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Abstract

As machine learning has graduated from
toy problems to “real world” applications,
users are finding that “real world” problems
require them to perform aspects of prob-
lem solving that are not currently addressed
by much of the machine learning literature.
Specifically, users are finding that the tasks of
selecting a set of features to define a problem
and obtaining a set of examples of the prob-
lem are often more important for a successful
machine learning application than the selec-
tion or development of a specific classifica-
tion method. In this paper we present a case
study of machine learning applied to a diffi-
cult “real world” problem: detecting volcanos
in SAR (synthetic aperture radar) images of
Venus from the Magellan dataset. Our work
demonstrates that the processes of feature
selection and sample collection are critical
to the production of a good classifier. We
further show that the use of domain depen-
dent knowledge can often serve to enhance
the resulting classifier. Finally, we demon-
strate that an ensemble approach to building
a classifier, where multiple component classi-
fiers are used in combination, makes the is-
sue of selecting a “best” classification method
moot since the ensemble outperforms any of
the individual component classifiers.

1 INTRODUCTION

The successful utilization of machine learning tech-
niques for “real world” applications often requires a
developer to exercise a completely different set of skills
than are required for applying machine learning to
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“toy world” domains. Toy domains often supply a
pre-existing problem formulation (pre-classified train-
ing examples) and representation (pre-determined set
of features), leaving the user only the job of select-
ing or developing an appropriate learning algorithm;
our work suggests that a successful “real-world” ap-
plication of machine learning is an iterative process
which focuses on problem formulation and represen-
tation and leaves the selection of algorithm as a later
detail. We also show that rather than selecting a sin-
gle classifier method, an ensemble of different classi-
fiers can be used to produce a classifier that often out-
performs any single classifier. Furthermore we sug-
gest that a successful “real world” application often
requires the utilization of a collection of domain de-
pendent “tricks” as well as a strong understanding of
the domain.

We will exemplify these ideas and show how they have
been applied in the development of a system that
learns to recognize small volcanos in SAR (synthetic
aperture radar) images of Venus collected by the Mag-
ellan spacecraft (Saunders 1992). This problem is of
interest because it is important scientifically and be-
cause the huge volume and the high dimensionality
of the data (images) makes it very difficult. The huge
volume of data prevents manual analysis of the dataset
and motivates an automated approach.

2 “REAL WORLD” DIFFICULTIES

The application of machine learning to “real world”
problems highlights aspects of the development pro-
cess that are not currently addressed in much of
the machine learning literature, a few exceptions are
(Brodley & Smyth in press) and (Langley & Simon
1995). Good feature engineering often turns out to
be more important for producing good classification
accuracy in a learning system than the selection of a
particular classification algorithm. The feature engi-
neering step involves several difficulties.



One difficulty is how to formulate the problem as a
learning problem and what constitutes an example
(or counterexample). In the present application this
turned out to be especially challenging. Expert geolo-
gists who were consulted to label a portion of the avail-
able data showed considerable disagreement in their
individual labelings. This was handled by using a con-
sensus approach based on combining several experts
labelings, producing a “ground truth” labeling (Burl
et al. 1996; 1994).

Another difficulty with “real world” applications is
the very high number of features that are possible
for representing the data (or the high dimensionality
of the problem). This is especially true when work-
ing with image data. Most such problems are simply
not feasible to solve with existing ML methods. In-
stead, the number of features has to be reduced before
any classification algorithm can be applied. We have
two approaches to this problem, each one aimed at
reducing the number of features. The first is to use
principal component analysis (PCA) (Fukunaga 1990;
Jolliffe 1986) to come up with a small number of lin-
ear combinations of the original features that are still
sufficient to describe the examples. The other is to let
different classifiers use different subsets of features and
then to produce an ensemble of classifiers that com-
bines the output from the different component classi-
fiers.

A third difficulty is the presence of outliers or noise
in the training data. There is little prior work on the
detection of natural objects in a noisy environment.
Most image detection algorithms work only on man-
made objects which have very sharp boundaries. The
noisy features of natural objects makes these meth-
ods difficult to apply. In the current application the
presence of noise is handled by finding and replacing
suspected noisy pixel values before the principal com-
ponent analysis step.

3 THE PROBLEM: VOLCANO
DETECTION

The study of volcanism on Venus is of particular in-
terest to planetary geologists since it is the most
widespread and important geologic phenomenon of
that planet (Saunders 1992). Understanding the clus-
tering characteristics and global distribution of the
volcanos is fundamental to understanding the regional
and geological evolution of the planet (Crumpler et al.
1997; Guest 1992). Even a partial catalog of the planet
including the size, location, and other relevant infor-
mation about each included volcano would clearly be
helpful for more advanced study. Such a catalog could
potentially provide the data necessary to answer ba-
sic questions about the geophysics of Venus such as

the relationship between volcanos and local tectonic
structure, the pattern of heat flow within the planet,
and the mechanics of volcanic eruption.

The Magellan spacecraft, which was launched by
NASA/JPL in May of 1989, has provided the sci-
entific community with a set of more than 30,000
synthetic aperture radar (SAR) images covering 98%
of the surface of Venus. This data set is larger
than what has been produced from all previous space
probes combined and has motivated an automated (or
at least semi-automated) approach to analyzing the
dataset. Figure 1 contains a sample of part of an im-
age from the Magellan SAR dataset. The SAR im-
ages are 1024 by 1024 pixel images with a resolution
of 75m per pixel. It has been estimated that there
are on the order of one million small (less than 20
km in diameter) volcanos visible in the Magellan im-
ages (Aubele & Slyuta 1990). A catalog of large Venus
volcanos has been completed (Crumpler et al. 1997;
Stofan 1992) but, by optimistic estimates, the time for
a geologist to manually generate a comprehensive cat-
alog of small volcanos on Venus is on the order of ten
to twenty man-years due to the size of the dataset.

To add to the problem of detecting volcanos, even the
experts do not completely agree on the location of the
volcanos in the images that have been examined. This
is understandable, because while the images are fairly
high resolution, there are a number of cases that are
difficult to judge and there is currently no other means
to verify any experts’ decisions. This is a problem in
that classification methods generally depend on hav-
ing a set of pre-classified training instances to produce
a classifier for unseen instances. To address this prob-
lem a group of experts was gathered together under the
auspices of the Jet Propulsion Laboratory (JPL) to at-
tempt to produce a “ground-truth” labeling of some of
the images. This was an exhausting process involving
each expert labeling the set of images examined on
their own and then meetings amongst the experts to
produce a consensus labeling of the images. As a result
a first baseline for measuring the performance of any
method is the expert performance with respect to the
consensus. For each expert we can measure how many
of the “actual” (according to the consensus) volcanos
that expert correctly labeled. We can also measure
the number of non-volcanos (again according to the
consensus) that the expert produced. The tradeoff be-
tween these two values (the number of hits versus the
number of false positives) will be the focus of our re-
sults.

3.1 JARTOOL

Even with computer classification, the amount of data
in the dataset is extremely large. The JARtool system
(Burl et al. 1994; 1996) which is based on machine



Figure 1: Sample of part of an image from the Magellan SAR image set. The image shows a small region that

contains a number of volcanos.

learning and pattern recognition techniques and was
developed by JPL, is a system developed for this clas-
sification process. JARtool is trained by first filtering
the data in a pre-pass method called the Focus Of
Attention (FOA). The FOA is a simple method that
uses a matched filter for selecting particular sized areas
(usually squares) of the image that are more likely to
contain a volcano. This model has two positive effects:
(1) it greatly reduces the number of data points to
consider; and (2) it causes each volcano to be roughly
“centered” in the sub-image. The first effect is very im-
portant since even when a relatively small sub-image
(say 15 pixels by 15 pixels) is used to recognize vol-
canos, the resulting sub-image still has a large number
of features (225 pixel values in this case). The ma-
jor disadvantage of using the FOA model is that by
pre-selecting a small number of sub-images from the
original image the resulting set of sub-images may not
include all of the volcanos labeled by the experts.

Once the FOA model has been applied the problem of
volcano detection is one of determining which of the
sub-regions of the image returned by the FOA actually
contain volcanos.

The original JARtool method controlled for the high-
dimensional space using the principal-component anal-
ysis method (discussed in Section 4.1) to extract a re-
duced set of features.

After the dimensionality reduction step, the result-
ing features were then used to train a quadratic (or
Gaussian) classification method to distinguish between
actual volcanos and non-volcanos. In the production
phase, the Gaussian classifier gives the probability that
any region that matches the filter is an actual volcano.

Results for the JARtool method are shown in Fig-
ures 4 and 5. Note that due to the use of the FOA
model the resulting classifier has an upper limit in its
accuracy that is less than 100%, since some of the ac-
tual volcanos are left out. While the performance of
this method is good, there may be some room for im-
provement since experts outperform this method. We
have therefore extended the original method in a num-
ber of ways which contribute to increased classification
accuracy of the total system. Each of these improve-
ments will be described in the following sections.

4 MOTIVATION AND
BACKGROUND

We make use of a number of techniques to format our
problem as a machine learning problem and to produce
a classifier for the resulting problem. In this section we
will in turn describe: Principal component analysis,
clustering of volcanos, handling of noisy pixels, and
using ensembles of classifiers.



Figure 2: Example volcanos from 4 different clusters (right) and their respective cluster centers (left). Each row
represents a sample of volcanos that have been clustered together using K-means.

4.1 AUTOMATIC FEATURE
EXTRACTION

To produce a volcano detector our algorithm must be
able to label a set of small images as being either vol-
canos or not volcanos. Since these sub-images consist
of a large number of pixels, the resulting input space
has high dimensionality, and the set of possible fea-
tures becomes immense. We have therefore restricted
our search to the family of features defined by linear
combinations of the image pixel values.

One “solution” to the problem of projecting a
high-dimensional space onto a more tractable low-
dimension space is to use principal components analy-
sis (PCA) (Fukunaga 1990). The method of principal
components has been used extensively in statistics, sig-
nal processing (Karhunen-Loeve transform), and pat-
tern recognition (Turk & Pentland 1991).

In PCA one forms the covariance matrix C for the
example feature vectors, and finds the eigenvalues
and eigenvectors of C. The m eigenvectors having
the largest eigenvalues are then used as the new fea-
tures. This strategy is equivalent to projecting the n-
dimensional pixel space onto a g-dimensional subspace
(feature space).

PCA can be shown to be optimal in a least-squares
sense for representing the example feature vectors with
minimal loss of information (Fukunaga 1990; Jolliffe
1986). Unfortunately, it does not always provide the
best linear combination of features for discriminating
between the different classes since the distribution of
the “other” class is not taken into consideration.

Other approaches, such as linear discriminant analysis
(LDA), seek to find discriminative features that sep-
arate the classes. In the context of finding volcanos,
however, the “other” class is amazingly complex con-
sisting of all patterns that are not volcanos. Direct
application of LDA in pixel space leads to very poor
results. One drawback with LDA is that it produces
a maximum of ¢ — 1 features (where ¢ is the number

of classes). In our case, there are only two classes so
a reduction to a single linear combination of the pixel
values is clearly inadequate.

4.2 FINDING SUBTYPES OF VOLCANOS

One weakness with the scheme proposed in JARtool
is the fact that it is based on the assumption that
all volcanos look enough alike to be selected by a sin-
gle filter in the FOA step and to be classified by a
single classifier. In practice, there exists a variety of
subtypes of volcanos, each with its own visual charac-
teristics. Figure 2 shows some different types of vol-
canos. The volcanos in each row in the right side of
the figure are taken from different clusters while the
left side of the figure displays the corresponding clus-
ter center for each row. Instead of training one single
classifier to distinguish between typical volcanos and
non-volcanos, it makes sense to train a collection of
different classifiers (each with its own particular set
of features) and hence hopefully create a collection of
classifiers that each have their own area of expertise.
In order to do so we first used k-means clustering to
partition the volcanos in the training data into a num-
ber of clusters in a way that minimizes the sum of the
squared distances to the cluster centers. Each such
cluster was then fed to the principal component anal-
ysis step described in Subsection 4.1 to produce a set
of features that best describes that particular cluster.

4.3 HANDLING OF NOISE AND
OUTLIERS

The detection of natural objects in images presents
a number of problems. Often these images contain
significant noise and do not contain sharp features.
Many current approaches assume that the location
of the object has been marked and simply focus on
the problem of discriminating between a set of pos-
sible objects. One approach that has been tried
is the use of Hough transforms to locate features
closely resembling circles in SAR data (Cross 1988;



Skingley & Rye 1987). For volcano location, Wiles
and Forshaw developed a matched-filter approach that
has been applied to Magellan data (Wiles & Forshaw
1993), but this method has limited performance.

To handle outliers we have developed a more robust
mechanism for the feature learning component that
allows for the presence of non-typical feature values in
positive training examples. This mechanism includes
finding the mean and standard deviation for each pixel
position for a set of volcano images. Then for each
pixel position in each image we determine how much
the value deviates from the mean value for that posi-
tion. If it is further away than a constant times the
standard deviation of all the values for that position,
then the value is replaced by another value which is
closer to the mean (the mean added or subtracted by
the constant times the standard deviation). Param-
eter sensitivity tests has shown that the use of this
method alone will increase the classification accuracy
by 1-2 %.

4.4 ENSEMBLES OF CLASSIFIERS

An ensemble is a classifier created by combining the
predictions of multiple component classifiers. A num-
ber of researchers have demonstrated that ensem-
bles are generally more accurate than any of their
component classifiers (Breiman 1996; Clemen 1989;
Quinlan 1996; Wolpert 1992; Zhang, Mesirov, & Waltz
1992). Figure 3 shows a basic framework for combining
classifiers. Using an ensemble, the class of an exam-
ple is predicted by first classifying the example with
each of the component classifiers and then combining
the resulting predictions into a single classification. To
create an ensemble a user generally must focus on two
aspects: (1) which classifiers to use as components of
the ensemble; and (2) how to combine the resulting
predictions into a single prediction.

Much research on selecting appropriate classifiers to
combine has focused on selecting classifiers that are
accurate in the predictions, but differ in where they

Output Class

w Prediction(s)
.

Input Features

Figure 3: Basic framework for combining multiple clas-
sifiers.

are accurate. Methods for approaching this problem
include using different classification methods, training
on subsets of the data set, training on different sets
of input features, using different subsets of the train-
ing set for training the classifiers, and even using ge-
netic search to try to find classifiers that disagree in
their predictions (Breiman 1996; Drucker et al. 1994;
Hansen & Salamon 1990; Hashem, Schmeiser, & Yih
1994; Krogh & Vedelsby 1995; Maclin & Shavlik 1995;
Opitz & Shavlik 1996). The method of choosing dif-
ferent classification methods is interesting, since most
classification methods introduce particular biases into
the resulting classification. Also appealing is the
method of varying the set of input features, since the
resulting component classification problems in fact dif-
fer significantly when the features are not completely
redundant.

The second aspect of creating an ensemble is the choice
of the function for combining the predictions of the
component classifiers (Kearns & Seung 1995). Exam-
ples of combination functions include voting schemes
(Hansen & Salamon 1990), simple averages (Lincoln &
Skrzypek 1989), weighted average schemes (Perrone &
Cooper 1994; Rogova 1994), and schemes for train-
ing combiners (Rost & Sander 1993; Wolpert 1992;
Zhang, Mesirov, & Waltz 1992). Clemen demon-
strated that in the absence of knowledge concerning
a specific problem, almost any reasonable method,
including the simple ones such as voting or using a
weighted average will result in an effective ensemble
(Clemen 1989). It is possible, though, to make use of
knowledge about a specific domain to produce a more
accurate combination method (Rost & Sander 1993;
Zhang, Mesirov, & Waltz 1992). Our method applies
each of the best classifiers in sequence starting with
the best. If any classifier gave a probability above a
certain threshold then that classifier was applied, oth-
erwise the decision was left to the rest of the classifiers.
If none of the best classifiers could reach a decision, the
default method of using the simple average of all the
classifiers was applied. This will be described in more
detail in Section 5.2.

5 EXPERIMENTS

Below we present the experiments we performed to
demonstrate the validity of our approach.

5.1 EXPERIMENTAL METHODOLOGY

To develop our classifier we started out by exam-
ining a set of four images that have been labeled
and examined in previous work (Burl et al. 1994
1996). We used these images as a means for eval-
uating which combinations of features and classifica-
tion methods to use. These four images contain 163
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Figure 4: Results from our experiments, the original JARtool method and two experts on the original set of four
images. Results are graphed by the number of misclassified non-volcanos allowed per km?. As the number of
allowable misclassified non-volcanos increases the total percentage of actual volcanos increases, though this value
has an upper limit less than 100% because the FOA model only recognizes a certain percentage of the actual

volcanos.

volcanos, 144 of which are included in the set of re-
gions located by the FOA model. The FOA model
also produces 481 sub-images which match the filter
but are not volcanos. To produce a classifier for each of
these images we trained an ensemble of classifiers using
the other three images as the training set (i.e., four-
fold cross-validation using the volcanos/non-volcanos
of each image as a fold). Once we had chosen the differ-
ent combinations of features and classifiers we intended
to use in our classifier we then tested our method on
a set of 38 labeled images separate from the original
set of four images. These images contain 453 volcanos,
383 of which are recognized by the FOA model. The
FOA model also produces 9920 sub-images that are
not volcanos. To produce classifiers for these images
we divided the images up into six sets and performed
six-fold cross-validation on each of these sets.

For all of our results we show a curve with the per-
centage of detected true positives relative to the num-
ber of detected false positives per km?. This is done
by successively lowering the threshold for predicting a
volcano and determining how many true volcanos are
included versus how many “false positive” volcanos are
included (i.e., as the threshold lowers more of the ac-
tual volcanos are included, but more “false positives”
may appear).

5.2 DESIGN DETAILS

We began our study by focusing on selecting an initial
feature representation. Preliminary work with classi-
fying the data based on the raw pixel information pro-
duced very poor results due to the high dimensionality
of the problem and the (relatively) small number of
examples compared to the number of features. There-
fore, we started by assuming we would apply PCA to
the volcano and non-volcano sub-images (separately)
returned by the FOA. We then performed experiments
on the preliminary set of four images varying the size
and scaling (averaging over several pixels to produce a
small image of a large area) of the sub-images returned
by the FOA model and the number of principal compo-
nents and found that the following combinations using
principal components only from the volcanos seemed
to work well for a simple Gaussian classifier: principal
components: 6, 8, and 10; scaling: 2, 3, and 4. To the
set of principal component features we added two fur-
ther features based on knowledge of the domain and
PCA: (1) a line filter value that notes the presence of
lines in the image — these lines can easily distract the
FOA model; and (2) the reconstruction error which is
an indication of how much information is lost when a
particular image is projected onto the first n principal
components.



After selecting the initial set of features we then ex-
plored the approaches of replacing noisy pixels and
doing clustering of the images before applying PCA,
again varying the number of principal components
used to characterize the images. For the noisy pixel
replacement we tried different values of the threshold
used to determine when to replace a pixel. When using
clustering, we performed clustering on the volcano im-
ages and then selected the top n principal components
across all of the clusters as features for the sub-image.
For the noisy replacement method we found that the
following thresholds worked well: 0.25, 0.45, and 0.65
standard deviations. For the clustering we found that
1 and 4 clusters worked well.

The values for all the parameters were determined af-
ter extensive parameter sensitivity tests, some of which
can be found in (Burl et al. 1996). However, it should
be noted that this system, like most real-world classifi-
cation systems, consists of multiple components, each
with their own parameters and that an overall system
optimization is not practically possible. Instead many
parameters were set to reasonable values based on uni-
variate parameter sensitivity testing.

Once we selected the different sets of features to use we
approached the selection of the classification method.
We have experimented with a variety of algorithms
including quadratic (or Gaussian) classifiers, decision
trees, linear discriminant analysis, nearest neighbors
using Euclidean and spatially weighted distance mea-
sures (Turmon 1996), tangent distance (Simard, Cun,
& Denker 1993), kernel density estimation, Gaus-
sian mixture models, and feed-forward neural net-
works (Cherkauer 1996).

Interestingly enough, all of these methods (with the
exception of linear discriminant analysis) gave simi-
lar performance on an initial data set, indicating that
the selection of features is much more important than
the selection of classifier(s). In the experiments re-
ported in this paper a combination of the quadratic
classifier and feed-forward neural networks have been
used. Both classifiers provide posterior probability es-
timates, which can be thresholded to vary the trade-off
between detection and false alarm rate, a feature we
considered important to be able to combine the clas-
sifiers in a uniform way.

In our initial work we noted that the Gaussian classi-
fiers were extremely accurate for cases where the out-
put value was extremely high or low. We therefore de-
termined to develop an ensemble method that would
first look at the output value and if the value fell above
a threshold 0.999 we would mark the example as a vol-
cano and if it fell below a threshold 0.01 we would mark
it as a non-volcano.

The Gaussian methods seemed to be very good at de-

termining that some small subsets of the images either
were or were not volcanos, but for intermediate cases
we decided to add a second classification method —
neural networks. To produce our neural network meth-
ods we trained a group of 48 networks where we varied
the input features to each method:

e The best 6, 8, and 10 principal components with
and without reconstruction errors plus line filter
values. (6 networks)

e The best 6, 8, and 10 principal components with
and without reconstruction errors plus line filter
values for volcanos where noisy pixel replacement
was performed at levels of 0.25, 0.45, and 0.65.
(18 networks)

e The best 10, 12, 14, and 16 principal components
from clustered volcanos with and without recon-
struction errors plus line filter values with noisy
pixel replacement at thresholds of 0.25, 0.45, and
0.65 (24 networks)

From this group of 48 neural networks we created one
single classification method based on the simple av-
erage of all 48 networks. This resulting method was
then used to classify any examples not meeting the
threshold criteria described above.

5.3 EXPERIMENTAL RESULTS

The above described classification method produced
results which are shown in Figure 4. The resulting
classifier outperforms all of the component classifiers,
the original JARtool method (Burl et al. 1994; 1996)
and even outperforms one of the experts. Of course,
these results are for a dataset where we have performed
significant exploration to select input features, etc. so
it is not surprising that we perform well.

To test our method we trained the same set of classi-
fication methods using the same thresholds on a set of
38 unseen images. The results from these images are
shown in Figure 5.

Again, our approach outperforms the original JARtool
method along most of the ROC curve, but this time
our method falls slightly below expert performance.
Also in this case, the combined classifier outperforms
each one of the individual component classifiers (their
performance have been left out of Figures 4 and 5 for
clarity).

For a description of an automatic way to determine
the thresholds see (Asker & Maclin 1997).

6 CONCLUSIONS

We have presented a case study for the application
of machine learning to solve “real world” problems.
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Figure 5: Results from our experiments, the original JARtool method and one expert on the new set of 38

images.

Our research demonstrates that the issues of framing
a problem (feature selection) and gathering data are
critical for the development of a classification method,
often more critical than the selection of the actual
learning algorithm. In our work we showed the use-
fulness of a number of approaches to feature selection.
In particular, we explored the use of principal compo-
nent analysis to map a high dimensional feature space
to a low dimensional feature space. We also demon-
strated the use of techniques such as replacement of
noisy information and clustering of examples before
applying principal component analysis as useful meth-
ods for good feature extraction. Our work also indi-
cates that the use of domain-specific knowledge can
serve to greatly improve the quality of the resulting
features used to represent a problem.

As our method of classification we chose to employ an
ensemble approach. The advantage of this approach is
that we do not have to settle on a particular classifi-
cation method or a particular set of features, but can
combine multiple methods to produce a classifier that
outperforms any individual classification method. To
produce our ensemble we again made use of domain
knowledge (in this case, a set of preliminary data) in
forming our ensemble. This preliminary data allowed
us to select a function for combining the component
classifiers that took advantage of the abilities of each
of the component classifiers.

The result of our approach is a method for Volcano

detection from SAR images of Venus returned by the
Magellan probe that outperforms all previous methods
and produces near-expert performance for this difficult
problem.
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