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Introduction
Large quantities of data available 

Analyzing data to obtain some sense

Methods to analyze this data
Deal with sheer bulk of data

Programs developed within framework of Inductive 
Logic Programming(ILP)

ILP

ILP – Program attempts to construct a concise theory 
(set of rules) for the observations presented
Time taken by an ILP program - Dominated by 
theorem proving effort to evaluate theory
Motivates two methods 

Subsampling
Logical Windowing

Allow for theory construction by sampling fractions of 
the data

Sampling Hypothesis
Test utility of methods
Compare

Estimated predictive accuracy
Time for theory construction

Sampling Hypothesis:

“An ILP system equipped with a sampling method 
constructs, in lesser time, a theory that is no worse in 
predictive accuracy to that obtained from the same 
algorithm without a sampling method”
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An ILP Algorithm

Specifications:
B – background knowledge - a set of clauses ={C1,C2,…….}
I – optional set of constraints on acceptable hypotheses
E – finite set of examples = E+ U E- where

Positive examples - E+ = {e1,e2,….} – set of definite 
clauses;
Negative Examples - E- = {f1,f2,…..} – consistent set of 
Horn clauses
Prior Necessity - B “does not entail”  E+

H={D1,D2,…} – output of the algorithm given B,I,E is 
an explanation for E

An ILP Algorithm (contd….)
A hypothesis H is an explanation for E = E+ U E- if

the following conditions are met:
- Weak Sufficiency - Each Di in H is a definite clause s.t. 

B U { Di } “entails”  e1 ν e2 ν….,  where {e1,e2 ,….} С E+ 

- Strong Sufficiency – B U H “entails”  E+ 

- Weak Consistency – B U H “does not entail” �

- Strong  Consistency – (1) B U H U E- “does not entail” �

- (2) B U H U I  “does not entail” �

An ILP Implementation An ILP Algorithm

Search Complexity
Select D (Step 3) 

List is sorted.Hence O (1)
Refine D (Step 5) 

N literals to be added – Check each for variable-connectivity
At most c-1 literals in D, with at most a(c-1) variables
Worst Case – check each of at most a input variables in N 
literals
Hence O (a2cN)

N – Maximum cardinality of any SD 
a – max arity of any predicate in background knowledge
b – max branching factor in AND – OR proof 
c – max number of literals in any clause
d – max proof-depth for a goal

Search Complexity (Contd…)
Score Clauses in SD (Step 6)

Check proof for each example in E (AND – OR tree)
b2d-1 leaves in a tree of depth d
At most N elements in SD 

Scoring done in O (b2d-1 |E| N)
Sort Open List (Step 8)

No more than Nc-1 clauses in open list
Simple sorting algorithm takes O (Nc-1 log Nc-1 )

N – Maximum cardinality of any SD 
a – max arity of any predicate in background knowledge
b – max branching factor in AND – OR proof 
c – max number of literals in any clause
d – max proof-depth for a goal
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Search Complexity
Cost for Step 3 is negligible
Cost can be reduced in Step 8 by using efficient data 
structures and sorting techniques
N,a,c are fixed values. Hence, not much scope in 
Step 5

Further Savings possible in Step 6
Reducing the time for the AND – OR proof
Reducing the number of examples

Not including all the examples (e.g. “positive-only” learning)
Sampling fractions of examples

A Comparison of Time Complexities
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Subsampling
Randomly select subsample from dataset

Score each clause on this subsample

Complexity results that referred earlier to |E| will now 
reduce to (m) – size of the subsample

Choice of (m) - User determined (default – 20000)

Constructing Theories - Subsampling
Remark:choice of M and Coverage 
Estimates

Assume clause C had a coverage N =|Ep|+|En| on E
Let p = N/|E|
Let C have a coverage r=|ep|+|en| on m (sample 
drawn)
Let p’ = r/m – unbiased estimate of p
We can at least be (1-α)100% confident that the 
error in estimating p with p’, will be less than a 
specified amount ε when the sample size                
m = mα,ε=z2

α/2/4 ε2 ,where  
zα/2 – value of std. Normal dist. leaving area of α/2 to the right
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Logical Windowing
Constructs theories incrementally by sampling from a 
large pool of data 

Theory revision –
generalize a set of clauses using sample data
Specialize them to maintain consistency with large data pool
Revision – addition / deletion of clauses

Possible to determine, and eliminate those clauses 
responsible for errors

Hence, only partial reconstruction needed

Logical Windowing
Reconstruction results in repeated effort due to:

Repeated re-derivation of unacceptable clauses
Repeated search for clauses to explain incompressible examples

Remedies
Update constraints on acceptable hypothesis to exclude 
unacceptable clauses
Use a “conditional” variant that prevents search for an 
explanation for an incompressible example

Incompressible : If, given an example e, the search procedure 
returns e, we say e is “incompressible” with the input provided to 
the search procedure

Procedure for Logical Windowing

Bound on Iterations
Each iteration of loop (Steps 3 – 15)  will decrease 
the false negatives by at least m

Once false negatives = 0, either
There are no false positives or
Each further iteration decreases them by m

Hence, window procedure will never iterate more 
than |E+|/m + |E-|/m = |E|/m times

Bounds on Examples Processed
Assume sampling procedure returns no more than m errors each of 
false positives and false negatives
Best case: First sample of 2m errors is sufficient to construct an 
explanation for E = E+ U E-

Worst case: All examples needed to construct adequate explanation
Clauses constructed in every iteration save the last is over general
Function generalize called with 2m,4m,..examples

Assume without loss of generality |E-| ≥ |E+| and n= |E-| / |E+|
Then,total examples processed is composed of

Sequence 2m,4m,…2 |E+| (at the end of which there are no false negatives)
And 2 |E+|+m,...|E+|+|E-| (at the end of which there are no false positives)

Sum of examples M =|E|/2m ((4n-2n2-1) |E|+m)

Hence, number of examples N processed satisfies 2m ≤ N ≤ M

Choice of M
No prescriptions for selecting optimal window size
Let E = E+ U E- ,and β= max (|E+|/|E|, |E-|/|E|)
Two extreme values of m can be identified:

(1) the best scenario for windowing, where m= m1 = 1 false 
positive and false negative
(2) the worst case scenario for windowing, where all explanations 
requires all examples. In this case, a choice m = m2 = β|E| will
ensure that no more than |E| examples are processed. 

If windowing is to be useful, m should be closer to m1
An average value is provided by the geometric mean,

m = √m1m2 = √ β|E| 

Used in our experiments 
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Empirical Evaluation

Evaluated on two tasks
Large datasets

Classifying illegal positions in a KRK chess 
end game

Classifying word- tokens (tagging) in 
sentences taken from Wall Street Journal

Data Characteristics Method for Tests
For each task (KRK and Tag), repeat 10 times:

Randomly divide the data into training and test sets
Test size (Ntest) = 10000 examples
Training set (Ntrain) for KRK =10000 and for Tag = 1000 examples

Construct a theory for the training set using Cprogol
Construct a theory for the training set using Cprogol+SS

m = m0.05,0.05

Construct theories for the training set using Cprogol+LW
M = √ β| Ntrain|

For each process record time taken to construct theory and 
accuracy on test set 
Analyze for significant differences in accuracies and time for 
theories obtained

Results Discussion on Results

Performance satisfactory but……!!!!!

Subsampling generates a large number of low-generality clauses

Only half of which have a positive compression score

Use a cautious/pessimistic estimate of clause coverage

Compression score:Number of positive examples covered minus 
the number of negative examples covered minus the number of 
literals in the body of a clause
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Results With Pessimistic Estimate Results of Subsampling  
Investigate time taken for,

(1) Search for best clause 
Expected to remain unchanged  

(2) Removal of examples covered by best clause 
Expected to increases with training set

(2) Increases – as expected
(1) Also increases !!!! – surprising ?

Possible reasons maybe:
Time for shuffling data – not implemented
Implementation details – need to be taken care of

Results of Logical Windowing

Efficiency considerations for windowing

Prevent re-derivation of over-general clauses

Ignore positive incompressible examples

Increase in Constraints

Positive Examples Ignored

Discussion

Conditional generalization plays important 
role in windowing (at least for these cases !)

Trade- off between
No. of constraints (additive cost as constraints 
added)
No. of times unacceptable clause is re-obtained

Depends on window size 
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Pre-dominant Drawback

Lack of directions for selecting a sample size 
best suited for problem

Methods adopted here domain independent

Conclusions

Potential utility of sampling methods
Shortcomings

Results on only two domains
KRK too simple
Variants and alternatives to windowing not 
explored
Noise-tolerance of windowing not studied
No theory proposed for windowing
Compared only with large unstructured datasets
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Noise Problem in Windowing

Basic Idea : 
Good Rule misclassifies noisy examples

noisy examples added to window
noise in learning window >DATA

Example….

• total examples = 11000 with 10% noise
• “Correct theory” derived using 1000 

examples 
• next : around 1000 examples will be 

misclassified with this theory
• Next window will have > 50% noise

Solution…..

Noise-Tolerant(Examples, InitSize, MaxIncSize)
Train = RandomSample(Examples, InitSize)
Theory = Ф
Repeat

NewTheory  = findNewTheory(Train)
for Rule in NewTheory

EvaluateRule(Examples)
NewTr = Train
NewEx = Examples

Candidates = Ф
if(Significant(Rule, Examples)

Theory = Theory + Rule
NewTr = NewTr – Cover(Rule,Train)
NewEx = NewEx – Cover(Rule,Examples)

else
Candidates = Candidates + Cover(Rule,Examples)

for each Positive “example”  not ‘Covered’ by NewTheory
Candidates = Candidates + “example”

Examples = NewEx + Candidates
Train = NewTr + RandomSample(Example,MaxIncSize)

Until  Candidates =  Ф
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Covering Procedure 

Partial Correctness
Show an explanation H that has sufficient properties
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