})

By ={epiep € By st BUH; = (5]}
9 Ef =FL\E

10. Goto Step 3

Lo

An ILP Algorithm

search(B, I, I, £,0, E,n,e) : Given background knowledge B, a set of clauses H,
hypothesis consiraints I, an “open list” O of potential clauses, a training set
E = EY U E-, an upper limit on the number of clauses seanched n, and an
example e, ze[umsadauseClnEEmﬁhﬂmLBU.UU{C’}l:e,andCis
consistent with E= and I.

C =g, bestsore = score(e), i = 0

i O =0ari>nrenrn C otherwise continue

Remove the first clause D from O

increment. {

TRefine clause D to a set of clauses Sp s.t. for every dlause s € §p BUITU

{shee

Score each clause in Sp. Let i be the highest score and BestSet be the

clauses with score h in Sp

T. If h > bestscore and ABest € BestSet s.t. BUH U{Best} 0, BUHU
{Best} UE~ B O, and BUH U {Best} UT & O then bestscore = h and
C = Dest

& Add each dlause in Sp to O. Sort O accarding to descending soare of clauses

EAl i S

-

9. GotoStep 2

Search Complexity

= Select D (Step 3)
= List is sorted.Hence O (1)

= Refine D (Step 5)
= N literals to be added — Check each for variable-connectivity
= At most c-1 literals in D, with at most a(c-1) variables

= Worst Case — check each of at most a input variables in N
literals

= Hence O(a%N)

v N = Maximum cardinality of any S,

« a—max arity of any predicate in background knowledge
v b —max branching factor in AND — OR proof

v € —max number of literals in any clause

« d - max proof-depth for a goal

Search Complexity (Contd...)

= Score Clauses in Sy, (Step 6)
= Check proof for each example in E (AND — OR tree)
« b*!leaves in a tree of depth d
= At most N elements in S,
= Scoring done in O (b*** |E| N)
= Sort Open List (Step 8)
= No more than N°* clauses in open list
= Simple sorting algorithm takes O (N°* log N°!)

v N = Maximum cardinality of any S,

a — max arity of any predicate in background knowledge
b — max branching factor in AND — OR proof

¢ — max number of literals in any clause

d — max proof-depth for a goal

PR

i Search Complexity

= Cost for Step 3 is negligible
= Cost can be reduced in Step 8 by using efficient data
structures and sorting techniques

= N,a,c are fixed values. Hence, not much scope in
Step 5

m Further Savings possible in Step 6
= Reducing the time for the AND — OR proof
= Reducing the number of examples
= Not including all the examples (e.g. “positive-only” learning)
= Sampling fractions of examples

A Comparison of Time Complexities

| | Problm | 1B | Seket | Refine | Soare | sort |
Trains [10] o | W | w0t | e |
Pharmacophore [27] [28 | 10" | 10* | 1 | 1°
Mautagenesis [35] s | W | 1 | wt | e
Mesh [1] 2300 | 10" | 1 | w07 | 100
Tagging [5] 6000 | 10 | 10t | 102 | 1?
KRK [29] 10000 | Wf | 1F | 1 | 10®

Figure 5. \mw&mmhwdmﬂwwmmmmmtm
ﬂ:]lm—m.gwlu:s TrmN I.Ua— c= i.d_LP}mmmp}mN 10,a=2b
4

i Agenda

= Introduction

= An ILP Algorithm

= |Two Sampling Methods
= Subsampling
= Logical Windowing

= Empirical Evaluation

= Concluding Remarks

i Subsampling

= Randomly select subsample from dataset
= Score each clause on this subsample

= Complexity results that referred earlier to |E| will now
reduce to (m) — size of the subsample

= Choice of (m) - User determined (default — 20000)

Constructing Theories - Subsampling

ss(B, I, £, E,m) : Given background knowledpe B, hypothesls constraints I, a fi-
rite training set £ = E+UE-, and an upper limit on subsample size m., retims
a hypothesis i in £ such that H explains the E.
L i=0

Ef =B+ ;=0

if £} = return H; otherwise oontime

increment

Train; = EX | UE-

Let D; = bestclause(B, H;_1, 1, £, Traing, m) be the best clause obtained

by scoring clauses on a random sample of at most m examples selected from

Train; and implies at least one essample in E‘-tl

H;=H—,U{D;}

By ={ep:epe BLy st BUH; [{ep}h

B =EL\E

10. GotoStep 3

[S

-1

=W

Remark:choice of M and Coverage

i Estimates

= Assume clause C had a coverage N =|E,|+|E,| on E

= Let p= N/|E|

= Let C have a coverage r=|ey|+|e,| on m (sample
drawn)

= Let p’= r/m — unbiased estimate of p

= We can at least be (1-a)100% confident that the
error in estimating p with p’, will be less than a
specified amount € when the sample size
m = m, =2",,/4 €2 where
24, — value of std. Normal dist. leaving area of a/2 to the right

Logical Windowing

= Constructs theories incrementally by sampling from a
large pool of data

= Theory revision —
= generalize a set of clauses using sample data
= Specialize them to maintain consistency with large data pool
= Revision — addition / deletion of clauses

= Possible to determine, and eliminate those clauses
responsible for errors

= Hence, only partial reconstruction needed

Logical Windowing

= Reconstruction results in repeated effort due to:
= Repeated re-derivation of unacceptable clauses
= Repeated search for clauses to explain /ncompressible examples

= Remedies
= Update constraints on acceptable hypothesis to exclude
unacceptable clauses
= Use a “conditional” variant that prevents search for an
explanation for an incompressible example

« Incompressible : If, given an example €, the search procedure
returns e, we say e Is “incompressible” with the input provided to
the search procedure

Procedure for Logical Windowing

window(B, I, £y Eym) : Given background knowledge B, hypothesis constraints 7,
a finite training set £ = EY U E-, and a bound m an the number of emrors,

- retwrns a hypothesis I in £ such that JT explains the

i=0

FP;=E-, FN;=E*, H; =W, L; = I, Train; = W, Ignore; =0

if FV; U FP; = 0 return £1; otherwise continue

increment. 4

Let Errors; = sample(in, FP:1,FN;_1) be a sample of the errors

Train; = H;_1 U Errors;

Let H'; = generalise(B, Ty, L, Train;)

(alternatively, let. /"; = generalise'(B, i1, £, Traing, Ignore;_,])

Let C; be the overgeneral clanses in IV,

E; ={e; 1€ € Traing s B UHANC) B {e}}

10, Hy = (H'A\CHUE;

11. Ignore; = H';N Train;

12 L=LiaU{O+ e,y 0 e}, where op, .00 € C;

13, FPi={fp;: fpy € B= st BUCU {fp;} = O}

14, FN;={fn;: fn; € B sito BUH; & {fr;}}

15. Goto Step 3

RS R RERE

fd

Bound on Iterations

= Each iteration of loop (Steps 3 — 15) will decrease
the false negatives by at least m

= Once false negatives = 0, either
= There are no false positives or
= Each further iteration decreases them by m

= Hence, window procedure will never iterate more
than |[E*|/m + |E’|/m = |E|/m times

Bounds on Examples Processed

ssume sampling procedure returns no more than m errors each of
false positives and false negatives
= Best case: First sample of 2m errors is sufficient to construct an
explanation for E = E* U E’
= Worst case: All examples needed to construct adequate explanation
= Clauses constructed in every iteration save the last is over general
= Function generalize called with 2m,4m,..examples
= Assume without loss of generality |E| = |E*| and n= |E'| / |E*|
= Then,total examples processed is composed of
Sequence 2m,4m,...2 |E*| (at the end of which there are no false negatives)
And 2 |E*|+m,...|E*|+|E’| (at the end of which there are no false positives)
= Sum of examples M =|E|/2m ((4n-2n>-1) |E|+m)

= Hence, number of examples N processed satisfies 2Zm < N < M

Choice of M

No prescriptions for selecting optimal window size
Let E = E" UE ,and B= max (|E*|/|E|, IE|/IE|)
Two extreme values of m can be identified:

= (1) the best scenario for windowing, where m= m, = 1 false
positive and false negative

= (2) the worst case scenario for windowing, where all explanations
requires all examples. In this case, a choice m = m2 = B|E| will
ensure that no more than |E| examples are processed.

If windowing is to be useful, m should be closer to m1
An average value is provided by the geometric mean,
= m=+vmm, =V B|E|

Used in our experiments

i Agenda
Introduction

= An ILP Algorithm

= Two Sampling Methods
= Subsampling
= Logical Windowing

= | Empirical Evaluation

= Concluding Remarks

i Empirical Evaluation

= Evaluated on two tasks
= Large datasets

= Classifying illegal positions in a KRK chess
end game

= Classifying word tokens (tagging) in
sentences taken from Wall Street Journal

:L Data Characteristics

Problem. | Trasing Set Test. et
Total | Pos | Neg | Total | Fos | Neg

KRK | 10000 | 3% | 67% | 10000 | 33% | 67%
Tag 1000 | 53% | 47% [10000 | 52% | 48%

Method for Tests

or each task (KRK and Tag), repeat 10 times:

= Randomly divide the data into training and test sets

= Test size (Nyq) = 10000 examples

= Training set (N;,) for KRK =10000 and for Tag = 1000 examples

Construct a theory for the training set using Cprogol
Construct a theory for the training set using Cprogol+SS

= M = Mg gs5,005
Construct theories for the training set using Cprogol+LW

= M=V Bl Nyl
For each process record time taken to construct theory and
accuracy on test set
Analyze for significant differences in accuracies and time for
theories obtained

| Results
) e |]
Acc. (%) Time (s) | Acc. (%) Time(s) |
| | ms wmu| mm |
| cProgosss | oam 0| mo oo
| cProgany | ms7 w| me x|

Discussion on Results

= Performance satisfactory but......!"!!!

= Subsampling generates a large number of low-generality clauses
= Only half of which have a positive compression score

= Use a cautious/pessimistic estimate of clause coverage

« Compression score:Number of positive examples covered minus

the number of negative examples covered minus the number of
literals in the body of a clause

i Results With Pessimistic Estimate

Algorithm KRK Tag

Acc. (%) Time (g) | Aec. (%) Time (8)
CProgol 90.68 364 | 6833 41978
CProgol+55 90.68 1218 | .80 010
CProgol4- P33 [00.68 1747 6849 20270

i Results of Subsampling

= Investigate time taken for,
= (1) Search for best clause
= Expected to remain unchanged
= (2) Removal of examples covered by best clause
= Expected to increases with training set

= (2) Increases — as expected
= (1) Also increases !!!! — surprising ?
= Possible reasons maybe:
= Time for shuffling data — not implemented
= Implementation details — need to be taken care of

i Results of Logical Windowing

= Efficiency considerations for windowing

= Prevent re-derivation of over-general clauses

= Ignore positive incompressible examples

i .
YT T T T T T

Increase in Constraints

Number of constraints

0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Window iteration

4

Positive Examples Ignored

200 I e B O i
180 |
160 [~ Positive examples -—
140 Examples ignored —+-—-
120
100
80
60
40
20 / -
0 o | | 1 | 1 | | |

I 2 3 4 5 6 7 8 9 10
Window iteration

Examples

i Discussion

= Conditional generalization plays important
role in windowing (at least for these cases !)

= Trade df between

= No. of constraints (additive cost as constraints
added)

= No. of times unacceptable clause is re-obtained

= Depends on window size

i Pre-dominant Drawback i Conclusions

= Potential utility of sampling methods

= Shortcomings
= Results on only two domains
= KRK too simple
= Methods adopted here domain independent = Variants and alternatives to windowing not
explored
= Noise-tolerance of windowing not studied
= No theory proposed for windowing
= Compared only with large unstructured datasets

= Lack of directions for selecting a sample size
best suited for problem

i References

= A study of two sampling methods for analyzing
large datasets for ILP
Ashwin Srinivasan, Oxford University Computing
Laboratory, Oxford, UK

A study of two sampling methods
for analyzing large datasets with
ILP

By: Ashwin Srinivasan

Presented by: Anand Sivaraman
Comments by: Sachin Sharma

Noise Problem in Windowing

Basic Idea :
Good Rule> misclassifies noisy examples
—>noisy examples added to window
—>noise in learning window >DATA

Example....

* total examples = 11000 with 10% noise

* “Correct theory” derived using 1000
examples

* next : around 1000 examples will be
misclassified with this theory

¢ Next window will have > 50% noise

Solution.....

Noise-Tolerant(Examples, InitSize, MaxIncSize)
Train = RandomSample(Examples, InitSize)
Theory = @
Repeat
NewTheory = findNewTheory(Train)
for Rule in NewTheory
EvaluateRule(Examples)
NewTr = Train
NewEx = Examples

Candidates = ®
if(Significant(Rule, Examples)
Theory = Theory + Rule
NewTr = NewTr — Cover(Rule,Train)
NewEx = NewEx — Cover(Rule,Examples)
else
Candidates = Candidates + Cover(Rule,Examples)
for each Positive “example” not ‘Covered’ by NewTheory
Candidates = Candidates + “example”
Examples = NewEx + Candidates
Train = NewTr + RandomSample(Example,MaxIncSize)
Until Candidates = ®

A study of two sampling methods
for analysing large datasets with
ILP

By
ASWIN SRINIVASAN
oxford university computing laboratory

Covering Procedure

nd kenowledgr B, hypotheds conmtralnia 7,
wrns o bypothesds 1 In C much chat Jf

BUM._, U

L i=0

2. Ef=E* Hi=0

i W retin B othervwise oomtine

a4

' oy s clause In £ i,
{D:} = {ef}, DUH,_, U{D} & O, BUHioy U {D;}U E= & O, and
HUH W {DGuTED

T Hi=Hey U{D:)

8 F 6 EL, st. BUH, = (ep}).

6 b= \E,

10, Go to Step 3

Partial Correctness

Show an explanation H that has sufficient properties

1) foreach Din H,B U {D.} e/ v e: v es..., wherefeies o E+
2)BU H entails E
 Prove property 1:
From step 6 the above property is satisfied by all clauses
« Prove property 2 : By invariant method
C- before commencing step |
C: - before going around the loop
Cs-on termination
 Assertions for each check point
Ai-input B, I, L, E is legal
A:-BUHentails E*\ FN:
As-BU Hentails E*
Each time path (Ci) - (C)) traversed
we have to show if Ai is true 47 is true

Partial Correctness

¢ (ChH—>(C2)

Hi=Ho=gand Ef =E; = E* thus E'\E/ = ¢
Axtrivially holds

o (C2) - (C3)

if A2: BU Hientails E° \ E/is true and E;" = ¢ then
As: BU Hientails E*

*(C2) > (C2)

On iteration i if A2=A) :BU Hientails E* \ E," is true

we have to show on iteration i +1 A} : BU Hientails E* \ E/., also holds

