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Action Refinement in Reinforcement 
Learning by Probability Smoothing

By Thomas G. Dietterich 
& Didac Busquets
Speaker:    Kai Xu
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Background -- Model Based 
Reinforcement Learning (MBRL)

Experience gained during exploring is employed 
to learn the models of the state-action transition 
function and the reward function
From the learned model, the optimal policy can 
be computed by many good algorithms
MBRL is appropriate when the state and action 
space and relatively small and finite, and each 
exploring action is expensive.

Background -- Methods To Reduce the 
Need For Training Data

By incorporate some kind of prior knowledge
Previous Study: Abstraction knowledge across 
the states

So that the RL can generalize across states

Abstraction knowledge across the actions (in 
this paper)

The RL assumes similar actions will have similar 
transition effects and rewards

Background -- Action Refinement

Recall how human learns
Bad Kongfu Masters teach the students all 
the tricks at the beginning.
The students have to spend a long time to 
grasp all of them 

Action Refinement

Good Kongfu Masters teach the students only 
the basic actions at the beginning.
After the students grasp the basic skills, he 
teach them the subtleties among different 
similar actions.
The students grasp all the tricks in a much 
shorter time.
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Action Refinement

An RL algorithm initially treats a set of similar 
actions as a single abstraction
Later, refines that abstraction action into 
individual actions.

The Probability Smoothing 
Method

Background
The Probability Smoothing Method
Experimental Study of Action Refinement
Conclusion

The Probability Smoothing 
Model

Context:
The agent is interacting with an unknown but 
observable Markovian environment.
The environment contains a finite state set S, 
and a finite action set A.
The programmer groups set A into L disjoint 
action sets                   .  Actions in the same 
subsets are ‘similar’.
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The Probability Smoothing 
Model

Let               denote the 
# of times action a has 
been executed in state s.
Let                   denote 
the # of times this results 
in a transition to state s’. 
Let                denote the 
total rewards received 
when a caused a 
transition from s to s’.
Define the probability 
smoothing model       
such that
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Determine Smoothing Parameter

Suppose the true transition probability from s to s’ after 
executing action a is             , and the estimate to this 
probability is 
We want to find a proper      such that               would 
be a consistent estimator for the true probability.
To determine which estimator is more appropriate, we 
need to define the error measure as the following

So the problem is to find a     which minimizes J(s,a) 
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Derivation of Optimal Smoothing 
Parameters in the simplest case

Let’s suppose there are only two similar actions,     and
The current state is s

There are only two possible resulting states,   and 
Action     has been applied on state s for N1 times.
For H1 times it transit to state s’
Action     has been applied on state s for N2 times.
For H2 times it transit to state s’
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Derivation of Optimal Smoothing 
Parameters in the simplest case

Suppose the true transition probability from s to 
s’ after exe      is    .
Although H1/N1 is an estimator for   , it requires 
large number of trials.
So we should use the smoothing model:
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Derivation of Optimal Smoothing 
Parameters in the simplest case

After calculation, we find the most appropriate 
smoothing parameter

Properties of using this    :
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Derivation of Optimal Smoothing 
Parameters in the simplest case

Therefore, the probability smoothing will 
converge to the optimal policy.
This model can be expand to cases such as

there are more than 2 similar actions
there are more than 2 possible resulting states

We can use the resulting     to build good 
estimator for the reward. 

λ

Determine the Level of Smoothing 
in Practice

Big problem: In most practical cases, we will never 
know the true value for
A naive approach for choosing     would be estimate     
by H1/N1, estimate      by H2/N2 
But when the trial number is small, the variance to these 
estimates are very high. The result is poor.
So the paper proposed to use “default smoothing” , in 
which we assume the default values of                   , 
and plug in the value of N2 from the real data.
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Determine the Level of Smoothing 
in Practice

The author proposed to use default values

for the simplest case.
They work well when           for all values of
For cases that there are more than 2 possible 
resulting states, the author proposed to use 
default values

05.0   ,15.0   ,1.0 2121 =−=== pppp ε

15.0<ε 1p

0025.0   , 1275.0   , 09.0 2
21 === εVV

Determine the Level of Smoothing 
in Practice
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Experimental Study of Action 
Refinement

Background
The Probability Smoothing Method
Experimental Study of Action Refinement
Conclusion

Experimental Study of Action 
Refinement -- Context

A toy maze with 81 non-
terminal states and 2 terminal 
states.
16 actions from the cross-
product of the 4 compass 
directions with 4 modifiers.
Actions are grouped into 4 
sets.
To measure the performance 
of a policy, we compute the 
value function     and sum the 
value of all 81 non-terminal 
states
The optimal policy has total 
value of 43.37

πV

Experimental Study of Action Refinement --
Compare With No Smoothing Method

Comparison of
probability smoothing, 
and
no smoothing (        )

The probability smoothing 
model is much better

0=λ

Experimental Study of Action Refinement --
Compare with fixed smoothing & four-action

Comparison of
fixed smoothing (       )
four-action method
probability smoothing

After 9.3 exploration 
steps, four-action method 
and probability 
smoothing method beat 
fixed smoothing.
After 23 steps, probability 
smoothing method wins.

1=λ

Experimental Study of Action Refinement --
Conclusion

Conclusion for the previous experiment
The probability smoothing method is vastly 
superior to no-smoothing method.
If large training set is available, probability 
smoothing method is better than fix-
smoothing and four-action method.

Experimental Study of Action Refinement --
Sensitivity To The Size of Action Sets

Vary the # of action sets from 
1, 2, 4, 8, and 16
With similar actions be 
grouped together to the extent 
possible.
16 separate action sets gives 
high variance.
One single action set gives 
high bias.
4 sets and 2 sets gave the 
best performance during the 
early part of the curve.
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Experimental Study of Action Refinement --
Sensitivity To The Action Set Correctness

At intermediate sample size 
(4), even random groupings 
give better performance than 
no smoothing.
At large sample sizes, the bias 
in the random and bad 
groupings leads to worse 
performance than either no 
smoothing or well-chosen 
action sets.

Conclusions

Probability Smoothing Method is introduced to action 
refinement to

speed up RL applications 
by partition actions into sets of similar actions.

It significantly eases the designing of a set of good 
actions in RL. 
Probability smoothing parameter is determined by 
“default smoothing” and the corresponding # of trials.
Good prior action set partition is critical to the 
performance.
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Action Refinement in Reinforcement 
Learning by Probability Smoothing

Thomas G. Dietterich, Didac Busquets
Ramon Lopez de Mantaras,

Carles Sierra

Comments by  : Sameer Apte

Action Refinement applied to 
the Robot Navigation Problem

Robot navigates by finding visual 
landmarks
Robot’s camera has a viewing angle of 
60 degrees
The space around the robot was 
partitioned into six 60-degree sectors 

Action Refinement applied to 
the Robot Navigation Problem

An action called “Move While looking for 
Landmarks (MLL)” was defined 
Robot moves forward while aiming its 
camera in one of the six sectors to 
search for new visual landmarks
Can define six MLL actions, one for 
each sector and let robot decide which 
sector to examine with the camera

Action Refinement applied to 
the Robot Navigation Problem

Designers do not know which of these actions 
would be most useful
Include all these actions in the MDP and let 
RL system determine which actions are useful

Problem : Large amount of exploration required to 
learn a good policy

Train the robot several times ,each time with 
a different set of actions

Problem : Even more training experiences required 

Action Refinement applied to 
the Robot Navigation Problem

Solution : Action Refinement
We know that different variants of the 
MLL action have similar behavior
Initially treat these similar actions as a 
single abstract action
Later allow the learning algorithm to 
refine abstract action into individual 
actions 
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Direct vs. Model-Based 
Reinforcement Learning

-- Commentary on Kai Xu’s 
presentation

-- Commented by Ruinan Lu
-- Reference: paper by C. Atkeson, et al.

Criteria

• Data efficiency

• Computing efficiency

Problem for comparison of the two 
approaches: single pendulum swing-up

• Make it swing!

Model-based RL

• Known reward function:

– angle of the pendulum
– desired angle for the inverted vertical state
– motor torque
– time step

• Equation of motion: 
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Q-learning

– learning rate
– discount factor
– state vector
– control vector

• Optimal action:
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Conclusions

• Simple Dynamics favor MRL
– Exploratory action is expensive
– Exploration is performed on a physical system

• Cases favor Direct RL
– More training experiences
– Learner interacts with an inexpensive simulator


