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Abstract

This paper presents a new algorithm for Boosting
the performance of an ensemble of classifiers. In
Boosting, a series of classifiers is used to predict
the class of data where later members of the series
concentrate on training data that is incorrectly
predicted by earlier members. To make a predic-
tion about a new pattern, each classifier predicts
the class of the pattern and these predictions are
then combined. In standard Boosting, the predic-
tions are combined by weighting the predictions
by a term related to the accuracy of the classifier
on the training data. This approach ignores the
fact that later classifiers focus on small subsets
of the patterns and thus may only be good at
classifying similar patterns. In RegionBoost, this
problem is addressed by weighting each classi-
fier’s predictions by a factor measuring how well
that classifier performs on similar patterns. In
this paper we examine several methods for deter-
mining how well a classifier performs on similar
patterns. Empirical tests indicate RegionBoost
produces gains in performance for some data sets
and has little effect on others.

Introduction

Boosting (Breiman 1996b; Drucker & Cortes 1996;
Freund & Schapire 1996) is a technique for creating
ensemble classifiers, classifiers that combine the predic-
tions of multiple component classifiers. It has proven
extremely effective over a number of different domains
(Breiman 1996b; Freund & Schapire 1996; Maclin &
Opitz 1997; Quinlan 1996). This paper presents Re-
gionBoost, a modification of existing Boosting tech-
niques. The focus of RegionBoost is to do a better
job of combining the predictions of the classifiers in
the ensemble by considering the performance of each
of these classifiers in different regions of problem space.
Boosting techniques generally either average the pre-
dictions of the classifiers or produce a weighted average
of the classifiers where the weight is a single value for
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each classifier. The advantage of RegionBoost is that
a classifier that performs well in only one portion of
problem space will be weighted more highly on data
points from that portion of problem space (and low on
other points). Quinlan (1996) and Woods et al. (1997)
present approaches similar to RegionBoost, but Quin-
lan’s technique is specific to decision trees and Woods
et al.’s technique selects a single classifier rather than
combining the predictions of the classifiers.

To test the effect of RegionBoost, I present experi-
ments using ensembles of neural networks on 19 data
sets from the UCI repository. These experiments show
that RegionBoost often significantly outperforms stan-
dard Boosting, though it has little effect on perfor-
mance for some problems. These results are especially
interesting in that Boosting often produces the most
accurate classifiers for many domains.

Background: Ensembles

An ensemble classifier consists of a set of individual
classifiers (components) and a mechanism for combin-
ing the predictions of the components (see Figure 1).
To classify a point using an ensemble, the input vector
is passed to the component classifiers, each of which
predicts the class of the point. These predictions are
then merged by the combiner mechanism into a single
prediction for the classifier. For example, the com-
biner could take a majority vote of the components.
Research on ensembles generally focuses on: (1) which
component classifiers to combine; and (2) how to com-
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Figure 1: A classifier ensemble made up of N compo-

nent classifiers and a combiner mechanism.




bine the predictions of the classifiers.

Empirical evidence suggests that an ensemble clas-
sifier almost always outperforms an average classifier
from the ensemble (Maclin & Opitz 1997; Quinlan
1996). Often the ensemble outperforms all of its com-
ponent classifiers. Theoretical work (Hansen & Sala-
mon 1990; Krogh & Vedelsby 1995) on ensemble meth-
ods indicates that ensembles are effective when the
components are accurate and differ in their predictions.
Krogh and Vedelsby (1995) demonstrated that the per-
formance of an ensemble is mathematically based on
the average error rate of its components minus a term
that measures the differences between the components.

Research on selecting classifiers to use as compo-
nents generally focuses (if only indirectly) on the
selection of component classifiers that are accurate
and differ in their predictions. Examples of mecha-
nisms that have been used to create component clas-
sifiers include using different training parameters with
a single learning method (Alpaydin 1993; Maclin &
Shavlik 1995), using different subsets of the training
data with a single learning method (Breiman 1996a;
Freund & Schapire 1996), using different learning
methods (Zhang, Mesirov, & Waltz 1992), and explic-
itly searching for a set of classifiers that is both accu-
rate and diverse (Opitz & Shavlik 1996). Boosting is
a method that creates component classifiers by using
different subsets of the training data.

Numerous methods have been suggested for com-
bining the predictions of classifiers. Sample combi-
nation functions include voting (Hansen & Salamon
1990), simple averages (Lincoln & Skrzypek 1989),
weighted averages (Freund & Schapire 1996; Rogova
1994), using a voting sequence of combiners (Asker
& Maclin 1997), and learning a combiner function
(Wolpert 1992). Wolpert’s (1992) Stacking mechanism
is a powerful general mechanism for producing an ef-
fective combining function by training a learner to pre-
dict the corrections needed for each of the individual
components, though 1t is limited in that for it to be ef-
fective it needs a set of held-out training data that was
not used in creating the component classifiers. But
Clemen (1989) suggests that simple mechanisms are
often as effective as any complex combining method.

Background: Boosting

Boosting (Freund & Schapire 1996) encompasses a
family of methods. The focus of these methods is to
produce a series of classifiers. The training set used
for each member of the series is chosen based on the
performance of the earlier classifier(s) in the series. In
Boosting, examples that are incorrectly predicted by
previous classifiers in the series are chosen more of-

ten than examples that were correctly predicted. Thus
Boosting attempts to produce new classifiers that are
better able to predict examples for which the current
ensemble’s performance is poor.

In this work we will be building on a powerful form
of Boosting called Ada-Boosting (Freund & Schapire
1996). In Ada-Boosting, a training set of size N is
selected for classifier K + 1 by probabilistically select-
ing (with replacement) N examples from the original
N training examples (since there is replacement and
the probabilities differ, some examples may be selected
more than once and some not at all). For classifier
K + 1, the probability depends on how often that ex-
ample was misclassified by the previous K classifiers.
Initially the probability of picking each example is set
to 1/N. After a classifier is added to the ensemble,
the probabilities of selecting examples are adjusted by
a factor based on ¢, the sum of the probabilities for
those examples that are incorrectly classified by classi-
fier K. The probability of selecting each of the misclas-
sified examples is multiplied by the value (1 — eg)/ek.
The probabilities of selecting each of the examples are
then renormalized so that they sum to 1. This process
has the effect of increasing the probability of misclas-
sified examples and reducing (through the normaliza-
tion) the probability of the correctly classified exam-
ples. In this work we use Breiman’s (1996b) variation
where the probabilities are all reset to 1/N if ¢; equals
0 or becomes greater than 0.5. In the latter case, mul-
tiplying by (1 — ex)/ex would decrease the probability
of misclassified examples, while in the former case the
value (1 — eg)/ex is undefined.

A critical factor in Ada-Boosting is that the predic-
tions of the component classifiers are not simply av-
eraged. In later classifiers the training set may focus
heavily on certain examples and ignore others, produc-
ing a classifier that is very good at classifying a small
subset of the points but is not effective at classifying
all points. For example, Figure 2 shows the average
training error of the different classifiers in the Boosting
ensembles used in the experiments later in this paper.
Even with Breiman’s resetting variation, the accuracy
of later classifiers in the ensemble drops off quickly. To
address this problem, Ada-Boosting weights the pre-
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Figure 2: Composite training error from the classifiers
in the Boosting experiments from the Results section.



dictions of classifiers by log((1 — e)/ex). Classifiers
with small values of ¢ are weighted higher than clas-
sifiers with large values. Although this strategy is ef-
fective, 1t does not make full use of the data available,
a limitation addressed by RegionBoost.

RegionBoost
Ada-Boosting (Freund & Schapire 1996) addresses the

problem of combining classifiers by weighting the clas-
sifiers with respect to their accuracy. But by weighting
each of the classifiers by a single value, Ada-Boosting
loses some of the value of the Boosting approach. In
Boosting, later classifiers concentrate on correctly clas-
sifying examples that were not correctly classified by
previous classifiers. Thus it is reasonable to assume
that the later classifiers will be better at some types
of examples and worse at other types. To address
this limitation using only a single weight undervalues
a later classifier’s ability to classify examples similar
to the ones it was trained with and overvalues its abil-
ity to classify other examples. A better approach is to
weight the predictions of each classifier by how well 1t
predicted examples similar to the one being examined.

Intuitively, the idea behind RegionBoost’s approach
to weighting is to use the training data to estimate the
accuracy of the classifier. Although this estimate is
likely to suffer from overfitting, it does have an advan-
tage in that Boosting leave some of the data out (and
in the case of later classifiers, possibly significant por-
tions may not be included in the training set for that
classifier). Rather than using a single measure of the
accuracy on the training data, in RegionBoost we take
advantage of the idea that some classifiers perform well
only for certain regions of problem space by estimat-
ing the likely accuracy of the classifier for each new
point. In this work we will examine two approaches to
estimating the accuracy of the classifier.

One approach to estimating accuracy will use a sim-
ple k-Nearest-Neighbor (Cover & Hart 1967) approach
to find the k& points in the training set nearest to the
new point we are trying to classify and assessing how
well each classifier performed for each of those points.
The weighting for that classifier’s prediction is the sum
of how well the classifier predicted each of these & train-
ing data points divided by k. In the limit, if we choose
k = N, this method approximates the standard Ada-
Boosting approach to weighting predictions. A second
approach will be to train a second classifier for each
classifier in the ensemble, in this work a separate neu-
ral network, to predict the accuracy for new points.
For both approaches we will need to estimate the ac-
curacy of a classifier for each training data point.

One estimate of the accuracy for a training data

Table 1: Summary of the data sets used in this paper.
Shown are the number of examples and output classes,
plus the number of inputs, outputs, hidden units and
training epochs used for each network.

Data Set Case Out In Hid Epch
breast-cancer-w 699 2 9 5 20
credit-a 690 2 47 10 35
credit-g 1000 2 63 10 30
diabetes 768 2 8 5 30
glass 214 6 9 10 80
heart-cleveland 303 2 13 5 40
hepatitis 155 2 32 10 60
house-votes-84 435 2 16 5 40
hypo 3772 5 55 15 40
ionosphere 351 2 34 10 40
iris 159 3 4 5 80
kr-vs-kp 3196 2 74 15 20
labor 57 2 29 10 80
promoters-936 936 2 228 20 30
segmentation 2310 7 19 15 20
sick 3772 2 55 10 40
sonar 208 2 60 10 60
soybean 683 19 134 25 40
vehicle 846 4 18 10 40

point (the Discrete method) will simply assign the
value of one if the pattern is correctly predicted and
zero otherwise. A second method (Continuous) will es-
timate accuracy based on the output produced by the
classifier. In this approach the accuracy estimate will
be based on the average distance between the actual
and expected output for a pattern. For example, in a
three-class problem where the expected prediction is
{0,1,0} (i.e., in class 2) and the actual prediction is
{0.1,0.8,0.1}, the accuracy would be 0.867 (1 - 0.133)
where 0.133 is the average of the distances between 0

and 0.1, 1 and 0.8, and 0 and 0.1 divided by 3.

Results

This section presents experiments to evaluate the effect
of the RegionBoost approach on classification accuracy.
The tests use 19 of the 23 data sets from the UCI data
set repository (Murphy & Aha 1994) used in a previous
study of Boosting (Maclin & Opitz 1997). Table 1 gives
details for these data sets. For each data set we report
error rates for Ada-Boosting and RegionBoost.

Methodology

All results are averaged over ten standard 10-fold
cross validation experiments. For each 10-fold cross
validation, the data set is first partitioned into 10
equal-sized sets, and each set is in turn used as the
test set while the classifier trains on the other nine sets.
For each fold an ensemble of 30 networks are created

!The 4 data sets excluded require more computational
resources than were available.



Table 2: Results of experiments shown to test the effects of RegionBoost on the data sets listed in Table 1. The
second, eleventh and thirteenth columns (Ada, Perceptron-Ada and NearN) show error rates using these methods.
The results in the other columns represent percentage point reductions in error rate (or increases for negative
numbers). For example, in the third column next to breast-cancer-w, the number is 0.3 which indicates that the
error rate using this method was 3.7%. See the text for descriptions of the experiments producing these numbers.

RegionBoost

NearN:Discrete NearN:Continuous || Net Accuracy Perceptron NearN
Data Set Ada || k-7 k11 k-15 | k-7 k-11 k-15 Disc Cont Ada | RB Disc k-15 k-15
breast-cancer-w 4.0 0.3 0.3 0.3 | 0.2 0.3 0.2 0.7 0.4 4.0 0.1 3.8
credit-a 15.9 1.1 0.8 0.7 | 0.8 0.9 0.7 1.9 1.3 14.9 0.4 16.2
credit-g 25.5 0.0 0.3 0.3 | 0.2 0.3 0.3 0.4 0.8 25.6 0.6 27.0
diabetes 22.9 -0.3  -0.2 -0.1 | 0.0 0.4 0.2 0.0 0.3 23.0 -0.6 25.1
glass 32.4 1.2 1.0 1.3 1.0 1.0 1.3 1.0 1.0 36.7 1.8 38.2
heart-cleveland 19.8 0.4 0.6 0.7 | 0.1 0.1 0.2 0.3 0.0 19.4 0.0 20.6
hepatitis 18.7 0.8 0.8 0.8 0.8 1.3 0.7 0.5 0.6 18.3 0.4 19.4
house-votes-84 5.1 0.2 0.2 0.2 | 0.2 0.3 0.3 0.2 0.2 5.6 0.0 6.5
hypo 6.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 6.2 0.1 7.0
ionosphere 7.9 -04 -04 -03 | 0.0 0.0 0.0 0.8 0.8 12.8 1.2 16.3
iris 3.8 -0.1  -0.1 0.0 0.0 0.1 0.0 -0.1 -0.1 3.5 0.2 3.4
kr-vs-kp 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.2 7.6
labor 4.2 0.2 0.2 0.2 0.3 0.3 0.2 1.7 1.7 3.3 0.1 24.2
promoters-936 4.4 0.0 0.0 0.1 0.0 0.1 0.0 -0.1 -0.1 5.5 0.1 8.5
segmentation 3.5 0.2 0.2 0.2 | 0.1 0.2 0.2 0.0 0.0 7.1 2.8 5.6
sick 4.3 0.2 0.1 0.1 0.2 0.2 0.4 0.2 0.2 4.5 0.0 4.3
sonar 12.7 0.1 0.2 0.1 0.4 0.5 0.4 0.2 0.4 18.3 0.5 31.2
soybean 7.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 -0.1 6.9 -0.1 12.6
vehicle 19.7 || -0.2 -0.1 -0.1 0.6 0.6 0.7 0.7 0.7 22.6 1.1 31.0

(for a total of 300 networks for each 10-fold cross val- methods. Several data sets always see reductions in
idation). Parameter settings for the neural networks error rate. One difference between the two methods

include a learning rate of 0.15, a momentum term of
0.9, and weights are initialized randomly to be between
-0.5 and 0.5. The parameters used in training were the
same as used by Maclin and Opitz (1997).

Experimental Results

Table 2 incorporates the results for several of the ex-
periments discussed in this section. The second column
of this table shows the baseline Ada-Boosting results
produced for each of these data sets. The next three
columns show the results for the RegionBoost approach
with the k-Nearest-Neighbor method (for k=7,11,15)
and the Discrete method for estimating training data
accuracy. The following three columns show similar
results using the Continuous method for estimating ac-
curacy. These results show reductions (or increases) in
error rate for each of the data sets by percentage point
(e.g., 1.1 in the third column for credit-a indicates the
error rate goes from 15.9% to 14.8%). Statistically sig-
nificant changes in error are shown in ztalics.

Several interesting results can be observed from
these experiments. First, RegionBoost significantly de-
creases the error for a number of the data sets (six to
ten of the 19), and it produces little or no change for
the other data sets. RegionBoost only significantly in-
creases the error for one case. There also seems to
be a relation between the performance of the different

for weighting the confidence of predictions is that the
Continuous method produces significant gains for two
data sets, sonar and vehicle, for which the Discrete
method does not perform well.

In a second set of experiments we tested the idea of
using RegionBoost where the estimated accuracy for a
new point is predicted by a neural network. A network
is trained after each component is created and is used
to predict the estimated accuracy of the training data
points for that component. This network is trained
using the training data in which the expected output
signal is either the Discrete (correct or incorrect) value
associated with each training point (see ninth column)
or the Continuous estimate of the accuracy of the train-
ing point (tenth column). The number of hidden units
in these networks is the same as the number of hid-
den units in the component network. The results of
these experiments are similar to those obtained using
the nearest neighbor methods, and produce significant
gains for two other data sets (labor and ionosphere).

Together, these experiments indicate that the over-
all RegionBoost approach can produce significant gains
for many (though not all) data sets. One ques-
tion which might be raised is how RegionBoost af-
fects Boosting’s performance on different learning ap-
proaches. To answer this question, we apply Boost-
ing and RegionBoost to a much simpler form of neu-
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Figure 3: The “arch” problem. Two dimensional data

points are randomly generated with points above the
line being labeled as positive examples and points be-
low negative examples.
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Figure 4: Error rates for Ada-Boosting and two Re-
gionBoost approaches to the “arch” problem. One Re-
gionBoost approach uses a Nearest Neighbor measure
of accuracy; the other a perceptron.

ral networks, perceptrons. The two columns labeled
Perceptron show Ada-Boosting and RegionBoost us-
ing the Discrete, Nearest Neighbor approach results for
these data sets. For many of these data sets, Region-
Boost again produces significant gains in performance,
often on the same data sets where it previously worked
well. This result holds even though the performance of
the perceptron approach is often significantly different
from the performance of the other neural networks.
An interesting question now arises, namely how is
RegionBoost affected by the different methods used
for estimating the classifiers’ accuracy for a new data
point? Since the two different approaches (nearest
neighbor and network) often work well on the same
data sets this might suggest that RegionBoost’s ef-
fects are entirely dependent on aspects of the data set.
To test this notion we looked at a standard Boosting
problem, the “arch” problem shown in Figure 3. This
problem is interesting since it has been shown that a
Boosting approach can combine a sequence of classi-
fiers that use only linear decision surfaces to solve this
problem. But approaches that are not restricted to
linear decision surfaces (such as a Nearest Neighbor
approach) can perform extremely well on this problem
(a simple Nearest Neighbor approach with k=15 has a
3.1% error rate on this problem). Figure 4 shows re-
sults for a standard Boosting approach on perceptron
component classifiers, a RegionBoost approach using
the Discrete, Nearest Neighbor (k=15) accuracy esti-
mate and a RegionBoost approach using a perceptron
(linear) accuracy estimate. These results indicate that
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Figure 5: Reductions in error rate (versus Ada-
Boosting) plotted as a function of number of classifiers
combined using two Nearest Neighbor (k=15) Region-
Boost approaches, one using Discrete and the other

using a Continuous measure of error.
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Figure 6: Error rate for a problem with “one-sided

noise” using Ada-Boosting and RegionBoost.

for this problem, RegionBoost achieves much better
performance when using Nearest Neighbor estimation.
This suggests the effect of RegionBoost is not entirely
dependent on the data set but also on the method used
for estimating the accuracy of the classifier.

Which approach for assessing the accuracy of an ex-
ample is more appropriate? Figure 5 plots the reduc-
tion in error over all of the data sets for two approaches:
the Nearest Neighbor (k=15) method of measuring ac-
curacy with (1) Discrete and (2) Continuous measures.
These results indicate that the effect of the Discrete
method is strongest for the first few classifiers but tails
off, whereas the Continuous method shows an early
gain which quickly disappears and only after a large
number of classifiers again does significantly better.

Finally, we consider the question of whether Region-
Boost is subject to overfitting as described in Opitz
and Maclin (1998). They constructed artificial data
sets with “one-sided noise.” These data sets have two
relevant features and four irrelevant features where the
concept consisted of a simple hyperplane based on the
two relevant features. The data consists of a set of
randomly generated points from each side of the hyper-
plane. Then a certain percentage of the points on one
side of the hyperplane are mislabeled (creating “one-
sided” noise). Results from experiments with this type
of data set indicate Boosting often produces significant



increases in error. Figure 6 shows the performance
of Ada-Boosting and RegionBoost on one of these do-
mains. These results indicate that RegionBoost is even
more susceptible to overfitting than Ada-Boosting (this
is not surprising given that RegionBoost depends on
the training data to estimate classifier accuracy).

Future Work

The experiments presented indicate a significant ef-
fect for RegionBoost in many cases. Further experi-
ments will evaluate the effect of RegionBoost on other
learning methods (e.g., decision trees). It would also
be useful to examine the value of using RegionBoost
to combine different types of classifiers (e.g., decision
trees and neural networks). Comparisons will also be
made between RegionBoost and Boosting with Stack-
ing (Wolpert 1992) combining.

One major advantage of RegionBoost is its ability
to produce effective ensembles using components that
are only effective for small regions of problem space.
This advantage makes it possible to look at Boosting
approaches that focus much more strongly on incor-
rectly labeled points. For examples, Breiman’s (1996b)
method includes a parameter that can be used to in-
crease the likelihood that incorrectly labeled patterns
are focused on in later classifiers. With RegionBoost it
is possible to use much larger values of this parameter
since the resulting classifiers (which may focus on small
numbers of patterns) will be highly weighted only for
problems on which they appear to be effective.

Conclusions

This paper presents RegionBoost, a new algorithm for
producing a Boosting ensemble of classifiers. Region-
Boost differs from standard Boosting in how it com-
bines the predictions of the classifiers making up the
ensemble.  Other Boosting methods usually weight
the predictions of the components by a single value,
whereas RegionBoost attempts to estimate the accu-
racy of each of the classifiers based on the accuracy
of the classifiers for similar data points in the training
set. Two approaches for estimating the accuracy of
each classifier are explored, a k-Nearest-Neighbor and
a neural network method. Empirical results on several
data sets indicate both RegionBoost approaches often
produce statistically significant gains in accuracy. De-
tailed experiments investigating various aspects of Re-
gionBoost seem to indicate that the effects of Region-
Boost are based partially on the data set being exam-
ined and partially on the method used for estimating
classifier accuracy. Experiments also show that while
RegionBoost is often effective, it can suffer from over-
fitting problems just like Boosting.
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