
1

Data perturbation for Escaping Local Maxima
in Learning

By
Gal Elidan and Matan Ninio and Nir Friedman

Dale Schuurmans

Outline

Background
Basic techniques for perturbing weights to

escape local maxima:
- Random Reweighting
- Adversarial Reweighting
Performance Evaluation
Benefits of a basic approach

Background

What is Data Perturbation?
What is Local Maxima?
Main idea to Escape Local Maxima?
- Change in training data to create useful ascent

directions in hypothesis space rather than
changing hypothesis data directly

Local Maxima & Global Maxima

0
10
20
30
40
50
60
70
80
90

100
0 15 30 45 60 75 90

Heuristic

local
global

Score of a Hypothesis

Optimization : search for the hypothesis that
maximizes the score on the training data

Score of the hypothesis h on data D = {x[1],…,
x[m]} is a sum of local scores on each individual
example – additive
Score(h, D) = Σm score(h,x[m]) – penalty(h)

On reweighting the examples the score is augmented
on considering probability distribution w
score(h, D, w) = Σm M. wm score(h, x[m]) – penalty(h)

Greedy Hill climbing Search

Algorithm:
• expand the current state
• make the expanded state with the

highest objective function value the next
current state

• repeat

2

Reasons for finding search for
escaping local maxima

Global maximum is intractable for decision
trees, neural networks etc

Use local search techniques for finding the
locally optimal hypotheses

Drawbacks:
Local maxima is common
Local search often yields poor results.

Previous Research

Variety of techniques developed to escape
local maxima:

- Random restarts
- TABU search
- Simulated Annealing
But these all above techniques alter

hypothesis in an oblivious fashion until it
escape from local maxima

General Search Procedure

Procedure Perturbed Search(D, w0, h0, T0, Tfinal)
t 0
while Tt > Tfinal do

wt+1 reweight(Score, wt, Tt, ht, D)
ht+1 optimize(Score, wt+1 , Tt, ht, D)
Tt+1 reduce(Tt, t)
t t + 1

return ht

Random Reweighting

Idea: Randomly samples weight profiles on training
data

Motivated by Iterative local search methods in
combinatorial optimization

Algorithm:
• Randomly reweighting the training example
• Evaluate the candidate hypotheses
• Standard optimization on perturbed score
• Repeat the process until weight perturbation

reaches zero.

Random Reweighting

How the weights reach uniform distribution?
- probability distributed over M data instances
- Sample with a Dirchelet distribution with

parameter β
P(W = w) α Πm wm

β-1 where β = 1/Tt

As β grows larger the distribution reaches
uniform distribution, since Tt decreases with
number of iterations.

Adversarial Reweighting

Idea: Update the weights to directly challenge the current hypotheses
Motivated by exponential gradient search for constrained optimization

problems
Weight update:

wm
t+1 wm

t – η* Score/ wm

Here the score behaves like langrangian I.e. the local search attempts
to maximize the score where as weight update attempts to minimize
the score, in an adversarial fashion.

This approach is applicable whenever the original score is
differentiable with respect to the weights.

3

Gradient of Langrangian

The Lagrangian used for the Adversarial Reweighting is of the form:
L(h,wt+1) = Score(h, D, wt+1) + β KL(wt+1||w0) + γ KL(wt+1 || wt)

The derivative of KL(wt+1||w0) and KL(wt+1 || wt) is simply

Σm wm
t+1 log(wm

t+1 / wm
0)

= log(wm
t+1 / wm

0) + 1
wm

t+1

Σm wm
t+1 log(wm

t+1 / wm
t)

= log(wm
t+1 / wm

t) + 1
wm

t+1

KL – Kullback-leilber measure

Relation to ensemble reweighting

• Boosting derives the weight update by
differentiating the loss of an entire ensemble but
here it is derived by taking only the derivative of
the score of the most recent hypotheses

• Produce hypotheses that generalize well to unseen
test data with out exploiting a large ensemble

• Hypotheses that obtain good scores is robust
against perturbations of the training data, which
confers generalization benefits

Learning Bayesian Networks from Data

Learning Bayesian network structure from complete
data (structure search)

Optimizing Bayesian network parameters from
incomplete data (Parametric EM)

Learning Bayesian network structure from
incomplete data (Structural EM)

Idea: Learn the Bayesian network B that best
matches D, for each of the above scenarios

Bayesian Network

Annotated directed acyclic graph that encodes a joint
probability distribution over x

• x = { x1, x2, …., xn} finite set of random
variables.

• nodes = x1, x2, …., xn each annotated with
conditional probability distribution P(xi | Ui).

• A Bayesian network B specifies a unique
probability distribution over x : P(x1, x2, …., xn) =
Πi=1

n P(xi | Ui).

Bayesian Network

Storm

Campfire

BusTour

Lightning

Forestfire

0.80.20.90.6¬
C

0.20.80.10.4C

¬S,
¬B

¬S,
B

S,
¬B

S,
B

Campfire

P(Campfire = True|Storm = True, BusTour = True) = 0.4

Perturbing Structure Search
Idea: Search for a network structure B that best matches our

training set D
BDe score is a function of simple sufficient statistics (S) of

the data.
S(D) = Σm s(x[m])

Where s() is a function of a particular instance
S(D) counts the number of times an event occurred in the
data

Perturb score: S(D, w) = Σm M . Wm . s(x[m])
Local search for finding the structure continues until

convergence to a local maximum

4

Experimental Evaluation
- Compare results to the golden model that has additional prior

knowledge of structure
- Compare results with greedy hill climbing search augmented with

TABU search and performs random restarts to improve the quality of
results

- Results can be evaluated both in terms of scores on training data and
generalization performance on test data

Outcome:
- Both measures correlate closely
- Both outperformed the random-starts method and golden

model(synthetic Alarm network)
On overall Random method is best but on average Adversary method is

best.

Test Set Performance

progress of the test set Likelihood (log-loss/instance) during
iterations

Perturbing Parametric EM

Idea: Learning with incomplete data
Training instance in this case is not complete instance x[m] instead partial

instance o[m]
Reason: Training Examples may have missing values or variables
Expectation-maximization is the common method used when sufficient

statistics cannot be estimated due to incomplete instance
P0(X1,X2,…Xn) is used to calculate expected sufficient statistics

E[S(D) | P0] = Σm Σx[m] s(x[m]) P0(x[m] | o[m])
P0(x[m] | o[m]) is the probability of the complete instance given partial

observation
Objective: Find the likelihood of the model on training data

Escaping Local Maxima

Reweighted Expected sufficient statistics using
current weight vector:
E[S(D) | P0] = ΣmM.wmΣx[m] s(x[m]) P0(x[m] |
o[m])

- Expected score is not the actual maximum point of
true score

- Bias :
Models which are similar to the one with which

expected sufficient statistics are calculated

Experimental Evaluation

Compared the methods with the alarm
network

Results:
Adversary perturbation takes 15 times longer

than single Parametric EM
Random perturbation takes 50 times longer

than single Parametric EM

Perturbing Structural EM

Idea: Find an optimal structure for each
iteration and then optimize the parameters
with respect to that structure.

• Compute the expected sufficient statistics
• Search for the structure using the structure

score
• Optimize the expected score

5

Experiments with real-life data

Two methods were applied for the real life
data sets like soybean disease database

Have missing variables
Performed 5-fold cross validation and

compared the log-loss performance on
independent test data

Results of Test data set for
several datasets for structure

search and SEM
Adv80%RandomDomain
0.030.01- 0.02StockSearch
0.170.180.15Alarm
0.090.27- 0.05RosettaSEM

0.330.310.254Alarm
0.190.320.19Soybean
0.230.390Audio

Advantages

• Perturbation schemes are general and can be
applied large variety of hypothesis spaces

• Use standard search procedure to find
hypotheses

Future Work

• Combination of randomized element within
the adversarial strategy

• Improve the implementation to reduce the
number of iterations for realistic
applications

• Explore improved ways to interleave the
maximization and reweighting steps

1

1

Data Perturbation for Escaping
Local Maxima in Learning

Gal Elidan, Matan Ninio, Nir Friedman
Hebrew University

Dale Schuurmans
University of Waterloo

Presented By
Kiran Vuppla

Comments By
Harsh Bapat

CS8751 Data Perturbation for Escaping Local Maxima in
Learning

2

Weight Annealing Example
TF = sum (w(i) * cos(PI * i/20 * x))

where i = { 1...20 }
w(i) = weight of each point

Consider K points (20) equally spread out between
0 and 1
Fit those point with a cosine function

Look for x that maximizes TF

Weight Annealing implementation available at
http://www.cs.huji.ac.il/labs/learning/weightAnnealing/

CS8751 Data Perturbation for Escaping Local Maxima in
Learning

3

No Annealing
Initial weights 1/20 to all examples

Starting at -33.213
X=-33.672 Y=0.027
Finished with X=-33.672 Y=0.027

CS8751 Data Perturbation for Escaping Local Maxima in
Learning

4

Random Annealing
Initial weights = 1.0 for all examples
Start Temp. = 10, End Temp. = 0.01, Cooling factor=0.99

X=-22.713 Y=-0.894 at temp=10.000
W[1] = 0.006W[2] = 0.017W[3] = 0.000W[4] = 5.755W[5] = 0.014W[6] =

0.000W[7] = 0.001W[8] = 0.000W[9] = 2.998W[10] = 0.267W[11] =
0.211W[12] = 3.339W[13] = 0.000W[14] = 0.000W[15] = 0.000W[16] =
0.339W[17] = 0.000W[18] = 3.439W[19] = 3.612W[20] = 0.000

X=-22.212 Y=-0.161 at temp=9.900
W[1] = 0.000W[2] = 0.000W[3] = 0.120W[4] = 0.042W[5] = 0.101W[6] =

0.235W[7] = 0.000W[8] = 0.000W[9] = 0.000W[10] = 2.920W[11] =
0.108W[12] = 0.000W[13] = 0.000W[14] = 0.000W[15] = 1.217W[16] =
0.000W[17] = 0.000W[18] = 15.248W[19] = 0.000W[20] = 0.009

.

.

.

.
X=-20.000 Y=0.000 at temp=8.345
X=-20.000 Y=0.000 at temp=8.262
Finished with X=-20.000 Y=0.000 after 20 loops

CS8751 Data Perturbation for Escaping Local Maxima in
Learning

5

Adversarial Annealing
Initial weight = 1.0 for all examples
Start temp=5 End temp=0.01 Cooling rate= 0.99

Starting at -15.661
X=-14.324 Y=-0.034 at temp=5.000
X=-10.432 Y=0.062 at temp=4.950
X=-12.229 Y=0.107 at temp=4.901
X=-13.389 Y=-0.939 at temp=4.851
X=-17.003 Y=-1.001 at temp=4.803
X=-15.413 Y=-0.817 at temp=4.755
X=-16.525 Y=-0.400 at temp=4.707
X=-20.000 Y=0.000 at temp=4.660
X=-18.210 Y=-0.061 at temp=4.614
X=-1.638 Y=-3.795 at temp=4.568
X=-3.250 Y=-2.208 at temp=4.522
X=-2.119 Y=1.053 at temp=4.477
X=-0.000 Y=20.000 at temp=4.432
X=-0.000 Y=20.000 at temp=4.388
Finished with X=-0.000 Y=20.000 after 14 loops

1

Simulated Annealing

• Optimization Technique
• Also known as the Metropolis algorithm.
• Better Cooling and More Iterations lead to better

results.
• Parallel Simulated Annealing: speed up SA.

Basic Idea:

• Starts with a high temperature T and any initial state.
• A neighborhood operator is applied to the current state i

(having energy Ei) to yield state j (energy Ej).
• If Ej < Ei, j becomes the current state.
• Otherwise j becomes the current state with probability ,

1+e(Ei – Ej)/T). If j is rejected, then i remains the current
state.

• All steps after the second one are repeated either a fixed
number of times or until a quasi-equilibrium is reached.

• The entire above procedure is preformed repeatedly,
each time starting from the current i and lower T.

