LEARNING FROM INSTRUCTION AND
EXPERIENCE: METHODS FOR
INCORPORATING PROCEDURAL DOMAIN
THEORIES INTO KNOWLEDGE-BASED
NEURAL NETWORKS

By

Richard Frank Maclin

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocToOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN - MADISON

1995

For Russell and Gregory,

who give me renewed hope for the future.

i

Abstract

This thesis defines and evaluates two systems that allow a teacher to provide instructions to
a machine learner. My systems, FSKBANN and RATLE, expand the language that a teacher
may use to provide advice to the learner. In particular, my techniques allow a teacher to
give partially correct instructions about proceduraltasks — tasks that are solved as sequences
of steps. FSKBANN and RATLE allow a computer to learn both from instruction and from
experience. Experiments with these systems on several testbeds demonstrate that they
produce learners that successfully use and refine the instructions they are given.

In my initial approach, FSKBANN, the teacher provides instructions as a set of propo-
sitional rules organized around one or more finite-state automata (FSAs). FSKBANN maps
the knowledge in the rules and FSAs into a recurrent neural network. I used FSKBANN
to refine the Chou-Fasman algorithm, a method for solving the secondary-structure predic-
tion problem, a difficult task in molecular biology. FSKBANN produces a refined algorithm
that outperforms the original (non-learning) Chou-Fasman algorithm, as well as a standard
neural-network approach.

My second system, RATLE, allows a teacher to communicate advice, using statements
in a simple programming language, to a connectionist, reinforcement-learning agent. The
teacher indicates conditions of the environment and actions the agent should take under
those conditions. RATLE allows the teacher to give advice continuously by translating the
teacher’s statements into additions to the agent’s neural network. The RATLE language
also includes novel (to the theory-refinement literature) features such as multi-step plans
and looping constructs. In experiments with RATLE on two simulated testbeds involving
multiple agents, I demonstrate that a RATLE agent receiving advice outperforms both an
agent that does not receive advice and an agent that receives instruction, but does not refine
it.

My methods provide an appealing approach for learning from both instruction and expe-
rience in procedural tasks. This work widens the “information pipeline” between humans and
machine learners, without requiring that the human provide absolutely correct information

to the learner.

Acknowledgements

Many people had a significant effect on my life during the pursuit of this thesis, and I would
like to take the time to acknowledge as many of these people as possible.

[would like to start out by thanking my advisor, Professor Jude Shavlik, who taught me
a great deal about the process of doing research. I would also like to thank the professors
who served on my defense committee: Charles Dyer, Richard Lehrer, Olvi Mangasarian, and
Larry Travis. Your comments on the draft of my dissertation were greatly appreciated.

A number of people read versions of this dissertation and provided useful comments, and
I would like to recognize each of these people. Foremost among these is Ernest Colantonio,
who waded through the entire thesis, providing detailed comments throughout. I would also
like to thank Kevin Cherkauer, Mark Craven, Karen Karavanic, Jami Moss, and Dave Opitz
for commenting on various chapters of the dissertation.

I would like to thank a number of people whom I have had discussions with and whose
comments greatly shaped my thinking for this work. This group includes Carolyn Allex,
Mark Allmen, Kevin Cherkauer, Mark Craven, Ted Faber, Michael Giddings, Rico Gut-
stein, Haym Hirsch, Jeff Hollingsworth, Jeff Horvath, Karen Karavanic, Ken Koedinger,
Rich Lehrer, Gary Lewandowski, Ganesh Mani, Tim Morrison, Dave Opitz, Sam Pottle,
Jude Shavlik, Charlie Squires, Jim Stewart, Nick Street, Michael Streibel, Rich Sutton,
Scott Swanson, Sebastian Thrun, Geoff Towell, Larry Travis, and Derek Zahn.

My family — my mom, Francine, and my dad, Tom, my grandparents Marguerite and
Frank, Evalyn and Russell, my brothers and sister Tom, Cathy, Doug and Keith, my brothers’
significant others Kathleen, Jeanine, and Michelle, and my nephews Russell and Gregory
provided great support and inspiration to me when I needed it and I would like to thank
them all.

I would also like to thank the many people who have become significant parts of my life
through the past eight years for keeping me sane and centered. Thanks to Jack Ahrens, the
man who defines cynical and the secret owner of Ahrens Cadillac; Carolyn Allex, someone
who actually worries more than me; Mark Craven, for ignoring my singing; Ted Faber, who
got all my movie quotes; Rico Gutstein, the nicest person I have ever known; Dave Haupert,
the best teacher I know; Jeff Hollingsworth (JeffLeft), just for poking the guy who lit the
cigarette at the Coliseum; Jeff Horvath (JeffRight), for being from Buffalo; Lynn Jokela, my

v

Minnesota connection; Karen Karavanic, my virtual cousin; Matt and Sara Koehler, who
truly do not mind when someone throws up in the back of their car; Ann Kowalski, a woman
of honor; Gary Lewandowski, for his uncompromising approach to life; Walter Ludwig, the
smartest person I have ever known; Adam Mlot, my favorite navigator; Sam Pottle, my
brewmaster; Sean Selitrenikoff, the sanest man I know; Nick Street, just for listening to me
rant; Keith Tookey, for the worst puns ever; Geoff Towell, a consummate researcher; Heidi
Vowels, my Oshkosh connection; Gene Zadzilka, ditto on the Buffalo thing; and Mike, Molly,
and David Zwilling, my second favorite family (after my own).

Finally, I would like to thank the people whom I have met at PortaBella over the years.
Thanks to Jack Ahrens, Stacy Deming, Jennifer Hebeler, Mike McCormick, Nicolle Nelson,
Peter Ouimet and John Riggert, Anne Podlich and Bradley Niebres, Karen (the Jammin’
lady), and Jill (a cocktail waitress with attitude). If you get the chance, stop by and have a

drink (ask for Anne), I recommend:

Sunset in Paradise

small end triple sec 3 small end lime juice

3)
1 large end Myer’s rum :

small end sweet vermouth

N B

1 teaspoon brown sugar

Blend until smooth, garnish with a cherry, orange slice, and pineapple slice.

This research was partially supported by a grant from the University of Wisconsin Grad-
uate School, by the National Science Foundation under grant NSF IRI 90-02413, and by the
Office of Naval Research under grants N00014-90-J-1941 and N00014-93-1-0998.

List of Figures

O o ~1 O

11
12

13
14
15
16
17
18
19

20

21

22
23

Sample scene showing information that might be available while driving. . . 3
Solving a task that requires a sequence of actions can be difficult if unexpected
things can happen — like a pedestrian suddenly appearing. 4
One solution to the problem of representing a series of actions is to represent
a task as a series of sub-tasks, with one step per sub-task. 4
Interaction of the teacher and the student in my system for instructing a

reinforcement learner. Lo 9

A standard feedforward neural network with one layer of input units, one layer

of hidden units, and one layer of output units. 13
An example demonstrating overfitting.o 15
Sample of the KBANN algorithm. 17
A sample simple recurrent neural network (SRN). 19
A reinforcement learner’s interactions with the environment. 20
A sample reinforcement learning problem.o 21
An optimal policy function for the problem shown in Figure 10 21
A Q-function can be represented with a neural network. 23

An FSA that could be used to track the carry bit while adding binary numbers. 26

FSKBANN network representing the rules in Tables 6 and 7. 28
Ribbon drawing of the three-dimensional structure of a protein. 30
Neural-network architecture used by Qian and Sejnowski (1988) 31
Steps of the Chou-Fasman (1978) algorithm. 33
The finite-state automaton interpretation of the Chou-Fasman algorithm. . . 35

General neural-network architecture used to represent the Chou-Fasman al-

gorithm. 37
Percent correctness on test proteins as a function of training-set size. 41
Two possible predictions for secondary structure. 42
Reinforcement learning with a teacher. 46

The interaction of the teacher and agent in RATLE. 47

24

25

26

27

28

29

30

31

32

33

34

35

36
37
38
39
40
41

42

43

vi

Adding advice to the RL agent’s neural network by creating new hidden units
that represent the advice.0 Lo 51
The interaction of the teacher, agent, and advice-taking components of RATLE. 53

Hidden unit that represents the fuzzy condition Treel IS

CloserThanTree2.« i i v i it it e 87
Unit that represents the fuzzy condition Many Trees ARE (Tall AND Leafy),
assuming that Many is defined as a SUM quantifier. 89
Unit that represents the fuzzy condition Many Trees ARE (Tall AND Leafy),
assuming that Many is not defined as a SUM quantifier. 89
Translating a new intermediate term creates a new hidden unit that RATLE
labels with the new intermediate term name (in this case, NotLarge). 90
Translating a memory term creates a new state unit that RATLE labels with

the new memory term name (e.g., NotLarge). 91
Adding a new definition of an existing intermediate term, memory term, or
action changes the definition of an existing hidden unit in the agent’s network. 92
A negated condition leading to an action causes RATLE to introduce a new

unit (H) that is true when the condition is false. 93
When the teacher indicates more than one action is appropriate given a con-
dition, RATLE creates a link to each of the appropriate actions. 94
When the condition of an action prohibition is negated, RATLE creates a

unit (J) that is true when the condition is false, and then connects unit J to

the action with a negatively weighted link. 94
RATLE’s translation of Table 19’s second piece of advice. 96
The Pengo environment. oL 103
SitmpleMoves advice for the Pengo agent. 106
NonLocalMoves advice for the Pengo agent. 106
ElimFEnemies advice for the Pengo agent. 106
Surrounded advice for the Pengo agent. 0L 107

Average total reinforcement for my four sample pieces of advice as a function
of amount of training and point of insertion of the advice. 109
Average total reinforcement for the baseline as well as agents with the advice
SitmpleMoves, NotStmpleMoves, and OppositeSimple Moves. 112

A sample problem where advice can fail to enhance performance. 116

44
45
46
47

48

vii

The Soccer test environment. 117
An example of a breakaway Soccer environment. 119
Advice for soccer players. Lo 120
Net testset games won, as a function of training games, by an RL team with

advice and a baseline RL team without advice. 121
A second-order recurrent neural network.o L0 132

viil

List of Tables

© L =3I O Ut

11
12

13
14

15
16
17
18

19

20
21
22

23

A partial plan for making a left turn while driving. 2
Overview of the behavior of my system (FSKBANN) for refining finite-state

domain theories. o 8

The backpropagation (Rumelhart et al., 1986) algorithm for training a neural

network on a labelled example. 0000000 13
The processing loop of an RL agent. 22
Outline of the type of task to which FSKBANN is applicable. 25
Rules combined with FSA in Figure 13 to form a binary-addition domain theory. 27
Rules FSKBANN produces from the FSA shown in Figure 13 27
Primary and secondary structures of a fragment of a sample protein.. 30
Accuracies of various (non-learning) prediction algorithms. 30
Neural-network results for the secondary-structure prediction task. 32

Selected machine learning results for the secondary-structure prediction task. 32

Assignment of the amino acids to a-helix and [(3-sheet former and breaker

classes from Chou and Fasman (1978) 33
Former and breaker values for the amino acids. 34
Rules provided with the Chou-Fasman FSA (see Figure 18) to form the Chou-

Fasman domain theory. oo 36
Rules derived from the Chou-Fasman FSA (see Figure 18).. 37
Results from different prediction methods. 40
Region-oriented statistics for a-helix prediction. 42
Region-oriented statistics for 3-sheet prediction. 43
Samples of advice in RATLE’s instruction language. 48
The grammar used for parsing RATLE’s advice language. 76
The grammar used for parsing RATLE’s input language. 7
The grammar used for parsing RATLE’s fuzzy terms. 78

The cycle of a RATLE agent. 80

24
25

26

27

28

Testset results for the baseline and the four different types of advice.

Mean number of enemies captured, food collected, and number of actions
taken for the experiments summarized in Table 24.
Average testset reinforcement using the strawman approach of literally fol-
lowing advice compared to the RATLE method of refining advice based on
subsequent experience.
Average testset reinforcement for each of the possible pairs of my four sets of
advice. . . .o
Average total reinforcement results for the advice NonLocalMoves using two

forms of replay.

X

Contents

Abstract

Acknowledgements

1 Introduction

1.1

Thesis Statement . .

1.2 Contributions of This Thesis
1.3 Overview of This Thesis

1.4

Summary

2 Background
Artificial Neural Networks

2.2 Knowledge-Based Neural Networks
2.3 Simple Recurrent Neural Networks

2.1

2.4 Reinforcement Learning oL oL

3 A First Approach: FSKBANN

Overview of FSKBANN o
Transforming FSAs into State-Based Rules
Mapping State-Based Rules to a Neural Network

3.1
3.2
3.4

Experiments

3.4.1 Protein Secondary-Structure Prediction
3.4.2 The Chou-Fasman Algorithm
3.4.3 The Chou-Fasman Algorithm as a Finite-State Automaton

3.4.4 Methodology

3.4.5 Results. . ..

3.4.6 Discussion . .

3.5 Limitations and Future Directions

4 Advising a Reinforcement Learning Agent — The RATLE System

4.1

Overview of RATLE

il

iii

Nl =

10

11
11
16
18
20

24
24
25
27
29
29
32
35
38
39
43
44

45

4.2

The
5.1

5.2

5.3

5.4
3.5

5.6

5.7

5.8
5.9

X1

4.1.1 Features of RATLE’s Instruction Language 47
4.1.2 A General Framework for Advice-Taking 49
SUMIMATY + + o v v v v e e et e e e e e e e e e e e 52
RATLE Advice Language 54
The Basic Pieces: Statements L. 55
5.1.1 The IF Statement o 55
5.1.2 The REPEAT Statement 58
5.1.3 The WHILE Statement 59
Conditions L 59
5.2.1 Conditions: Terms 60
5.2.2 Conditions: Logical Combinations 60
5.2.3 Conditions: Fuzzy Conditions 60
Actions 62
5.3.1 Actions: Single Actions Lo 62
5.3.2 Actions: Alternative Actionso 62
5.3.3 Actions: Action Prohibitionso 63
5.3.4 Actions: Multi-Step Plans 63
The RATLE Preprocessor i 64
Limitations of and Extensions to the RATLE Advice Language 65
5.5.1 Limitation One: Embedding Statements within Statements 66
5.5.2 Limitation Two: Defining Procedures 67
5.5.3 Limitation Three: Using Complex Functions 68
5.5.4 Limitation Four: Providing Agent Goals 68
The Input Language 69
5.6.1 Inputs: Name Strings o 69
5.6.2 Inputs: BOOLEAN Features 69
5.6.3 Inputs: REAL Features. 70
Fuzzy Language Terms 71
5.7.1 Fuzzy Terms: Descriptors 72
5.7.2 Fuzzy Terms: Properties oL 73
5.7.3 Fuzzy Terms: Quantifiers. L oL 74
Limitations of the Input and Fuzzy Term Languages 75

SUIMIMNATY + « v v v v v e e e e e e e e e e e e e e 76

xii

6 Transferring Advice into a Connectionist Reinforcement-Learning Agent 79

6.1 Translating Statements o oo 81
6.1.1 Translating the IF Statement 82
6.1.2 Translating the REPEAT Statement 82
6.1.3 Translating the WHILE Statement 84

6.2 Translating Conditions o o 85
6.2.1 Translating Conditions: Term Names 85
6.2.2 Translating Conditions: Logical Combinations 85
6.2.3 Translating Fuzzy Conditions 86

6.3 Translating Actions L o 90
6.3.1 Translating Actions: Single Actions 90
6.3.2 Translating Actions: Alternative Actions 93
6.3.3 Translating Actions: Action Prohibitions 94
6.3.4 Translating Actions: Multi-Step Plans 95

6.4 Limitations of the RATLE Implementation 96
6.4.1 Mapping Action Recommendations 97
6.4.2 Making Network Additions to Represent Advice 97
6.4.3 Decaying State-Unit Activations 98
6.4.4 Adding “Extra” Hidden Units when Representing States 98
6.4.5 Mapping Fuzzy Membership Functions with Sigmoidal Activation Func-

FIONS . . . e 99

6.5 Summary e 99

7 Experimental Study of RATLE 101

7.1 Experiments on the Pengo Testbed 102
7.1.1 The Pengo Environment 102
7.1.2 Methodology 105
7.1.3 Results. oo 107
7.1.4 Discussion of the Pengo Experiments 114

7.2 Experiments on the Soccer Testbed 116
7.2.1 The Soccer Environmento 117
7.2.2 Methodology 119
7.2.3 Results and Discussiono oL 121

7.3 SUMIATY o o e 122

8 Additional Related

Work

8.1 Providing Advice to a Problem Solver.,

8.2 Providing Advice to a Problem Solver that Uses Reinforcement Learning

8.3 Refining Prior Domain Theories

8.3.1 Incorporating Advice into Neural Networks

8.3.2 Refining Domain Theories via Inductive Logic Programming

8.4 Inducing Finite-State Informationo

8.5 Developing Robot-Programming Languages

8.6 Summary . ..

9 Conclusions

9.1 Contributions of this Thesis

9.2 Limitations and Future Directions

9.2.1 Broadening the Advice Language

9.2.2 Improving the Algorithmic Details

9.2.3 Converting Refined Advice into Human Comprehensible Terms

9.3 Final Summary

A Details of the Pengo Testbed

A.1 Creating Initial Pengo Environments

A.2 Input Features .

A.3 Fuzzy Terms . .
A.4 Advice Provided

B Details of the Soccer Testbed

B.1 Input Features .
B.2 Fuzzy Terms . .
B.3 Advice Provided

Bibliography

x1il

124
124
126
128
128
130
130
133
134

136
136
139
140
140
142
143

145
145
146
146
147

151
151
152
152

153

Chapter 1
Introduction

Imagine trying to teach a student a complex task like driving a car. As the teacher, you
might take an approach of first giving the student some instruction about the task, and
then letting the student experiment with the task, while you periodically give the student
feedback about his' performance. For example, you might first explain how the car works,
what the lines on roads mean, what the lights at intersections indicate, etc. Then you would
take the student out to practice driving, telling the student when he makes mistakes and
explaining what to do instead. This natural approach to teaching can be very efficient for
both the student and the teacher. The ability of the student to learn from experience frees
the teacher from having to provide a complete set of instructions. Also, the ability of the
student to learn means that the teacher’s instructions need not be perfect in order for them
to be useful to the student. For the student, the instructions of the teacher give him a head
start on learning the task — he does not need to induce, from scratch, the knowledge being
provided by the teacher.

In the artificial-intelligence field of machine learning, we refer to the technique of combin-
ing teacher instruction with a student’s learning from experience, as learning from theory and
data. The “theory” portion of this phrase refers to the instructions provided by the teacher.
We generally refer to the knowledge about a task provided by a teacher as a domain theory.
A domain theory can be represented in any convenient formalism, though most domain the-
ories in machine learning take the form of rules. “Learning from data” refers to the learning
the student does by accumulating experiences, including feedback from the teacher, while
actually performing the task. A computer that is learning from theory and data generally
starts by incorporating a domain theory provided by a teacher. The learner then obtains
a set of samples of how the task should work, and the learner uses these samples to refine
the domain theory so that it produces the correct solution for these samples. Thus, these

techniques are often called methods for refining domain theories.

'In order to help distinguish the teacher from the student, I will refer to the teacher as feminine and the
student as masculine; no subtext is implied by this choice.

Table 1: A partial plan for making a left turn while driving.

Set the left turn indicator.

Wait for the light to turn green.

Wait until there is no oncoming traffic.
Turn the wheel left.

ANl

In machine learning, techniques for refining domain theories have been widely studied (Fu,
1989; Ginsberg, 1988; Maclin & Shavlik, 1993; Ourston & Mooney, 1990; Pazzani & Kibler,
1992; Thrun & Mitchell, 1993; Shavlik & Towell, 1989) and have proven to be effective on
a number of different tasks. In this thesis | extend these techniques to a largely unexplored
area — refining procedural domain theories. A procedural domain theory is a domain theory
for a task that is solved as a sequence of steps rather than all at once. For example, a
procedural domain theory for the driving task might have the multi-step rule for making a
left turn shown in Table 1. The rule is procedural because each step follows in a sequence —
the next step is executed in the context of the previous steps having already been executed.
It is this contextual aspect which makes this type of task difficult for standard techniques
for refining domain theories, and it is this aspect which my work addresses.

Most algorithms for refining domain theories assume that the task being learned consists
of a set of input vectors (i.e., feature values describing the task) and corresponding output
vectors (i.e., the value to be computed from the inputs), where each input-output pair is
independent of the other input-output pairs. It is difficult, however, to represent contextual
tasks this way. For example, in the driving task the input vector might include a 2D-image
of the current scene from the car plus readings from the car gauges (see Figure 1). The
output vector would then need to represent the action(s) the learner needs to do to achieve
the current goal, but this can be extremely difficult. For example, we might have an output

vector with one slot for each step the learner needs to take:

SetTurnIndicator SetSteeringWheel Wait For
Left | Right | None | Left | Right | Centered | Green
X X X

but of course this loses the sequential aspect of the task, since no ordering is indicated for

the actions (e.g., it might be disastrous to turn the wheel left and accelerate before waiting

Stop Light

/
/ Speedometer

/-\/ Dashboard

<& ,@ C> Turn Signal

Centerline
7

Steering Wheel

Figure 1: Sample scene showing information that might be available while driving.

for the green light). This aspect could perhaps be partially addressed by changing the

representation to include order information:

SetTurnIndicator SetSteeringWheel Wait For
Left | Right | None | Left | Right | Centered | Green
1 0 0 4 0 0 2

where non-zero numbers indicate the ordering for the actions, but even this does not really
solve the problem, since what happens if an action must be executed multiple times as part
of the plan? This problem could be fixed (at least in part), but each of these fixes makes
the output vector more and more complex, making the overall learning task increasingly
difficult.

Another problem with having a task defined by a single input and output vector pair
is how to specify solutions for tasks that change during the execution of the solution. For
example, imagine that the driver initially sees the situation shown in Figure 1 and begins
the plan to turn left when a pedestrian appears (see Figure 2). In this case we would hope
that the learner would alter the current plan and wait until the pedestrian is out of the way,
but if the learner’s input description is not a complete description of the world, it will be
difficult to anticipate all the possible situations that can come up (Schoppers, 1994).

A more appealing approach is to treat a sequential task as a series of sub-tasks. In this
approach each input vector represents the current description of the task, and the output
vector is the next step to be taken. Figure 3 shows a sample of how this works for the driving

task. In the initial environment (shown on the left in Figure 3), the driver decides to turn

Figure 2: Solving a task that requires a sequence of actions can be difficult if unexpected
things can happen — like a pedestrian suddenly appearing.

World at time t time t+1 time t+2
/ : : / : : /
/ : : /s : : /s
s ﬁ»é % _»Turn S
¢ Left-Turn: : Wheel :

N\ Indicator : N\ © Left

Figure 3: One solution to the problem of representing a series of actions is to represent a
task as a series of sub-tasks, with one step per sub-task.

left, and starts this process by setting the left-turn indicator. The driver then continues by
turning the wheel left in the resulting environment, until the actions needed to execute the
left turn have each been performed. This is essentially the approach on which I will focus in
this thesis.

Given that I want to apply a learning-from-theory-and-data approach, and that I am
focusing on tasks solved as sequences of steps, the first issue to address is how to form
instructions to the computer learner. In one sense, little work needs to be done as long as
the teacher understands that her instructions, rather than attempting to solve the whole task,

should concern the appropriate next output given the current input data. Thus, existing

approaches already work, since the teacher could simply treat each input-response pair as
a separate task. But this makes it impossible for the teacher to specify certain types of
seemingly natural instructions for solving these types of tasks. For example, the teacher
cannot give instructions about solving tasks in which the next step taken depends on the
step taken previously. This thesis focuses on extending an existing technique for refining
domain theories to a richer instruction language that allows these types of instructions.

In my preliminary approach to broadening the instruction language for refining proce-
dural domain theories, I allowed instructions that “remember” information from previous
problem-solving steps. In order to do this I introduced the idea of allowing a teacher to give
instructions in the form of a finite-state automaton. The state of the automaton acts as a
memory for information that the teacher thinks is important. At each problem-solving step
the student determines a new state given the current input and then retains that state for
the next problem-solving step. Thus the student does not have to solve each step as an in-
dependent task, but could make use of information determined in prior steps. In the driving
task, the state could be used as a memory for information that is not always observable. For
example, the learner could use the state to remember the current speed limit. In that case
the state would be updated every time the learner observed a speed limit sign that changed
the current speed limit.

After experimenting with my preliminary approach, I turned to the more ambitious prob-
lem of allowing a teacher to instruct a reinforcement learner. A reinforcement learner learns
to select an action, given the current input, that will now (or in the future) cause the learner
to receive positive reinforcements (i.e., rewards) while avoiding negative reinforcements (i.e.,
penalties). A reinforcement learner therefore naturally fits my general approach, since such
a learner views a task as a sequence of environment and action pairs.

In Chapter 5, I present the language I developed that allows a teacher to instruct a
reinforcement learner, and discuss the types of instruction allowed in that language. One
natural type of instruction that I allow the teacher gives the learner plans similar to the one
shown in Table 1. This plan suggests a sequence of steps to achieve a goal given the current
input. Implementing this plan in an approach where each step is treated as a separate
sub-task is tedious. The teacher must specify how the environment looks before the first
step in the sequence. Then the teacher must specify how the environment looks before the
second step, etc. Instead, I allow the teacher to specify this type of instruction as a sequence
of related steps with one starting environment, and develop a mechanism that allows the

student to incorporate this plan as a sequence.

Most techniques for refining domain theories accept instruction only before the refin-
ing process begins. In my approach for instructing a reinforcement learner I removed this
restriction. I set up my mechanism so that instructions provided by the teacher result in
additions to the student’s current knowledge that may be made at any time during the stu-
dent’s learning process. This changes the process of instructing the student to a continual
interaction. The teacher can watch the performance of the student, and when the teacher
feels it is appropriate, she can provide instructions. The teacher can thus address problems
of the student’s behavior that she may not have anticipated initially. The student spends
his time learning by exploring the environment, but periodically receives instructions from
the teacher. After receiving instructions, the student returns to exploration, where he can
use his experiences both to induce new “rules” as well as refine the instructions given by the

teacher. This process can thus be repeated as often as the teacher cares to give instructions.

1.1 Thesis Statement

The key aspect of any algorithm for refining domain theories is the type of domain theory
it is able to refine. (Recall that a domain theory is the set of knowledge that a teacher
wants to communicate to a student.) The limitations on the types of knowledge a teacher
can communicate are determined by the “language” the teacher uses to specify the domain
theory — what constructs the teacher may use in creating the domain theory. Thus, the key

aspect of my thesis is what types of instruction my systems are able to use and refine:

Thesis: Many interesting tasks are best solved as sequences of related steps.
A powerful approach for creating computer problem solvers is to develop machine
learners that learn from both instruction by a teacher and direct experience with
the task at hand. Such an approach works by refining the instructions, called a
domain theory, provided by the teacher. The learner refines the domain theory
with a set of samples that show how the task is supposed to be solved. In order to
apply this approach to tasks defined as sequences of steps, we need to define a lan-
guage for instruction that includes constructs that capture the sequential aspect
of problem solutions. Examples of such language features include constructs for
remembering information during problem solving and for representing sequences

of problem-solving steps. We are constrained to selecting language features that

produce knowledge that can be refined by inductive learning. A technique incorpo-
rating such features will demonstrate the benefits of a “learning from theory and
data” approach for domains that were not previously amenable to this approach

— procedural domains.

Let us examine the claims of this thesis. The first claim, that many interesting tasks are
best solved as sequences of steps, I will assert without proof — a casual perusal of any text
on algorithms or planning should indicate that many interesting tasks are framed as needing
procedural solutions. As demonstrated in my discussion above, a natural way to solve such
problems is with a sequence of steps, since the defining characteristic of such problems is
their sequential nature.

The power and usefulness of the machine learning approach of refining domain theories
has been discussed previously (Maclin & Shavlik, 1993; Ourston & Mooney, 1990; Pazzani
& Kibler, 1992; Thrun & Mitchell, 1993; Towell & Shavlik, 1994). The key to combining
instruction with experience is that the teacher must be able to communicate the knowledge
she considers important to the learner. If we accept the premise that the tasks in which we
are interested are best viewed as sequences of steps, it is natural to assume that a language
for instructing such a system would need to provide the ability to articulate sequential
information. Thus I will focus on the last claim, that such an approach, one that refines
procedural domain theories, will yield benefits similar to those shown for learning from theory

and data approaches on non-sequential tasks.

1.2 Contributions of This Thesis

To assess the main claim of my thesis, I will present two techniques that refine procedural
domain theories, and will also present experimental results that demonstrate the effective-
ness of these methods. Both of my approaches for refining procedural domain theories use
backpropagation (Rumelhart et al., 1986) on neural networks as their basic learning method
and build on work in knowledge-based neural networks (Towell et al., 1990).

My preliminary technique (FSKBANN) focuses on refining domain theories represented as
finite-state automata (Maclin & Shavlik, 1993). Table 2 shows the general input and output
behavior of this system. It uses a finite-state domain theory and some training examples to
refine the provided domain theory.

To implement the process in Table 2, I show how to extend an existing algorithm for

Table 2: Overview of the behavior of my system (FSKBANN) for refining finite-state domain
theories.

Given: An imperfect finite-state domain theory
and
A set of sample solutions

Produce: A refined finite-state domain theory

refining domain theories to finite-state domain theories. First, [explain how to transform
a finite-state automaton into a set of rules that incorporate contextual information. Next,
I present a technique to translate these “state-based” rules into a corresponding neural net-
work. To test my system, I present experiments employing this technique to refine the
Chou-Fasman (1978) algorithm, a method for predicting protein secondary structure, show-
ing that the resulting refined algorithm significantly outperforms the original algorithm.

In my second approach I develop a method that lets a teacher provide instructions to a
reinforcement learner (Maclin & Shavlik, 1996). In this approach I use a learner that performs
connectionist Q-learning (Lin, 1992; Sutton, 1988; Watkins, 1989). My work allows the
reinforcement learner to take instructions in the form of programming-language constructs
in a simple, yet expressive, language that | have developed. This language allows the teacher
to make statements about single actions, as well as sequences of actions, to be taken in
given environments. The computer learner translates these instructions into additions to
its current neural network. Since the learner represents the knowledge as additions to its
network, it is able to continuously accept more advice, rather than being limited to receiving
advice only at the beginning.

My technique adds a third step to the reinforcement learner’s traditional sense-react loop.
At the start of each iteration of the loop, the student first checks if advice from the teacher
is available, and if it is, the student stops to incorporate the advice. The student then
returns to exploring the environment, using any future experience to evaluate the advice.
The teacher returns to observing the student’s behavior, providing further advice if it is
warranted. Figure 4 outlines the interaction of the teacher and student in this system. To

test this system, I present experiments for two simulated domains, one similar to video

Teacher PSS
@\\\ Behavior:

Instruction

Figure 4: Interaction of the teacher and the student in my system for instructing a reinforce-
ment learner. The process is a continuous loop — the student will continue to explore and
learn from experience in its environment until it receives instructions from the teacher; it
then stops, incorporates the instructions, and then returns to learning from experience. The
teacher watches the behavior of the student until she decides to give the student instruc-
tion. After giving instruction the teacher returns to observing the behavior of the student
to formulate more instructions.

games used by other researchers (Agre & Chapman, 1987; Lin, 1992), and a second domain

for playing soccer.

1.3 Overview of This Thesis

In this chapter I have presented the motivation for my thesis and outlined the major issues
I plan to explore in the remainder of this thesis. Chapter 2 presents background material
necessary to understanding my work. In Chapter 3, I present my approach to refining domain
theories expressed using finite-state automata. An overview of my method for allowing a
teacher to instruct a reinforcement learner appears in Chapter 4. Chapter 5 defines my
language that allows a teacher to instruct a reinforcement learner, and in the following
chapter I give details on how the student maps constructs in this language to changes to the
function being learned. In Chapter 7, I present experiments that verify this technique on
two simulated domains. Next, I discuss related work, and finally 1 present conclusions and

possible future directions for my work.

10

1.4 Summary

In summary, my work extends the applicability of machine learning by broadening the inter-
action between the human teacher and the machine learner. Rather than limiting communi-
cation to a set of training examples, possibly augmented with some inference rules, I allow
the teacher to also tell the learner what to remember between steps and allow the teacher to
provide sequences of actions to be performed under certain circumstances. Importantly, the
teacher can provide this rich information at any time while the learner is improving himself.
Based on her observations of the learner, the teacher is likely to produce useful instruction,
something that is less likely if the teacher is required to provide all of her instructions before
learning commences. Finally, the teacher’s instructions need not be perfectly correct — the

learner can refine them based on subsequent experiences.

11

Chapter 2
Background

In this chapter I will present an overview of the four areas of research that my work builds
upon. The first area is neural networks, which I use as my means of empirical learning
— learning a concept from samples of the concept. I chose neural networks because they
have been shown to be a powerful inductive learning technique for a number of different
types of problems (Atlas et al., 1990; Fisher & McKusick, 1989; Shavlik et al., 1991). 1
also chose neural networks because they allow me to build upon a particular algorithm for
refining domain theories called KBANN (Towell et al., 1990; Towell, 1991; Towell & Shavlik,
1994), which I will outline in the second section. KBANN is an algorithm for translating
propositional rules into neural networks, and has proved effective on a number of domains.
The third area I will present is simple recurrent neural networks (Elman, 1990; Jordan,
1989), the specific type of neural network I will use in order to deal with the contextual

information in procedural domain theories. Finally, T will describe reinforcement learning
(Sutton, 1988), the task I investigate in Chapters 4-7.

2.1 Artificial Neural Networks

Neural networks are mathematical constructs based loosely on observations of the behavior
of human brain cells. A neural network is composed of a set of units, corresponding to cells
in the brain, and connections (or links) between those units. Each link has associated with
it a weight that reflects the strength of the connection between the units. Associated with
each unit is a net input value and an activation value. The net input value represents the
total input impinging on the unit. One common way to calculate the net input value for a
unit ¢ is to sum the value of the activation times the weight for each of the units j connected
to unit ¢:

NetInput, = > weight;_; X activation; (1)
j€LinkedT o(7)

12

where weight;_,; is the weight on the link from unit j to unit ¢, and LinkedTo(7) are the
units that have links to unit :. To this sum we add a term called the bias, which may be
thought of as a weight on a link from a unit whose activation is always one. The reason for

using a bias is discussed below. This gives us the equation:
NetInput; = > weight;; X actiwvation; | + bias; (2)
Jj€LinkedT o(7)

The activation value of unit ¢ is calculated as a function of the net input to the unit. One

common activation function is the sigmoid function:

1 .
1 + e—NetInputi (3)

activation; =

which can be thought of as a smoothed step function — at large positive net input values the
activation for unit 7 will be near one and at large negative net input values the activation will
be near zero. The advantage of a smoothed step function is that the derivative can be taken
of this function, which means a simple learning rule exists. The bias term of Equation 2 can
be thought of as a threshold for the smoothed step function. A large negative bias term acts
as a high threshold, since the total net input from the connected units is offset by the large
negative bias value.

A description of the units and the connections between units is referred to as the archi-
tecture of a neural network. Neural networks generally have a set of units that are labeled
the input units — the activation values of these units are set prior to activating the network.
After setting the activation values of the input units, the network then proceeds to calculate
the activation values for the other units in the network; this is called activating the network.
Neural networks generally produce a set of output values which represent the function the
network is supposed to calculate. For example, we could create a network with two Boolean
input units. If the network was supposed to calculate the AND of these two units, we would
have one output unit whose value would be one when both input values are one and zero
otherwise.

One commonly used network architecture (see Figure 5) divides the units of the network
into three distinct groups: a layer of input units, zero or more layers of hidden units, and
a layer of output units. In this type of architecture links are unidirectional and are only
allowed from units in lower layers to units in higher layers (this type of network is often

called a feedforward neural network). This feedforward aspect makes it easy to calculate the

13

Output Units

Hidden Units

Input Units

Figure 5: A standard feedforward neural network with one layer of input units, one layer of
hidden units, and one layer of output units. Note that input units have links only out of
them and output units have links only into them. In future neural-network diagrams, I will
leave out the arrow heads on links to reduce diagram clutter. Unless a link is specifically
marked, the reader may assume that it is a unidirectional link from the unit lower in the
diagram to the unit higher in the diagram.

activation value of units since there are, by definition, no cycles in the connectivity graph;
hence, the activation values can be calculated in a single pass.

The key question in neural networks is how to “teach” a network a particular function.
We teach a neural network by training it on a set of examples of the input-output behavior
we desire the network to reproduce. Table 3 shows the backpropagation (Rumelhart et al.,
1986) method for training a network on an example. The error signal for a unit depends on

the cost function used in learning. A basic principal of cost functions is that as the predicted

Table 3: The backpropagation (Rumelhart et al., 1986) algorithm for training a neural
network on a labelled example.

1. Set the input activations to the inputs for the example.
2. Activate the network to determine the current predicted outputs.

3. Calculate an Errorsignal for the output units using the target outputs from the exam-
ple and the predicted outputs from the current network (based on the cost function).

4. Backpropagate the error signals through the network; this involves determining the
appropriate error signals for the non-output units.

5. Change the weights and biases in the network to reduce the cost.

14

output values move closer to the actual output values the cost decreases. One common cost
function makes cost proportional to the sum of squared errors between the actual output

values and the predicted output values:

#output units
cost = 5 Z (target, — acté'vationk)Z (4)
k=1
In order to change the network to reduce the cost, we take the derivative of the cost function
we have chosen with respect to the free parameters (i.e., the weights and biases). For the
output units using the sigmoid activation function, taking the derivative of the cost function,

we get an error signal (d) of:
d, = activation, (1 — activation,) (target, — activation,) (5)
We backpropagate the output error signals recursively to the hidden units to get:

O = activationy (1 — activationy,) Z 0, werghty (6)
mé€LinkedFrom(h)

where LinkedFrom(h) are the units that have connections from unit h. For more details on
how these derivatives are calculated see Rumelhart et al. (1986).

Note that we do not immediately try to set the weight to a “correct” value given its error
signal. Rather we do gradient descent learning', where we change the weights by a small
amount in the direction indicated by the sign of the error signal and the sign of the weight.
One obvious reason to do this is that the partial derivatives do not take into account the
interactions among the changes to the weights. Another important consideration is that we
want the network to produce a function that is correct for all of the examples. We do this
by presenting each of the examples a number of times and making a small change for each
example — thus the network will hopefully discover a set of weights that will work for many
of the examples. In this way we hope to achieve a network that generalizes well — a network
that produces the correct output vector even for examples that are not presented during

training. If we were to change the weights in the network to get one example right we might

!Technically, the learning is only gradient descent if we change the weights with respect to the error for
all of the patterns. When we change the weights after determining the error for a single pattern (this is
referred to as online learning), the technique is more properly referred to as gradient-based — since the error
direction for a single pattern will not necessarily be in the same direction as the error for all of the patterns
collectively.

15

undo the learning we did to get a previous example right. Finally, we do not want to make
the assumption that the outputs of any one example are guaranteed to be correct; therefore
we do not want to change the network to overly emphasize any particular example.

So, the basic approach to training a network is to repeatedly present a series of examples
of the desired function until the function is “learned.” We call the examples used to train the
network the training data. A key issue is deciding when to stop training. A standard problem
with neural networks is overfitting. Overfitting occurs when a network starts learning to “fit”
the noise in the set of examples. Noise in a set of examples occurs when the output values
are not perfect. In this case, it may be inefficient for the learning algorithm to completely
reproduce the outputs for the training data (see Figure 6). Training a network until it overfits
may reduce the generalization done by the network.

The problem of overfitting is ubiquitous in neural networks, and there are a number of
approaches to handle this problem. One approach is to introduce a term into the cost function
that penalizes a network that is overfitting the data. Such techniques are called reqularization
methods. One standard method for regularization is called weight decay (Hinton, 1986).
Weight decay works as its name suggests: at each step each weight is decayed towards
zero by a small amount. This approach is equivalent to adding a penalty term to the cost
function proportional to the sum of the squared weights in the network. Other approaches to
regularization include network pruning (Le Cun et al., 1990) and soft-weight sharing (Nowlan
& Hinton, 1992).

Another way to prevent overfitting is to use a wvalidation set (Lang et al., 1990). A

X

Figure 6: Two possible functions we could fit to a set of points (shown as diamonds). If
we assume a certain amount of error in the observed y values associated with the = values,
the solid curve is probably a more desirable solution; the dashed line would be a curve that
“overfits” the data.

16

validation set is a subset of the training data that is set aside before training occurs. During
training we periodically assess how well the network performs for the validation set and
keep the network that does the best. This works on the theory that once the network
starts overfitting, the generalization performance of the network will suffer and therefore the
performance of the network on the validation set will go down. In this work, I use both weight
decay and validation sets to prevent overfitting during my experiments — though not both
at the same time. I will indicate which method I use in the description of the methodology
for each of the experiments.

A final, and perhaps the most fundamental issue in neural networks, is how to select
an appropriate neural-network architecture for a particular problem. The number of input
and output units is largely determined by the problem being addressed, but the number of
hidden layers, how to connect the units together, and even whether to use a feedforward
network at all, are often decided on the basis of intuition. For example, if the resulting
network does not have enough units to solve the problem, there is no easy way to determine
this — other than having the learner fail to learn a solution. Methods addressing the problem
of selecting an appropriate network architecture include techniques for network pruning (Le
Cun et al., 1990), genetic search (Opitz & Shavlik, 1993), and cascade correlation (Fahlman
& Lebiere, 1990). In this work I rely on the domain theory provided by the teacher to
select an appropriate architecture. As will be seen in the next section, the instructions of
the teacher result in a corresponding neural-network architecture. Thus, as in KBANN, |
operate under the principle that the network architecture I have chosen reflects an expert’s

knowledge.

2.2 Knowledge-Based Neural Networks

The KBANN (for Knowledge-Based Artificial Neural Networks) algorithm (Towell et al., 1990;
Towell, 1991; Towell & Shavlik, 1994) is designed to refine domain theories presented in the
form of simple propositional rules (see Figure 7a). KBANN works by creating a neural network
that contains the knowledge encoded in the rule set. We can then refine the resulting network
using a standard neural-network learning algorithm such as backpropagation (Rumelhart
et al., 1986) on a set of examples.

KBANN starts by constructing an AND-OR dependency graph from the rules in the domain
theory. For example, the rules in Figure 7a would result in the dependency graph shown

in Figure 7b. KBANN replaces each proposition with a corresponding network unit and

17

@ (b) a

Figure 7: Sample of the KBANN algorithm: (a) a propositional rule set; (b) the rules viewed
as an AND-OR dependency graph; (c) each proposition is represented as a unit (extra units
are also added to represent disjunctive definitions, e.g., b), and their weights and biases are
set so that they implement AND or OR gates, e.g, the weights b—a and c¢—a are set to 4
and the bias (threshold) of unit a to -6; (d) low-weighted links are added between layers as
a basis for future learning (e.g., an antecedent can be added to a rule by increasing one of
these weights).

adds units where conjunctions are combined into disjunctions (see Figure 7c). In a KBANN
network, the units of the network represent Boolean concepts. A concept is assumed to be
true if the unit representing the concept is highly active (i.e., the net input is highly positive,
and therefore the activation value of the unit is near one), and false if the unit is inactive
(i.e., the net input is highly negative, and therefore the activation value of the unit is near
zero). Thus, to capture the knowledge of the rules, KBANN must set the weights and biases
of the network so that the units representing propositions have this Boolean property: the
unit must have activation near one when the rule set indicates the proposition is true and
zero otherwise.

To represent the meaning of a set of rules, KBANN connects units with highly-weighted
links and sets unit biases (thresholds) in such a manner that the (non-input) units emulate
AND or OR gates, as appropriate. For an AND unit, this is done by setting the weight for
each unnegated antecedent to a large positive value (in my work, to a value uniformly in

the range [3.9,4.1]), and the weight for negated antecedents to a large negative value (in the

18

range [-4.1,-3.9]). The bias is then set to
bias = —4 (#unnegated_antecedents — 0.5) (7)

Thus, the unit will have a large positive net input value (around 2.0), if and only if, each of
the unnegated antecedents to the unit are true (near one) and all of the negated antecedents
are false (near zero); otherwise the unit will have a large negative net input value. For an

OR unit the weights are set similarly, but the bias is set to
bias = 4 (#negated_antecedents — 0.5) (8)

Thus, the unit will have a large negative net input value (around -2.0), if and only if, each of
the negated antecedents to the unit are true (near one) and all of the unnegated antecedents
are false (near zero); otherwise the unit will have a large positive net input value.

Once the network has been initialized with the knowledge in the rule set KBANN fin-
ishes by adding links between units at “adjacent” levels that are not already connected (see
Figure 7d). In this work, I calculate the level of a unit bottom up (from the input layer
upwards). The links I add are low-weighted links (e.g., links with weights in the range [-
0.1,0.1]). These links serve as a basis for refining the domain theory — they allow the network
to add an antecedent to a rule where that antecedent was not in the original domain theory.

In this thesis, I expand on the language that KBANN is able to translate. One extension I
introduce adds the capability for the network to “remember” values across multiple inputs.
I use this capability to retain contextual information during the execution of a task (as
discussed in Chapter 1). In order to make this extension, I need a more powerful neural
network than the standard feedforward network shown in Figure 5, one that has the ability
to “remember” information. To do this I use simple recurrent neural networks, a type of

recurrent network, which I present in the next section.

2.3 Simple Recurrent Neural Networks

A simple recurrent neural network (SRN) (Elman, 1990; Elman, 1991; Jordan, 1989), is,
as its name implies, a straightforward form of recurrent network. In an SRN, some of the
units in the network are connected to input units that “remember” the values of those units

from the previous activation of the network. This is done by introducing recurrent links.

19

These recurrent links connect the units whose values are to be “remembered” to input units
that represent the remembered values. These links use a simple copying function as their
activation function.

Figure 8 shows an example of an SRN. In this SRN one input value, one hidden value,
and one output value are remembered. The input units can be divided into two groups: the
input units whose values are set for the current input vector; and those input units, called
context units, whose values are copies of the values of units from the previous activation of
the network.

We activate an SRN for an example by first setting the activation values for the context
units; they are set by copying the activation values at the last time step of the units they
are connected to. Then we set the remaining input values according to the input vector
of the example. Finally we activate the remainder of the network as done with a standard
feedforward network. During learning we ignore the recurrent links — no learning is done
on these links. This is the main difference between SRNs and other recurrent techniques
such as backpropagation through time (Minsky & Papert, 1969; Rumelhart et al., 1986)
and recurrent backpropagation (Pineda, 1987). Most recurrent network techniques are more
complicated than SRNs because they have to deal with learning across these recurrent links,

but they are also more powerful for this same reason.

Output Units

Hidden Units

Input Units

Figure 8: A sample simple recurrent neural network (SRN). The recurrent links are shown
as dashed lines. These links are used to create context units, whose activation values are
copies of the activation values of the units to which they are connected. The activation
value of a context unit is the activation value of the unit to which it is connected from
the previous activation of the network — these units “remember” previous activation values.
In this SRN the rightmost non-context unit from each layer is remembered, although any
possible combination of the units could be remembered.

20

In the work, I use the instructions the teacher presents to select what contextual informa-
tion I retain via context units. The key questions I address are (1) how does this contextual
information get represented in the instruction languages my learner understands? and (2)
how does this information get translated into appropriate network units, including context

units?

2.4 Reinforcement Learning

Reinforcement learning (RL) is the focus of the second portion of this thesis, and therefore I
will spend some time outlining this area. A number of early Al systems made use of reinforce-
ment learning techniques, work such as Samuel’s checker-playing program (Samuel, 1959)
and Holland’s bucket-brigade algorithm (Holland, 1986). In standard RL (see Figure 9),
the reinforcement learner (usually called the agent) senses the current state of the world,
chooses an action to apply to the world, and occasionally receives rewards and punishments
based on its actions and the states it sees. Figure 10 shows an example of a reinforcement
learning problem. Here the states are the agent’s location in a 2D maze, the actions are
moves to adjacent states, and the reinforcements favor the agent finding the goal as quickly
as possible. Based on the reinforcements from the environment, the task of the agent is to
discover a policy that indicates the “best” action to take in each state (see Figure 11).

In this work, I employ a particular type of RL called Q-learning. In Q-learning (Watkins,
1989) the policy is implemented by an action-choosing module that employs a utility function
that maps states and actions to a numeric value (the utility). The utility function in Q-
learning is the Q-function which maps pairs of states (5) and actions (A) to the predicted
future (discounted) reward Q(S, A) that will be achieved if action A is taken by the agent

in state S and the agent acts optimally afterwards. It is easy to see that given a perfect

state

action

= Environment
reinforcemen!’

Learner

Figure 9: A reinforcement learning agent interacts with the environment in three ways: it
receives a description of the state from the environment, selects an action that changes the
environment, and then receives a reinforcement signal based on the action it chose.

21

Environment(2D Maze) Possible Actions

State—L <.f.>

—— \j
o

Reinforcements

+100entering goal
—lotherwise

Obstacle——=

Figure 10: A sample reinforcement learning problem, with the set of possible states, the
actions that the agent may take to change (move around in) the environment and the rein-
forcement signals.

¥

-> -

>y
-

ry

1t

Figure 11: An optimal policy function for the problem shown in Figure 10. An optimal
policy function should achieve the maximum future discounted reward.

version of this function, the optimal policy is to simply choose, in each state that is reached,
the action with the largest utility.
Note that the utility function predicts the discounted future reward that will result from

an action:
o0

discounted future reward = Z)\t_l reward, (9)

t=1
where reward; is the reinforcement received at time ¢ and A is the discount value. Generally
we use a A value between zero and one. This is done for two reasons. First, setting A = 0
would mean all future rewards are ignored, while choosing the A = 1 would mean that all
solutions that eventually reach the same goal would be equivalent, even if one path was
arbitrarily longer. Choosing a value between zero and one causes the agent to seek solutions
that will produce future rewards, but the discounting causes the agent to seek to achieve

these solutions sooner rather than later. A second reason for choosing a value between zero

22

Table 4: The processing loop of an RL agent. Once the policy function is learned, we forgo
step 5 and in step 2 simply choose the action with the highest utility.

1. Read sensors (description of state).

2. Stochastically choose an action, where the probability of selecting an action is propor-
tional to the logarithm of its predicted utility (i.e., its current Q value). Retain the
predicted utility of the action selected.

3. Perform selected action.
4. Measure reinforcement, if any.

5. Update utility function: use the current state, the current Q-function, and the actual
reinforcement to obtain a new estimate of the expected utility for taking the previous
action in the previous state; use the difference between the new estimate of utility
and the previous estimate to update the predicted Q-value for the previous state and
action.

6. Go to 1.

and one is that it makes it possible to use a simple learning rule.

To learn the utility function, the agent starts out with a randomly chosen utility function
and explores its environment using the loop shown in Table 4. As the agent explores,
it continually makes predictions about the reward it expects and then updates its utility
function by comparing the reward it actually receives to its prediction. To update the current
predicted utility value (Q(s, a:)) for a particular state (s¢) and action (a;), we perform the

action in that state and obtain a new prediction Q(st, a;) using the following formula:

N

Q(st,ar) = reward, + X max{Q(siy1,a) | a € Actions} (10)

We then take this estimate and update Q(s;, a;) with the following rule:

A

A Qs ar) = p [Qs,a1) — Qs1,a0)] (11)

where p is the learning rate parameter for the system. Watkins (1989) has shown that such

an approach will, in the limit, find an optimal policy function.

23

Q(state,actionl) Q(state,action2)

AN AN

Hidden Units

hefiRofhod

Sensor Values [state]

Figure 12: A Q-function can be represented with a neural network. For the neural network,
the input is the description of a state and the outputs are the predicted utilities for each of
the actions for the input state.

In this thesis I will be employing a generalization of QQ-learning called connectionist Q-
learning (i.e., neural-network Q-learning). In connectionist Q-learning (Lin, 1992; Sutton,
1988; Watkins, 1989), the utility function is implemented as a neural network, whose inputs
describe the current state and whose outputs are the utility of each action (see Figure 12).
[employ connectionist Q-learning because representing a complete Q-function table would
be infeasible, both in terms of the size of the table and the time it would take to learn
the complete table. In connectionist Q-learning the learner creates a function that may
generalize across a number of states when predicting the Q value for an action. Thus,
a connectionist Q-learner may be able to represent the entire table with a much smaller
set of parameters, if many table entries can be represented by a simple network function.
While a connectionist Q-function is advantageous both in terms of space and in time to
learn a particular Q-function, because of the gradient-based nature of neural networks, a
connectionist Q-function is not guaranteed to find an optimal policy function — a limitation

which will become important later.

24

Chapter 3

A First Approach: FSKBANN

This chapter describes my initial approach (called FSKBANN) to refining a procedural domain
theory (Maclin & Shavlik, 1991). FSKBANN (for Finite-State KBANN) translates domain
theories that include generalized finite-state automata - FSA (Hopcroft & Ullman, 1979),
into corresponding neural networks. FSKBANN then refines the resulting networks using
backpropagation (Rumelhart et al., 1986) on a set of training examples. To demonstrate the
value of FSKBANN [will present experimental results from refining the Chou-Fasman (1978)
algorithm, a method for predicting (an aspect of) how globular proteins fold, an important

and particularly difficult problem in molecular biology.

3.1 Overview of FSKBANN

A procedural domain theory deals with tasks that are sequential in nature and that may have
some significant contextual aspect to solving the problem. In FSKBANN I use state in the
domain theory to represent the context of the current problem-solving step. For example,
if the task is to drive a car to the market, the state might indicate the current speed limit.
Any rules the teacher introduces to help solve this task can therefore take into account the
state of the partial solution — rules to accelerate the car might consider the current speed
relative to the speed limit, for example. The state thus acts like a memory for the learner.

To deal with the sequential nature of the tasks, I process examples sequentially (i.e.,
activate the network for the first input vector in the sequence, then the second, then the
third, etc.), retaining the appropriate state values for the next input vector. Table 5 shows
the type of task to which FSKBANN is applicable — domain theories for state-based problem
solvers.

To refine this type of domain theory I extend the KBANN algorithm (Towell et al., 1990)
to theories that include finite-state automata. The resulting domain theory is a hybrid one
— consisting of finite-state automata, as well as rules that can make reference to the states

of the FSAs. In order to translate this hybrid domain theory into a corresponding neural

25

Table 5: Outline of the type of task to which FSKBANN is applicable.

Repeat

Set input = current externally-provided information

|

previous internal information
Produce, using domain theory,

output = results specific to this problem-solving step

|

current internal information

Until a Termination Criterion is met.

network, I add two processes to the KBANN algorithm: (1) a process for translating FSAs
into a set of rules representing each state with a pair of values; and (2) a process for mapping
the resulting rules, state values and all, into a neural network. Note that a domain theory
may contain more than one FSA. When a domain theory has multiple FSAs, FSKBANN
maintains the state of each of the FSAs.

3.2 Transforming FSAs into State-Based Rules

FSKBANN starts by transforming each FSA in the domain theory into a set of corresponding
rules incorporating state information. FSKBANN represents each of the states named in each
FSA by a pair of values: a previous value and a current value. The previous value (s;_;) for
a state s represents that state’s value (i.e., whether the state s was true) in its FSA before
processing the current input vector, and the current value (s;) represents that state’s value
after processing the input vector. Collectively, I will refer to the set of previous values for
all of the states as the previous state vector and the current values for all of the states as
the current state vector.

I represent states in this manner because I approach solving the task as a sequence of
steps. The previous state vector acts as a memory of which states were true (what the state

was in each FSA) before each step, and the current state vector represents the state in each

26

FSA after a step. In the next section, I will discuss how I represent state values in the
network.
Once FSKBANN sets up the previous and current state values for each state, it replaces

each transition in each FSA by a rule. Each transition of the form:

k

BZ' — Ai—l Ak

results in a rule of the form:

The “character” for a transition & does not need to be a single “character” or value from
the input vector, but can be a complex proposition calculated by the rules supplied with the
domain theory. Also, the teacher can use the current and previous values of a state in the
regular rules for the domain theory.

As an example, consider the problem of adding together a sequence of bits representing a
number (e.g., 0011 + 1001 = 1100), where we are expected to process the two input numbers
one bit at a time and then output the appropriate bit (e.g., first we would receive 1 and 1
and output 0, then we would receive 1 and 0 and output 0 because of the carry, etc.). In
order to solve this problem we need to keep track of whether or not we are carrying a bit,
which we can do with the FSA shown in Figure 13. This FSA and the rules shown in Table 6
constitute a domain theory to solve this problem. FSKBANN would take this domain theory
and start by transforming the FSA into the rules in Table 7, which FSKBANN would add to
the rules in Table 6.

After the translation process, the domain theory consists of three lists: (1) a list of each
state that FSKBANN must represent (e.g., carry_is_zero and carry_is_one from the FSA in
Figure 13); (2) a list of the start state for each FSA in the domain theory (e.g., carry_is_zero
from FSA); and (3) a list of rules, which may contain references to previous and current state

values (e.g., the rules in Table 7 plus the rules in Table 6). FSKBANN compiles the list of

start both_inputs_on

zero_inputs_o
one_input_on

one_input_on,
both_inputs_on

zero_inputs_on

Figure 13: An FSA that could be used to track the carry bit while adding binary numbers.

27

Table 6: Rules combined with FSA in Figure 13 to form a binary-addition domain theory.

both_inputs_on < inputl_on A input2_on
oneanpul_on < wnputl_on A —input2_on
oneanpul_on < —inputl_on A input2_on
zeroanputs_on < —unputl_on A —input2_on
output_on <« both_anputs_on A carry_is_one;_;
output_on <+ one_input_on A carry_is_zero;_y
output_on <+ zero_inputs_on N carry_is_one;_y

Table 7: Rules FSKBANN produces from the FSA shown in Figure 13.

carry_1s_zero;_1 N\ zeroanputs_on
carry_1s_zero;_1 N\ one_input_on

Carry_1S_zero;
Carry_1S_zero;
carrysis_one;_y N zero_inputs_on
carryas_one;_y N one_input_on

carry_is_one;_; N both_inputs_on
carry_is_zero;_y N\ both_inputs_on

Carry_1S_zero;
carry_1S_one;
carry_1S_one;

TTTTTT

carry_1S_one;

states and the list of start states by examining all of the FSAs in the domain theory. The
list of rules contains the rules from the original domain theory as well as all of the rules
FSKBANN introduced to represent the transitions in the FSAs. FSKBANN translates these

rules into a corresponding network, as described in the next section.

3.3 Mapping State-Based Rules to a Neural Network

The key to mapping rules containing references to states is the type of network into which
FSKBANN maps the rules. FSKBANN maps state-based rules into a Simple Recurrent neural
Network (SRN) (Elman, 1990; Elman, 1991; Jordan, 1989), in which the context units of the
network represent the values of the states in the FSA.

FSKBANN’s process of mapping rules works similarly to KBANN’s. First FSKBANN sets
up units for all of the input and output units. FSKBANN diverges from KBANN by next
setting up units representing each of the states on the list of states produced by processing
the FSAs in the domain theory. FSKBANN represents each state with two units: one for the

previous value of the state, and one for the current value of the state. It then connects the

28

current value of the state to the previous value with a time-delayed recurrent link. From
that point, FSKBANN works the same as KBANN, treating the previous values of states as
input units, and the current values of states as hidden, output, or input units (depending
on how they appear in the domain theory). From the rules in Tables 6 and 7, FSKBANN
produces the network shown in Figure 14.

FSKBANN uses the list of start states from the FSAs to determine which of the pre-
vious state units are active when starting the task. In the example shown in Figure 14,
carry_is_zero is the start state of the FSA, so FSKBANN would make the unit representing
the previous value of carry_is_zero highly active and all of the other previous state units
from this FSA (i.e., carry_is_one) inactive at the start of the binary-addition task. A second
FSA would introduce more state units and another initially-active previous state value — the
start state for that FSA.

......

ero_inputs_o

.
ot
.
'''''''''

Figure 14: FSKBANN network for rules from Tables 6 and 7. Units constructed as ANDs
are shown with arcs, the other units represent ORs. The dashed links with arrow heads
are recursive links and the remaining dashed links are negatively-weighted links. The low-
weighted links added at the end of the FSKBANN process are not shown.

29

3.4 Experiments

I chose to experiment by refining the Chou-Fasman (1978) algorithm in order to evaluate
the usefulness of FSKBANN. My experiments demonstrate that FSKBANN is indeed able to
refine this algorithm, producing a small, but statistically significant, gain in accuracy over
the unrefined algorithm and over standard neural-network approaches.

In this section I will start by giving a description of the secondary-structure problem.
Then I will present the Chou-Fasman algorithm and describe how I represent this algorithm
as a procedural domain theory. Following that I will present results and an in-depth empirical
analysis of the strengths and weaknesses of the FSKBANN refined algorithm, the unrefined

algorithm, and standard neural-network approaches.

3.4.1 Protein Secondary-Structure Prediction

The Chou-Fasman algorithm attempts to solve the protein secondary-structure prediction
task, a sub-task of the protein-folding task. I chose the Chou-Fasman algorithm as a
testbed because it is one of the best-known and widely-used algorithms in this field. I
also chose the secondary-structure task because a number of machine learning techniques
are currently being applied to this task, including neural networks (Holley & Karplus, 1989;
Qian & Sejnowski, 1988), inductive logic programming (Muggleton & Feng, 1990), case-
based reasoning (Cost & Salzberg, 1993), and multistrategy learning (Zhang et al., 1992).
Thus this task provides a good baseline for the effectiveness of my approach.

The protein-folding task is an open problem that is becoming increasingly critical as
the Human Genome Project (Watson, 1990) proceeds. Proteins are long strings of amino
acids, containing several hundred elements on average. There are 20 naturally occurring
amino acids, denoted by different capital letters. The string of amino acids making up a
given protein constitutes the primary structure of the protein. Once a protein forms, it folds
into a three-dimensional shape which is known as the protein’s tertiary structure. Tertiary
structure is important because the form of the protein strongly influences its function.

At present, determining the tertiary structure of a protein in the laboratory is costly and
time consuming. An alternative solution is to predict the secondary structure of a protein as
an approximation. The secondary structure of a protein is a description of the local structure
surrounding each amino acid. One prevalent system of determining secondary structure
divides a protein into three different types of structures: (1) a-helix regions, (2) (3-sheet

regions, and (3) random coils (all other regions). Figure 15 shows the tertiary structure of a

30

Ribbon drawing here (not available in electronic version)

Figure 15: Ribbon drawing of the three-dimensional structure of a protein (Reprinted with
permission from Richardson & Richardson 1989). The areas resembling springs are a-helix
structures, the flat arrows represent (-sheets, and the remaining regions are random coils.

protein and how the shape is divided into regions of secondary structure. For our purposes,
the secondary structure of a protein is simply a sequence corresponding to the primary
sequence. Table 8 shows a sample mapping between a protein’s primary and secondary
structures, with amino acids that are part of coil structures shown as underscores () since
coil is a default class.

Table 9 contains predictive accuracies of some standard algorithms from the biological lit-
erature for solving the secondary-structure task. In the data sets used to test the algorithms,
54-55% of the amino acids in the proteins are part of coil structures, so 54% accuracy can

be achieved trivially by always predicting coil. It is important to note that many biological

Table 8: Primary and secondary structures of a fragment of a sample protein.

Primary P S VF L F P P K P

(20 possible amino acids)

Secondary

- - BB BB - - -«

(three possible local structures)

Table 9: Accuracies of various (non-learning) prediction algorithms.

Method Accuracy Comments

Chou and Fasman (1978) 58% data from Qian and Sejnowski (1988)
Lim (1974) 50% from Nishikawa (1983)

Garnier and Robson (1989) 58% data from Qian and Sejnowski (1988)

31

researchers believe that algorithms that take into account only local information can achieve
only limited accuracy (Wilson et al., 1985), generally believed to be at most 80-90%.

I should note that the results in Table 9 are derived from my work on re-implementing
these algorithms, as well as work by Nishikawa (1983). The results reported in these papers
are significantly higher (up to 70% accuracy is reported), but cannot be replicated since they
involved significant human decision-making. Nishikawa (1983) reimplemented these methods
as algorithms and tested them on unknown proteins, producing results comparable to those
I report in Table 9.

Another approach to the secondary-structure task is to use a learning method such as
neural networks (Holley & Karplus, 1989; Qian & Sejnowski, 1988). The neural networks
in these efforts have as input a window of amino acids consisting of the central amino acid
whose secondary structure is being predicted, plus some number of the amino acids before
and after it in the sequence (similar to NETTALK networks, Sejnowski & Rosenberg, 1987).
The output of the network is the secondary structure for the central amino acid. Figure 16
shows the general structure of this type of network; Table 10 presents results from these
studies. Note that the Qian and Sejnowski results reported in this table are somewhat
different from those I will report, even though I test on the same dataset. This discrepancy

occurs because Qian and Sejnowski report the best results they achieve during training — they

Predicted Secondary Structure

Output Units

Hidden Units

..... | LGDQEL jAPVA.....

Primary Structure Input Window

Figure 16: Neural-network architecture used by Qian and Sejnowski (1988). Each amino
acid is represented by 21 units, one unit for each amino acid and one unit to denote “off
the end.” Thus, if the window on the sequence includes 13 amino acids, there are 273 input
units.

32

Table 10: Neural-network results for the secondary-structure prediction task.

Number of
Method Accuracy Hidden Units Window Size
Holley and Karplus (1989) 63.2% 2 17
Qian and Sejnowski (1988) 62.7% 40 13

Table 11: Selected machine learning results for the secondary-structure prediction task. Due
to differing data sets and experimental methodologies, these numbers can only be roughly
compared.

Method Accuracy
Qian and Sejnowski (1988) 62.7%
Cost and Salzberg (1993) 65.1%
Zhang et al. (1992) 66.2%
Leng et al. (1993) 69.3%

periodically stop and test the network against the test proteins, retaining the highest results.
I use a methodology in which the testset results are determined only after the network used
in testing has been determined. Thus, my approach has no access to the test proteins, and
my results for the method Qian and Sejnowski report will be somewhat lower than theirs.
Other machine learning results include several algorithms that employ (at least in part)
case-based reasoning, including the PEBLs algorithm (Cost & Salzberg, 1993; Salzberg &
Cost, 1992), Zhang et al.’s (1992) hybrid approach, and Leng et al.’s (1993) approach.
Table 11 show that these approaches achieve significant improvement over approaches using
only neural networks. Finally, the work of Rost and Sander (1993), which significantly

reformulates the input representation of the task, produces 70.1% accuracy.

3.4.2 The Chou-Fasman Algorithm

The Chou-Fasman approach (1978) is to find amino acids that are likely to be part of a-
helix and (3-sheet regions, and then to extend these predictions to neighboring amino acids.
Figure 17 provides a schematic overview of their algorithm.

The first step of the Chou-Fasman algorithm is to find nucleation sites. Nucleation sites

are amino acids that are likely to be part of a-helix or (-sheet structures, based on their

33

PimaryStructure | [| [[[[T T T T T T T T PP PP T T T T 1T]

Step 1.Predict [4] [a] [¢]

Nucleation

stes @ 5 [E

Step 2.Extend <_|](:|_> <_|E|_> <—|]:| =
Regions _ @ _ _ —@ ED—>

Step 3.R I

T overlaps L@] B M@ B w

Figure 17: Steps of the Chou-Fasman (1978) algorithm.

neighbors and according to the conformation probabilities and rules reported by Chou and
Fasman. Colil structures are predicted as a default; when an amino acid is not part of a helix
or sheet structure, it is part of a coil structure.

To recognize nucleation sites, Chou and Fasman assign two conformation values to each
of the 20 amino acids. The conformation values represent how likely an amino acid is to
be part of either a helix or sheet structure, with higher values indicating greater likelihood.
They also group the amino acids into classes of similar conformation value. The classes for
helix are formers, high-indifferent, indifferent, and breakers; those for sheet are formers,
indifferent, and breakers (see Table 12). An amino acid is an a-helix nucleation site if it is
part of a sequence of six consecutive amino acids, where there are a total of four helix-formers
(two high-indifferents count as one former) and fewer than two breakers. Similarly, an amino
acid is a (J-sheet nucleation site if it is in a sequence of five amino acids with at least three
sheet-formers and fewer than two breakers.

The Chou-Fasman algorithm extends a helix or sheet region indefinitely until it en-

counters a breaker. An a-helix break region occurs when an helix-breaker amino acid is

Table 12: Assignment of the amino acids to a-helix and (3-sheet former and breaker classes

from Chou and Fasman (1978).

Class a-helix (-sheet
Former E;ALH M, Q W, V,FIM,V,ILC Y, FQ LT W
High-Indifferent K, I

Indifferent D, T,S,R,C AR, G,D
S,H, N, P

Breaker N.Y,P G K E

J J J J J

34

immediately followed by either another helix-breaker or a helix-indifferent amino acid. A
helix is also broken when encountering the amino acid Proline (P). The process of extending
(-sheet structures works similarly.

To resolve overlaps, Chou and Fasman suggest that the conformation values of regions

Table 13: Former and breaker values for the amino acids.

helix_former(E) = 1.37

(helix_former(A
helix_former(H) = 1.11

.29 helix_former(L) = 1.20

)=1
helix_former(M) = 1.07 helix_former(Q) = 1.04
helix_former(W) = 1.02 helix_former(V) = 1.02 helix_former(F) = 1.00
helix_former(K) = 0.54 helix_former(I) = 0.50
helix_former(others) = 0.00

helix_breaker(N) = 1.00
helix_breaker(G) = 1.38
helix_breaker(others) = 0.00

helix_breaker(Y) = 1.20 helix_breaker(P) = 1.24

sheet_former(M) = 1.40
sheet_former(C) = 1.09
sheet_former(Q) = 1.03
sheet_former(W) = 1.00
sheet_former(others) = 0.00

sheet_breaker(K) = 1.00
sheet_breaker(N) = 1.14

sheet_former(V) = 1.39
sheet_former(Y) = 1.08
sheet_former(L) = 1.02

sheet_breaker(S) = 1.03
sheet_breaker(P) = 1.19

sheet_former(I) = 1.34
sheet_former(F) = 1.07
sheet_former(T) = 1.01

sheet_breaker(H) = 1.04
sheet_breaker(E) = 2.00

sheet_breaker(others) = 0.00

I produced these values using the tables reported by Chou and Fasman (1978, p. 51). I normalized
the values for formers by dividing the conformation value of the given former by the conformation
value of the weakest former. So, for example, the helix former value of Alanine (A) is 1.29, since the
helix conformation value of Alanine is 1.45 and the conformation value of the weakest helix former
Phenylalanine (F) is 1.12. Breaker values work similarly except that the value used to calculate
the breaker value is the multiplicative inverse of the conformation value.

I did not directly use the values of Chou and Fasman for two reasons. One, | wanted smaller
values, to decrease the number of times three very strong helix-formers would add up to more than
4 (and similarly for sheets). Two, breaker conformation values tend to be numbers between 0 and
1 with the stronger breakers being close to 0. I wanted the breaker value to be larger the stronger
the breaker, so I used the inverse of the breaker’s conformation value (restricting the result to not
exceed 2).

35

continue continue
helix sheet

init—helix init—-sheet

otherwise

Figure 18: The finite-state automaton interpretation of the Chou-Fasman algorithm.

be compared. To do so, they assign formers and breaker values weighted by likelihood.
In Table 13 T transform Chou and Fasman’s table to one that I can use to both recognize
nucleation sites and compare regions. The values in Table 13 are set so that if, for example,
the sum of helix-former values across a sequence of six amino acids is four, then this means
that there are four helix formers across this sequence (with high-indifferents counting as one-
half). The resulting values can also be used to compare the strength of different combinations
of formers. This is done in FSKBANN’s networks by weighting the links from various amino
acids by the values in Table 13. For example, a combination of four Alanines (A’s) will
produce a higher activation of the init helix unit than a combination of four Phenylalanines

(F’s). I will present more details on how this is done in the next section.

3.4.3 The Chou-Fasman Algorithm as a Finite-State Automaton

The Chou-Fasman algorithm cannot be represented using propositional rules, since the pre-
diction for an amino acid depends on the predictions for its neighbors (because nucleation
sites are extended). However, one can represent the algorithm as an FSA (see Figure 18).
The start state of the FSA is coil. To make predictions for a protein, the FSA scans the
protein', with the input at each step including the amino acid being classified plus its neigh-

bors. The Chou-Fasman domain theory bases each prediction on the current window of

T actually scan each protein twice: from left-to-right and from right-to-left. I then sum the results so as
to simulate extending nucleation sites in both directions. This is done so that I can extend nucleation sites
in both directions.

36

Table 14: Rules provided with the Chou-Fasman FSA (see Figure 18) to form the Chou-
Fasman domain theory. x@N is true if x is the amino acid N positions from the one whose
secondary structure the algorithm is predicting.

Rules for recognizing nucleation sites.

it _heliz (25 heli:l;_former(amino_acid@pos)) > 4

pos=0

A (> helix:_breaker(amino_acid@pos)) < 2

pos=0
init_sheet ¢ (Z;OSZOsheet_former(amino_acid@pos)) > 3
A (24 sheet_breaker(amino_acid@pos)) < 2

pos=0

Rules for pairs of amino acids that terminate helix structures.

helix _break@0 <+ N@QQ v Y@0 v PQ0 v GQ@0
helix_break@l <+ N@] Vv Y@l v P@l v G@l
helizandif fQl «+ K@l v [@] v D@l v TQlvV
Sa@l v Ral v CQl
break_helizx <+ heliz break@0 A helixz_break@1
break_helix < helix break@0 A helix_andif f@Q1

Rules for pairs of amino acids that terminate sheet structures.

sheet_break@0) <+ KQO0 v SQ0 v HQQ0 v N@Q v Pa0 v E@0
sheet_break@]l <+ K@l v SQl v H@Ql v N@l v P@l v EF@l
sheetandi f fQl <+ AQl v RQl v GQl v D@l

break_sheet < sheet_break@0 A sheet_break@l

break_sheet <« sheet break@0 A sheetandif f@Ql

Rules for continuing structures.

cont_heliz <+ —PQ0 A —break_helix
cont_sheet + —-PQ0) AN —-FEFQQ0 A -break_sheet

amino acids plus the last prediction it made, maintained as a state.

As I noted before, the transitions in our FSA need not be input values, and indeed
in this FSA they are not — the transitions are marked with propositions that I define to
represent the notions of the Chou-Fasman algorithm (i.e. nucleation sites, amino acids that
break sequences, etc.). Table 14 shows the rules used to define the propositions in the
Chou-Fasman FSA. FSKBANN augments these rules with rules that represent the states and
transitions from the FSA in Figure 18; Table 15 shows these extra rules.

One further extension I made to translate this domain theory was to introduce a method

to deal with the rules indicating the strength of the initial nucleation sites — the rules for

37

Table 15: Rules derived from the Chou-Fasman FSA (see Figure 18).

helix; < sheet;_; A init_heliz

helix; < coil;_y A init_heliz

helix; < heliz,_; N cont_helix

sheet; < helix;_; N tnit_sheet

sheet; < coil,_y N init_sheet

sheet; < sheet;_1 N\ cont_sheet
cotl; < helix;_; N break_heliz
coil; < sheet;_1 N break_sheet
cotl; + coil;_y A any

init_helixz and init_sheet in Table 14. To translate these rules, FSKBANN creates a unit
to represent the summation that has a link to each amino acid that may contribute to the

sum. Each of these links is given a weight equal to the standard weight for a positive link

Predicted Secondary Structure

(o] [a] [B] [B] [®] []
q; Bil

helix2

cont-helix init—helix

Other Hidden Units ...

O By iy L

Input Window

Scanning Direction >

Figure 19: General neural-network architecture used to represent the Chou-Fasman algo-
rithm. Note that the low-weighted links added at the end of the translation process are not
shown.

38

multiplied by the “former” value from Table 13 for that amino acid. So, for example, in
summing the helix former values, the link to Alanine at the center of the window (A@0),
would be set to 5.16 — the standard positive link weight, 4, times 1.29, the “former” value for
Alanine. I then set the bias of the resulting unit to: —4 (threshold — 0.5), where threshold
is the total the summation must exceed, and 4 is the standard positive link weight used in
KBANN and F'SKBANN to represent important dependencies.

Figure 19 shows an outline of the network that FSKBANN produces. The FSKBANN net-
work is similar to the standard network for this task shown in Figure 16, but with two major
differences. One, the input to the network includes the state values — the predictions made
by the network in the previous step. Two, the topology of the hidden units is determined

by the rules implementing the Chou-Fasman algorithm.

3.4.4 Methodology

The experiments | performed to evaluate FSKBANN use the data set from Qian and Sejnowski
(1988). Their data set consists of 128 segments from 106 proteins with a total of 21,623 amino
acids, for an average length of 169 amino acids per segment. Of these amino acids, 54.5% are
part of coil structures, 25.2% part of a-helix structures, and 20.3% part of 3-sheet structures.
[randomly divided the proteins ten times into disjoint training and test sets, which contained
two-thirds (85 proteins) and one-third (43 proteins) of the original proteins, respectively.

I used backpropagation (Rumelhart et al., 1986) to train neural networks for two learning
approaches, our FSKBANN approach and a standard neural-network approach similar to
Qian and Sejnowski’s (which I will refer to as standard ANNs). 1 terminated training using
patience as a stopping criterion (Fahlman & Lebiere, 1990). The patience criterion states
that training should continue until the error rate on the training set has not decreased for
some number of training cycles. For this study I set the number of epochs to be four, a value
I determined by empirical testing.

In order to avoid overfitting in this task, I employ the technique of maintaining a vali-
dation set. | use the patience criterion discussed above to decide how many training cycles
(epochs) to perform, since it can take a significant amount of training before perfect perfor-
mance on the training set is achieved. I use the validation set to select the “best” network
(according to the validation set) from the networks produced at the end of each training cy-

cle. As part of selecting a validation set, I added the criterion that the validation set should

39

be a “representative” validation set; I accepted a validation set as representative if the per-
centages of each type of structure (o, 3, and coil) in the validation set roughly approximate
the percentages of all the training proteins. Note that I did not consider the testing set when
computing the percentages. Through empirical testing, I found that a validation set size of
five proteins achieves the best results for both FSKBANN and ANNs.

FSKBANN creates a network with 28 hidden units to represent the Chou-Fasman domain
theory. Qian and Sejnowski report that their networks generalized best when they had 40
hidden units. Using the methodology outlined above, I compared standard ANNs containing
28 and 40 hidden units. I found that networks with 28 hidden units generalized slightly
better; hence, for experiments I use 28 hidden units in my standard ANNs. This has the
added advantage that the FSKBANN and standard networks contain the same number of
hidden units.

3.4.5 Results

Table 16 contains results averaged over the 10 test sets. The statistics reported are the
percent accuracy overall, the percent accuracy by secondary structure, and the correlation
coefficients for each structure?. The correlation coefficients are good for evaluating the
effectiveness of the prediction for each of the three classes separately. The resulting gain in
overall accuracy for FSKBANN over both standard ANNs and the non-learning Chou-Fasman
method is statistically significant at the 0.5% level (i.e. with 99.5% confidence) using a ¢
test. This demonstrates that we can use FSKBANN to effectively refine a procedural domain
theory.

The gain in accuracy for FSKBANN over the Chou-Fasman algorithm is fairly large and
exhibits a corresponding gain in all three correlation coefficients. It is interesting to note
that the FSKBANN and Chou-Fasman solutions produce approximately the same accuracy
for (3-sheets, but the correlation coefficients demonstrate that the Chou-Fasman algorithm

achieves this accuracy by predicting a much larger number of 3-sheets.

The apparent gain in accuracy for FSKBANN over ANN networks appears fairly small

?The following formula defines the correlation coefficient for the secondary-structure task (Mathews,
1975):
PN - FM
C = (12)
V(P + F)(P + M)(N + F)(N + M)
where C is calculated for each structure separately, and P, N, F, and M are the number of true positives,
true negatives, false positives, and misses for each structure, respectively.

40

Table 16: Results from different prediction methods.

Testset Accuracy Correlation Coefficients
Method Total Helix Sheet Coil Helix Sheet Coil
Chou-Fasman 57.3% 31.7% 36.9% 76.1% | 0.24 0.23 0.26
Standard ANN | 61.8 43.6 18.6 86.3 0.35 0.25 0.31
FSKBANN 63.4 459 35.1 81.9 0.37 0.33 0.35
ANN (w/state) | 61.7 39.2 242 86.0 0.32 0.28 0.31

(only 1.6 percentage points), but this number is somewhat misleading. The correlation
coefficients give a more accurate picture. They show that the FSKBANN does better on both
a-helix and coil prediction, and much better on (3-sheet prediction. The reason that the
ANN solution still does fairly well in overall accuracy is that it predicts a large number of
coil structures, the largest class, and does very well on these predictions.

Also shown in Table 16 are results for ANNs that included state information — networks
similar to Qian and Sejnowski’s but in which the previous output values are included as
state information for the next step — so that they are SRNs. These results show that state
information alone is not enough to increase the accuracy of the network prediction.

To evaluate the usefulness of the domain theory as a function of the number of training
examples and to allow me to estimate the value of collecting more proteins, I performed a
second series of tests. I divided each of the training sets into four subsets: the first contained
the first 10 of the 85 proteins, the second contained the first 25, the third contained the first
50, and the fourth had all 85 training proteins. This process produced 40 training sets. I then
used each of these training sets to train both the FSKBANN and ANN networks. Figure 20
contains the results of these tests. For comparison purposes I also show the generalization
accuracy of the non-learning Chou-Fasman method. FSKBANN shows a gain in accuracy for
each training set size (statistically significant at the 5% level, i.e., with 95% confidence).

The results in Figure 20 demonstrate two interesting trends. One, the FSKBANN networks
do better no matter how large the training set, and two, the shape of the curve indicates
that accuracy might continue to increase if more proteins were used for training. The one
anomaly for this curve is that the gain in accuracy of FSKBANN over standard ANNs with
10 training proteins is not very large. One would expect that when the number of training
instances is very small, the domain knowledge would be a big advantage. The problem here
is that for a small training set it is possible to obtain random sets of proteins that are not
very indicative of the overall population. Individual proteins generally do not reflect the

overall distribution of secondary structures for the whole population; many proteins have

41

64.0—
_*Finite-state KBANN
e
e
Ve
62.0] il
. Standard ANN
—~ /‘/ Pid
g / e
N—r
(7)) 7 .7
/ .
o % -
Q 600 ’ -
0] /.
= ! o
(@] / 1
U 1
+— 58.0 !/
Q / 1
Juj S
8 é Chou-Fasman
’
- K
56.0— K
[}
54.0 — T T T T T T T

0O 10 20 30 40 50 60 70 80 90
Number of training proteins

Figure 20: Percent correctness on test proteins as a function of training-set size.

large numbers of a-helix regions and almost no -sheets, while others have large numbers of
(-sheet regions and almost no a-helices. Thus in trying to learn to predict a very skewed
population, the network can produce a poor solution. This is mitigated as more proteins are
introduced, causing the training population to more closely match the overall population.

Finally, to analyze the detailed performance of the various approaches, 1 gathered a
number of additional statistics concerning the FSKBANN, ANN, and Chou-Fasman solutions.
These statistics analyze the results in terms of regions. A region is a consecutive sequence
of amino acids with the same secondary structure. I consider regions because the measure
of accuracy obtained by comparing the prediction for each amino acid does not adequately
capture the notion of secondary structure as biologists view it (Cohen et al., 1991). For
biologists, knowing the number of regions and the approximate order of the regions is nearly
as important as knowing exactly the structure within which each amino acid lies. Consider
the two predictions in Figure 21 (adapted from Cohen et al., 1991). The first prediction
completely misses the third a-helix region, so it has four errors. The second prediction is
slightly skewed for each a-helix region and ends up having six errors, even though it appears
to be a better answer. The statistics I have gathered try to assess how well each solution
does predicting a-helix regions (Table 17) and [-sheet regions (Table 18).

Table 17 and Table 18 give a picture of the strengths and weakness of each approach.

42

pimaryswuere (| [[T T T T T T T T T TTITITTTITTITTT]
Secondary Structure

Prediction 1 —L « " « 1}
Prediction 2 o] o] a

Figure 21: Two possible predictions for secondary structure.

Table 17: Region-oriented statistics for a-helix prediction.

Occurrence Description FSKBANN ANN Chou-Fasman
Average length of an 10.17
Actual actual helix region 122157 132157 (18.25)
(number of regions). () ()
Average length of a 8.52 779 8.00
Predicted predicted helix region : ' '
(number of regions). (1774) (2067) (1491)
Percentage of time
Actual an actLllaI hegxbreglon 67% 70% 56%
. - is overlapped by a
Predicted predicted helix region (6.99) (6.34) (5.76)
(length of overlap).
Actual RPN Percentage of time
u : : i i i
Lo omer : apredicted helixregion 5,0, 39% 36%

Predicted does not overlap an

actual helix region.

Table 17 shows that the FSKBANN solution overlaps slightly fewer actual a-helix regions
than the ANNs, but that these overlaps tend to be somewhat longer. On the other hand,
the FSKBANN networks overpredict fewer regions than ANNs (i.e., predict fewer a-helix
regions that do not intersect actual a-helix regions). Table 17 also indicates that FSKBANN
and ANNs more accurately predict the occurrence of regions than Chou-Fasman does.
Table 18 demonstrates that FSKBANN’s predictions overlap a much higher percentage of
actual 3-sheet regions than either the Chou-Fasman algorithm or ANNs alone. The overall
accuracy for [3-sheet predictions is approximately the same for FSKBANN and the Chou-
Fasman method because the length of overlap for the Chou-Fasman method is much longer
than for FSKBANN (at the cost of predicting much longer regions). The ANN networks
do extremely poorly at overlapping actual (3-sheet regions. The FSKBANN networks do as
well as the ANNs at not overpredicting 3-sheets, and both do better than the Chou-Fasman

43

Table 18: Region-oriented statistics for 3-sheet prediction.
Occurrence Description FSKBANN ANN Chou-Fasman

Average length of an

Actual actual strand region 5.00 5.00 5.00

(number of regions). (3015) (3015) (3015)

Average length of a

Predicted m redicted strand region 3.80 2.83 6.02
| b-strand | p J (2545) (1673) (2339)

(number of regions).
Percentage of time

Actual b-strand | &N aCtLIJa' S”g%d region 5494 35% 46%
. is overlapped by a
Predicted b—strand predicted strand region (3.23) (2.65) (4.01)

(length of overlap).

i----e-o--oeee. Percentage of time
Actual i _other . 3 predicted strand region 37% 37% 44%

Predicted does not overlap an

actual strand region.

method. Taken together, these results indicate that the FSKBANN solution does significantly
better than the ANN solution predicting (-sheet regions without having to sacrifice much
accuracy in predicting a-helix regions.

Overall, the results in Tables 17 and 18 suggest that more work needs to be done devel-
oping methods of evaluating solution quality. A simple position-by-position count of correct
predictions does not capture adequately the desired behavior. Solutions that find approx-
imate locations of a-helix and [3-sheet regions and those that accurately predict all three

classes should be favored over solutions that only do well at predicting the largest class.

3.4.6 Discussion

The main conclusion I draw from my experiments is that they support my general thesis
— that a method for refining procedural domain theories can produce improvements similar
to those that have been observed for non-procedural domain theories. In particular, my ex-
periments demonstrate that after refining the Chou-Fasman algorithm, the resulting refined
algorithm is more accurate than both the original algorithm and a standard neural-network
approach. Thus my experiments show that the hybrid approach of learning from both theory

and data is more powerful than either approach separately.

44

3.5 Limitations and Future Directions

While FSKBANN does produce gains in performance for the secondary-structure task, these
gains have since been eclipsed by other techniques. Two conclusions stand out from more
recent research on the secondary-structure task. One is that case-based reasoning methods
(Cost & Salzberg, 1993; Leng et al., 1993; Zhang et al., 1992), which look for similar sequences
that are already characterized in the training data, are very effective. This suggests that
the best approach to this problem might be to build up a large set of known structures
and simply compare the new primary structure to old ones to find a secondary-structure
mapping. This is borne out by current biological approaches, where researchers look for
matches to existing structures in determining new structures.

A second point to note is that significant gains have been achieved by reformulating the
input information (as in Rost & Sander, 1993). This suggest that the input information we
are currently using may be inadequate to produce a good solution. Considering both of these
points, in order to achieve better results for this particular task, I would want to change the
input description, using one more like Rost and Sander’s, and I would want to incorporate
some of the information that case-based reasoning systems use.

With regard to FSKBANN, I would conclude that my experiments do validate my general
thesis that it is possible to refine procedural domain theories. This then leaves the question
of how applicable FSKBANN is to other real-world tasks. In Table 5, I defined the type
of task to which FSKBANN is applicable, and I indeed conclude that FSKBANN could, in
theory, work for any problem of this type. The main difficulty with using FSKBANN is its
requirement that the user develop a finite-state automaton.

The ability to refine a domain theory containing a finite-state automaton is FSKBANN’s
main strength, but this also makes it difficult to use, since it may be hard for a relatively
novice user to construct a finite-state automaton. Thus it may be advantageous to examine
a communication method that allows the user to interact with the learner in a more natural
manner, an area that I explore in the following chapters.

Other papers covering the FSKBANN system include Maclin and Shavlik (1991, 1992,
1993, 1994b).

45

Chapter 4

Advising a Reinforcement Learning

Agent — The RATLE System

In this chapter, I present an overview of my system that allows a teacher to provide advice to
a reinforcement learning (RL) agent. I call the system RATLE, for Reinforcement and Advice-
Taking Learning Environment. The teacher in RATLE observes the behavior of the RL agent,
and when she wishes, provides advice using the RATLE advice language. The teacher uses
the advice language to give the RL agent recommendations about actions the agent might
take under certain circumstances. Once the teacher provides the advice, RATLE translates
the advice into a form that the RL agent understands, and then RATLE incorporates it into
the RL agent. The agent then returns to reinforcement learning until the teacher provides
more advice. Below I discuss my motivation for selecting reinforcement learning as an area
to explore, and then describe the important features of RATLE.

I chose to develop a method for instructing an RL agent for several reasons. One reason
was my experience with the FSKBANN system. Recall that one limitation of FSKBANN
is that it requires the teacher to explicitly define state information in the form of FSAs.
In RATLE I developed a language that allows the teacher to reference state information in
a natural manner. Reinforcement learning is also interesting because the tasks in RL are
inherently sequential, and therefore match my thesis focus. Finally, I selected RL because
it is a successful and increasingly popular method for creating intelligent agents (Barto
et al., 1990; Barto et al., 1995; Lin, 1992; Mahadevan & Connell, 1992; Tesauro, 1992;
Watkins, 1989).

The major drawback of RL is its need for large numbers of training episodes. My work
addresses this drawback — instructions from a teacher can (when the instructions are useful)
reduce the number of training episodes that the agent needs to learn its policy function. In
Figure 22, I show the general structure of a reinforcement learner (from Figure 9), augmented
(in bold) with my process that allows the teacher to instruct an RL agent.

In the remainder of this chapter, I present RATLE, my system for implementing the process

46

. . Teacher _
instruction w\behawor
& state
]
Learner action Environme
reinforcemen)

Figure 22: Reinforcement learning with a teacher.

shown in bold in Figure 22. T first discuss the salient aspects of the language that RATLE uses
to represent instructions. Then I outline a framework for using instruction from Hayes-Roth,
Klahr, and Mostow (1981), and discuss how RATLE fits into this framework. In Chapter 5
I completely define the RATLE language that the teacher uses to articulate instructions.
Chapter 6 details exactly how the constructs of the RATLE language are translated into

knowledge that the agent can use.

4.1 Overview of RATLE

A common method by which a reinforcement learner improves its performance is to first make
a prediction about the utility of an action (how much reward it receives by taking that action),
and then obtain an estimate of the actual utility of the action by executing that action and
predicting the utility for the resulting state. The learner uses the predicted and estimated
utility values to update its prediction function. The learner is thus continuously executing
an exploration cycle involving predictions and actions. To this cycle, RATLE introduces a
separate process involving a teacher, as shown in Figure 23.

The RL agent in Figure 23 performs standard connectionist Q-learning when it is not
receiving instruction. The human teacher in Figure 23 observes the agent and forms her
instructions using her knowledge about the task. The teacher’s advice-generation process is
outside the scope of this thesis. The critical contribution of RATLE is the flow of knowledge
from the teacher to the agent. As I discuss below, there are two main issues regarding this
flow of instruction: (1) what language the teacher uses to present instructions; (2) how those

instructions translate into knowledge that the agent assimilates.

47

Teacher PSS
@\\\ Behavior:

Instruction

Figure 23: The interaction of the teacher and agent in RATLE. The process is a cycle: the
observer watches the agent’s behavior to determine what advice to give, and the advice-
taking system processes the advice and inserts it into the agent’s “brain”, which changes
the agent’s behavior. The agent operates as a normal Q-learning agent when not being
instructed by its teacher. (This figure is a duplicate of Figure 4.)

4.1.1 Features of RATLE’s Instruction Language

As T argued in Chapter 1, a key aspect of the interaction between a teacher and a student is
the language the teacher uses to provide instructions. In RATLE, the teacher is advising an
RL agent; therefore the language naturally has constructs that relate to the type of decisions
an RL agent makes — which action to select given the current environment. Instructions in
RATLE take the form of simple programming language constructs.

The RATLE language resembles a programming language by design. | use a programming
language because it allows me to make use of standard parsing techniques. Thus, I can focus
on the process of transferring knowledge to an RL agent, rather than trying to address the
natural language problem. I also make use of fuzzy-knowledge ideas (Berenji & Khedkar,
1992; Zadeh, 1965) to permit terms such as “Near” and “East” in the instructions in Table 19.
These terms make the resulting language easier to use for the human teacher. RATLE’s advice
language is not as powerful as English, but it does allow many different types of complex
instructions to be articulated quite naturally.

RATLE allows a user to give simple instructions in the form of IF and REPEAT statements
specifying conditions of the world and actions to be taken under those conditions. These
types of instructions closely correspond to the knowledge that an RL agent is trying to
acquire, but in a manner that is “natural” to the teacher. An important feature of the
language is that the teacher does not have to understand the reinforcement learning process
the agent is executing. The teacher only needs to know how to phrase her instructions in

the language | provide — the RATLE system is responsible for translating these instructions

48

Table 19: Samples of advice in RATLE’s instruction language.

Instruction English Version Pictorial Version
IF An Enemy 15 (Near AND West) AND If an enemy is near and west s
An Obstacle 1s (Near AND North) and an obstacle is adjacent :’:f‘«
THEN and north, hide behind the ®) g
MULTIACTION obstacle.
MoveEast
MoveNorth
END
END
WHEN Surrounded AND When the agent is sur-
OKtoPushEast AND rounded, pushing east is pos-
An Enemy 18 Near sible, and an enemy is near, i
REPEAT then keep pushing (moving
MULTIACTION the obstacle out of the way)
PushEast and moving east until there ®
MoveEast is nothing more to push or
END the agent is no longer sur-
UNTIL NOT OKtoPushEast or rounded.
NOT Surrounded
END
IF An Enemy 1s (Near AND East) Do not move toward a nearby
THEN enemy.
DO_NOT MoveEast
END;

into a form that the agent can use.

Table 19 shows some sample instructions a teacher might provide to an agent learning to
play a video game. The left column contains the instructions expressed in RATLE’s program-
ming language, the center column describes them in English, and the right column illustrates
the instructions pictorially (see Chapter 7 for more details on this environment).

One key feature of RATLE’s language is that it allows the teacher to specify multi-step
plans in her instructions; both the first and second instruction in Table 19 are instances of

multi-step instructions. As I discussed in Chapters 1 and 2, it is natural for a teacher to

49

specify a sequence of steps as a solution to complex planning tasks, such as those addressed
in RL.

Implementing a multi-step plan for a learner that thinks in terms of the next step means
that the learner needs a mechanism to remember the current step. RATLE automatically
constructs state units to implement these multi-step plans. The teacher does not need to
understand the mechanism that RATLE is using to implement her instructions.

A related feature of RATLE’s language is that it allows the user to specify instructions
that contain loops. This feature lets the teacher specify instructions for repeated actions
that are very natural in sequential situations (e.g., continuing to drive forward until the next
red light is encountered). The second instruction in Table 19 has a looping statement. As
with multi-step plans, RATLE uses state units to represent loops.

A final important aspect of RATLE that makes it different from my previous approach
(FSKBANN) and other approaches (Lin, 1992; Omlin & Giles, 1992; Towell et al., 1990) is
that the teacher can continue to watch the performance of the RL agent and then provide
more instructions to the agent. RATLE translates instructions into additions to the RL
agent’s current knowledge base. Thus, the teacher can provide instructions multiple times,
since each time the instructions simply augment the agent’s current knowledge.

An advantage of the continuous nature of the teaching process in RATLE is that the
teacher can present instructions that address only one aspect of a task at a time, rather than
trying to present a domain theory containing all of the knowledge the student needs. The
teacher can observe the behavior of the agent before providing instructions; thus the teacher
need only address those aspects of the task in which the agent is deficient. The teacher can
also present instructions that address shortcomings of her previous instructions.

Given the more limited nature of instruction in RATLE, [will not refer to a set of instruc-
tions in RATLE as a domain theory, but as a piece of advice. Once the teacher develops a
piece of advice, it is RATLE’s job to translate that statement into a form that the agent is able

to use. To outline this translation process I will next present a framework for advice-taking

developed by Hayes-Roth, Klahr, and Mostow (1981).

4.1.2 A General Framework for Advice-Taking

Recognition of the value of advice-taking has a long history in Al. The general idea of an
agent accepting instruction was first proposed about 35 years ago by McCarthy (1958). Over
a decade ago, Mostow (1982) developed a program that accepted and “operationalized”

50

high-level instructions about how to better play the card game Hearts. Recently, after a
decade-long lull, there has been a growing amount of research on advice-taking (Gordon &
Subramanian, 1994; Huffman & Laird, 1993; Maclin & Shavlik, 1994a; Noelle & Cottrell,
1994).
Hayes-Roth, Klahr, and Mostow (1981)' developed the following framework for advice-

taking:

Step 1. Request /receive the advice.

Step 2. Convert the advice to an internal representation.

Step 3. Convert the advice into a usable form.

Step 4. Integrate the reformulated advice into the agent’s knowledge base.

Step 5. Judge the value of the advice.

In order to better explain RATLE’s process of advice translation 1 will outline how RATLE
fits into this framework.

Step 1. Request/receive the advice. To begin the process of advice-taking, someone
must decide that advice is needed. Often, approaches to advice-taking focus on having the
learner ask for instruction when help is needed (Clouse & Utgoff, 1992; Whitehead, 1991). In
RATLE [take the opposite tack — the teacher presents advice when she feels it is appropriate.
There are two reasons for this: (1) it places less of a burden on the teacher since she need
only provide advice when she chooses; (2) how to create the best mechanism for having
an agent recognize (and express) its need for advice is an open question. The teacher in
RATLE observes the behavior of the agent and then formulates statements in RATLE’s advice
language to address the limitations she has observed in the agent. An advantage of this
approach is that she will hopefully have insights about problems that the agent does not
perceive, and therefore the advice will be especially useful.

Step 2. Convert the advice to an internal representation. Once the teacher has
created a piece of advice, RATLE parses it using the tools lex and yacc (Levine et al., 1992).

Step 3. Convert the advice into a usable form. Other techniques, such as knowl-
edge compilation (Dietterich, 1991), convert (“operationalize”) high-level instructions into a
(usually larger) collection of directly interpretable statements (Gordon & Subramanian, 1994;
Kaelbling & Rosenschein, 1990; Nilsson, 1994). For example, in chess an agent that is receiv-
ing help about what to do when it is in “check” could convert that statement into knowledge

about what to do when the king is in check from a queen, from a rook, etc.

1See also pg. 345-349 of Cohen and Feigenbaum (1982).

51

After parsing advice, RATLE transforms the general advice into terms that it can directly
understand. In RATLE I address only a limited form of operationalization, namely the con-

? Terms such as these allow the

cretization of ill-defined terms such as “near” and “many.
teacher to provide natural, yet partially vague, instructions and eliminate the need for her
to fully understand the learner’s input representation.

In Chapter 5, I present the RATLE language, and also I describe my language for defining
the fuzzy terms.

Step 4. Integrate the reformulated advice into the agent’s knowledge base.
In RATLE I employ a connectionist approach to RL (Anderson, 1987; Barto et al., 1983;
Lin, 1992). Hence, to incorporate the teacher’s advice, the agent’s neural network must be
updated. As in FSKBANN, I expand on the basic KBANN algorithm (Towell et al., 1990) to
install the advice into the agent.

Figure 24 illustrates my basic approach for adding advice into the reinforcement learner’s
action-choosing network. This network computes a function that maps sensor readings to the
utility of actions. Incorporating instructions involves adding new hidden units that represent
the instructions to the existing neural network. Since each piece of advice involves adding
units to the existing network, this process can be repeated any number of times; thus the
agent can continuously incorporate new instructions.

Step 5. Judge the value of the advice. The final step of Hayes-Roth et al.’s advice-

taking process is to evaluate the advice. There are two perspectives to this process: (1) that

Actions

Hidden Units
for Advice

Sensor Inputs

Figure 24: Adding advice to the RL agent’s neural network by creating new hidden units that
represent the advice. The thick links on the right capture the semantics of the advice. The
added thin links initially have near-zero weight; during subsequent backpropagation training
the magnitude of their weights can change, thereby refining the original advice. Details and
examples appear in Chapter 6.

52

of the learner, who must decide if an instruction is useful; (2) that of the teacher, who must
decide whether an instruction had the desired effect on the behavior of the learner. The
learner evaluates advice by operating in its environment and changing its policy function,
including the advice, with Q-learning. The feedback provided by the environment offers
a crude measure of the quality of the instruction. (One can also envision that in some
circumstances — such as a game-learner that can play against itself (Tesauro, 1992) or an
agent that builds an internal world model (Sutton, 1991) — it would be straightforward
to empirically evaluate the new advice.) The teacher judges the value of her statements
similarly (i.e., by watching the learner’s post-advice behavior). This may lead to the teacher

giving further instructions, thereby restarting the cycle.

4.2 Summary

The RATLE system allows a teacher to instruct a reinforcement-learning agent. The language
the teacher uses is a simple programming language that also makes use of fuzzy terms. The
programming-language constructs allow the teacher to express knowledge about conditions
of the world, along with plans that the agent should follow given those conditions. Thus,
the teacher is able to express advice that is closely related to the knowledge the RL agent
is trying to acquire. Importantly, the teacher does not have to understand the internal
mechanisms of the RL agent or RATLE in order to provide useful instruction. The RATLE
language allows the teacher to give instruction in the form of plans involving sequences of
steps as well as loops; RATLE makes use of a memory mechanism to implement these plans
in the RL agent. The resulting language, while not as powerful as English, is still powerful
enough to express a wide range of advice.

In order to incorporate the advice provided by the teacher, RATLE performs a sequence
of steps to transform each statement into a form that the RL agent can use. Figure 25 shows
the cyclic interaction of the teacher and agent, with the steps RATLE uses to transform
instructions shown at the bottom. This translation process follows Hayes-Roth, Klahr and
Mostow’s (1981) framework for advice taking. First, a decision must be made that advice is
needed. In RATLE, the teacher decides when to give advice, which means that the teacher
only need intervene when she feels it is appropriate. Then RATLE parses the instructions,
which is straightforward since the RATLE language was designed to be easy to parse using
existing software tools. In the third step, RATLE operationalizes any fuzzy terms the teacher

uses in her instructions into terms the RL agent can understand. Next, RATLE translates each

53

g\\\ Behavior:
TR 1Action

Advice Reformulated
Advice
r-r—--—-H—r——F—F/—/FFF"--""-""-""-"""-""""-"—-="-""F"-"¥"="-"=-"-""="-"¥/="¥¥=-"¥¥=-"¥/="-"¥"/="-"¥/=—-"/=—=-¥/=—="¥="—-"¥=—-"=""=—""— |
| .
Advice _Language . : Rules—to—Network !
I — — -
I Interface Parser Operationalizer Mapper :

Figure 25: The interaction of the teacher, agent, and advice-taking components of RATLE.
Advice developed by the teacher is transformed using a process based on Hayes-Roth, Klahr,
and Mostow’s (1981) advice-taking formalism.

statement into additions to the agent’s neural network that capture the knowledge expressed
by the statement, then inserts these additions into the agent’s current network. Finally,
both the agent and teacher evaluate the advice — the agent by exploring its environment
and seeing how well the advice works in practice, and the teacher by watching the agent’s
resulting behavior to see if any further instruction is warranted. When the teacher is not
providing instruction, the RATLE agent performs standard connectionist Q-learning, until
the advice-taking process resumes.

Other papers covering the RATLE system include Maclin and Shavlik (1994a, 1996) and
Shavlik and Maclin (1995).

54

Chapter 5

The RATLE Advice Language

The RATLE advice language allows a teacher to communicate her instructions to a reinforcement-
learning agent. Using the RATLE language, the teacher suggests an appropriate action (or
series of actions) that the agent should take under certain conditions. While the RATLE
language is not a panacea for instruction, it does permit the teacher to express a wide range

of possible instructions. This chapter presents the complete description of RATLE’s advice
language.

Advice in the RATLE language consists of a set of simple statements, similar to Pascal
(Jensen & Wirth, 1975) programming statements. Recall that I use a programming language
rather than natural language because this greatly simplifies the task of parsing the language
and lets me focus on the process of transferring advice to the agent.

Statements in the RATLE advice language specify conditions that must be met in order for
certain actions to be taken. Conditions are logical combinations of input and intermediate
terms, as well as fuzzy conditions (Zadeh, 1965). The teacher can use these conditions to
define particular states of the world to signal actions the agent should take. Actions include
simple actions, action prohibitions, and multi-step plans; they can be performed separately
or in loops. Statements combine conditions and actions into simple IF-THEN clauses and
into more complex looping constructs.

Before the teacher can provide instructions to the RL agent performing a task in a given
environment, a number of aspects of the task and environment must be defined by a person
whom I will refer to as the initializer. The initializer need not be the teacher, though he or
she could be. The initializer is responsible for defining the set of inputs that the agent sees
(i.e., the agent’s sensors) and the set of actions the agent may perform. Each input feature is
labelled by the initializer using the input-definition language defined in Sections 5.6. Input
features are given names and are sometimes given properties by the initializer. Each action
is also given a unique name by the initializer. The initializer also defines a set of fuzzy terms
that the teacher may use in her instructions. These fuzzy terms are generally specific to the

task the agent is addressing, and make instruction-giving easier for the teacher, since she

99

can use imprecise words such as “big” and “near.” These fuzzy terms are created using the
fuzzy-term language shown in Section 5.7. After creating the input, action, and fuzzy terms,
the initializer gives the available task-specific vocabulary to the teacher.

Once the initializer completes his or her work, the teacher begins to observe the RL agent
as it explores the task. Whenever the teacher chooses, she may provide instructions to the
agent using statements in the advice language defined below.

In the following sections I present the set of allowable statements in the RATLE advice
language, then the conditions and actions the teacher may use in a statement. I also dis-
cuss some limitations and future directions for the advice language. I conclude by showing
the input, action, and fuzzy-term languages the initializer uses to configure RATLE for the

teacher.

5.1 The Basic Pieces: Statements

The teacher uses a statement in the RATLE advice language to indicate some condition of
the world the agent might see, plus some action or set of actions the agent should take given
that condition. Each lesson provided by the teacher has one or more such statements. The
RATLE language includes three types of statements: the IF statement, the REPEAT statement,
and the WHILE statement. These statements make use of conditions and actions defined in
Sections 5.2 and 5.3.

5.1.1 The IF Statement

IF Condition THEN

[INFER | REMEMBER | [fConclusion
[ELSE

[INFER | REMEMBER | ElseConclusion |
END

The IF statement! lets the teacher provide straightforward advice: under a certain condition

'In defining the constructs of the RATLE language, I make use of certain standard conventions. Square
brackets ([and]) represent optional parts of constructs, while curly brackets ({ and }) are used to group
parts of the grammar. A vertical line (|) represents alternation, and the plus (4) and star (x) characters
indicate that a grammar part can be repeated one or more times and zero or more times, respectively. All
punctuation characters of the RATLE language are surrounded by quotes (“ and 7).

56

the agent should reach some conclusion. The RATLE language allows a teacher to specify
three different types of conclusions: (1) the name of an action for the agent to take; (2) an
intermediate term (using the keyword INFER); or (3) the name of a condition to remember
(indicated by the keyword REMEMBER). The first type of conclusion in an IF statement
is very close to the type of knowledge the RL agent is trying to learn — a function that
predicts the utility of actions so that it will know what action to take in each given state.
That is, a teacher’s recommendation of an action under some condition suggests that the
action has high utility under that condition. An INFER conclusion allows the teacher to
define intermediate terms that represent logical combinations of the input features and other
intermediate terms. Allowing the teacher to create intermediate terms makes her job simpler,
since she can build terms that can be used multiple times in other pieces of advice. The
teacher uses the REMEMBER keyword to suggest a term that the agent should remember for
use at the next step (using a state unit as in Chapter 3’s FSKBANN).

An IF statement works in the obvious way — when Condition is true, the advice suggests
that [fConclusion be taken, otherwise the advice suggests the (optional) FElseConclusion.
We could imagine a sample piece of advice for the children’s game Red Light — Green Light,
which would look something like this:

IF LightIsRed THEN
StayStill

ELSE
MoveForward

END

LightIsRed describes a condition of the world and StayStill and MoveForward are actions
the agent might take given the current state of the light. In this IF statement, RATLE assumes
that StayStill and MoveForward are the names of actions because the keywords INFER and
REMEMBER were left out.

The teacher uses the keyword INFER to indicate that a conclusion of an IF STATEMENT is
an intermediate term. For example, imagine that the input vector includes Boolean features
that indicate whether the object in view is Small, Medium or Large; the teacher can use an

IF statement and the keyword INFER to create a new term, NotLarge, as follows:

IF Small OR Medium THEN
INFER NotLarge
END

57

The teacher can then use the new term NotLarge in future statements.
The teacher can also use the keyword INFER to add a new definition of an existing
intermediate term. For example, should there be a fourth input feature, Tiny, the teacher

could include the advice:

IF Tiny THEN
INFER NotLarge
END

Since the term NotLarge is an existing intermediate term, this has the effect of adding a
new definition of the term NotLarge. NotLarge would then be defined as the disjunction of
the old and new definitions.

The REMEMBER keyword in a conclusion of an IF statement indicates that the agent
should retain the value of the condition at the next time step. For example, the teacher

could give the advice:

IF SpeedLimitSignSays55 THEN
REMEMBER SpeedLimitIs55
END

This advice tells the agent to remember the previous value of the condition SpeedLimitSignSays55
(using a state unit as in FSKBANN) and to call this “memory” SpeedLimitIs55. The teacher
could then give advice that checks the condition SpeedLimitIs55.

Note that state values in RATLE are implemented as they are in FSKBANN — the activation
of the state unit disappears after one time step. When the teacher wants to indicate that
the agent should remember a piece of advice indefinitely, she would have to add a rule that

captures this notion, such as:

IF SpeedLimitIs55 THEN
REMEMBER SpeedLimitIs55
END

Otherwise, the activation value of SpeedLimitIs55 would disappear after one step. In

Section 6.4, I will discuss alternate methods for maintaining the activation of state units.

58

5.1.2 The REPEAT Statement

[WHEN WhenCondition |
REPEAT

RepeatAction
UNTIL UntilCondition
[THEN ThenAction]
END

A REPEAT statement allows the teacher to specify an action that should be executed over
and over. The statement includes a condition that the agent tests to see if it should stop
executing the loop. This statement is useful for planning tasks in which the agent must
perform some set of repetitive actions in order to achieve a goal.

The inner part of the REPEAT statement works as in Pascal — the action RepeatAction is
executed while UntilCondition is false. The WHEN and THEN parts of the REPEAT statement
are optional, though a REPEAT statement without a WHEN part often does not make sense.
The WHEN part of a REPEAT statement sets the initial conditions for starting the REPEAT
statement; if no WHEN part is included in the REPEAT statement, the agent assumes that
it should always be starting the REPEAT loop. The optional ThenAction is executed by the
agent once the loop terminates.

The REPEAT statement can be used as a memory of an intermittent signal, whereas
the IF statement can react only to the current input vector. For example, imagine that
our game-playing agent has an input feature that indicates whether “Red Light” or “Green
Light” is called out — but that this knowledge disappears at the next time step (e.g., the
agent hears nothing). In this case, the agent would not know whether it is safe to move,
but a REPEAT loop can retain this knowledge by continuing to suggest an action until some

condition occurs:

WHEN LightIsGreen
REPEAT

MoveForward
UNTIL LightIsRed
THEN StopMoving
END

This statement says that as soon as “Green Light” is called out, the agent should MoveForward

99

and continue doing this until “Red Light” is called out, at which point the agent should
StopMoving.

5.1.3 The WHILE Statement

WHILE WhileCondition DO
WhileAction

[THEN ThenAction]

END

A WHILE statement defines a loop similar to the REPEAT statement. The teacher uses a
WHILE statement to indicate some action the agent should take whenever the condition
holds. As with the REPEAT statement, the WHILE statement is useful when the agent should
perform repetitive actions.

A WHILE indicates that the action WhileAction should be repeated continually as long
as the condition WhileCondition is true. The (optional) action ThenAction executes when
the condition WhileCondition becomes false, but only if the loop was executed at least once.

An example of a WHILE statement is:

WHILE NOT LightISRed DO
MoveForward

THEN StopMoving

END

The functionality of the WHILE statement is in many ways subsumed by the IF statement.
Since the condition of an IF statement is checked at every step by the agent, an IF statement
works essentially as a WHILE statement. The main difference between the 1F and the WHILE
statements is that the WHILE statement has an optional THEN part. I provide the WHILE
statement largely because the teacher may find the WHILE more natural for representing a

particular piece of advice.

5.2 Conditions

Each of the basic statements makes use of conditions to describe states of the world; these

conditions are the triggers for performing actions. Conditions can be made up of three

60

types of grammar pieces: (1) the names associated with input features, intermediate, and
remembered terms; (2) logical combinations of sub-conditions; (3) fuzzy terms (i.e., terms

that represent either multiple input features or functions based on input features).

5.2.1 Conditions: Terms

A teacher may indicate a condition that is simply the name of a Boolean term. Terms are the
names assoclated with input features or the names of intermediate or remembered terms that
the teacher previously defined (such as the predicate NotLarge discussed in Section 5.1.1).
A term is true (the condition holds) if and only if the condition or input feature associated

with that name is true. In Section 5.6, I define legal names for terms.

5.2.2 Conditions: Logical Combinations

“(” Condition™)”

NOT Condition

Condition1 AND Condition?2
Condition1 OR Condition2

Conditions can be more complex than simple terms. Conditions may be combined by the
teacher using the logical operations NOT, AND, and OR. These operations work in the
standard way (e.g., NOT Condition is true when Condition is false, etc.). These operations can
also be employed recursively and parentheses can be used to create any logical combination

of the current terms and fuzzy conditions.

5.2.3 Conditions: Fuzzy Conditions

Object { 1S | ARE } Descriptor [Typel]
Quantifier Object { 1S | ARE } Properties [Type2]

Zadeh defines a fuzzy set as “a class of objects with a continuum of grades of membership”
(Zadeh, 1965, pp. 338). A fuzzy membership function characterizes the fuzzy set by assigning
each object a value in the interval [0, 1] that indicates to what extent that object fits into
the class (0 being not at all, 1 being a perfect fit). For example, a fuzzy set could be the
set of tall trees. A tree five feet in height would probably have a fuzzy membership function

61

value of 0 for this set, while a 60-foot high tree would likely have a membership value of
1. However, a 40-foot high tree might only be considered somewhat tall, so it might have a
membership value of 0.7.

The RATLE language has fuzzy conditions, fuzzy terms, and fuzzy functions. A fuzzy
condition (e.g., Many Trees ARE Tall) is a construct that specifies a fuzzy membership
function on the input features. Fuzzy terms (e.g., Many and Tall) are the names used in
fuzzy conditions that determine which fuzzy membership function to apply to the input
features, and a fuzzy function (e.g., the initial definition of Many) is the fuzzy membership
function associated with a fuzzy term.

The basic idea behind the fuzzy conditions of RATLE is to make it easier for the teacher
to provide instructions — rather than having to define functions of input features, the teacher
can use general terms such as Big and Near. Fuzzy conditions also serve the purpose of
creating Boolean conditions from the non-Boolean input features.

The set of fuzzy terms available to the teacher is defined by the initializer. These terms
are generally specific to the task being learned, and I assume that a new set of terms will
have to be defined for each environment. However, once defined, the teacher can use these
terms over a lengthy teaching period.

RATLE’s language contains two types of fuzzy conditions, the first of which refers to input
features associated with single objects. For example, a fuzzy condition of the first type might

be:
Treel IS Tall

The second type of fuzzy condition is more complex, and refers only to input features asso-
ciated with objects that have properties (e.g., an input feature that counts trees, but only

ones that are 40 to 60 feet in height). An example of the second type of fuzzy condition is:

Many Trees ARE Tall

Note that 1S and ARE are equivalent; the teacher may use the word that makes the most
sense.

In the first type of fuzzy condition, Object (e.g., Treel) is a name. The Descriptor (e.g.,
Tall) in the first fuzzy condition is matched to the set of descriptors that have been supplied
by the initializer. Additional details on this process are provided below.

In the second type of fuzzy condition, the Object (e.g., Trees) must correspond exactly to

the name of an input feature or features that have properties. The Quantifier (e.g., Many)

62

is a value that indicates some value or range of values that Object (e.g., Trees) should have,
and Properties (e.g., Tall) are used to select the input features to be examined to see if the
appropriate quantity exists. Properties in the second type of fuzzy condition can be single
descriptors, or conjunctions or disjunctions of many descriptors. For example, a sample fuzzy

condition of the second type is:

Many Trees ARE (Tall AND Branchless)

5.3 Actions

A statement generally specifies an action or actions the agent should take given that the
conditions of the statement are met. Possibilities for actions include: (1) a single action;
(2) a set of possible actions (any of which would be appropriate); (3) a prohibition from
taking an action; and (4) a sequence of actions. In this section, I describe the different types

of actions the teacher can indicate.

5.3.1 Actions: Single Actions

The simplest action is the name of a single action. Actions are named using the rules for

defining input names, discussed in Section 5.6.

5.3.2 Actions: Alternative Actions

“(” ActionName { OR ActionName }+ «)”

A more complex form of action is an alternative action, in which the teacher indicates a set
of actions, any of which would be appropriate for the situation. An example of the use of

an alternative action is:

IF GoalIsNorthAndEast THEN
(MoveEast OR MoveNorth)
END

No preference is attached to the ordering of the actions in the alternation.

63

5.3.3 Actions: Action Prohibitions

DO_NOT ActionName

The action prohibition is not a suggestion that the student take an action in the traditional
sense, but rather that under certain conditions a particular action is not a good idea. For

example, the teacher could indicate:

IF LightIsRed THEN
DO_NOT MoveForward
END

This IF statement suggests the agent should not MoveForward under the LightIsRed con-
dition — advice which would be useful both in a car-driving task and for playing the game

Red Light - Green Light.

5.3.4 Actions: Multi-Step Plans

MULTIACTION ActionName+ END

The MULTIACTION is the most complex form of action; it specifies a plan — a sequence of
actions to perform. The sequence can be of arbitrary length and is made up of an ordered

list of action names. A MULTIACTION looks like this:

WHEN GoalIsNorthAndEast
REPEAT
MULTIACTION
MoveEast
MoveNorth
END
UNTIL NOT GoalIsNorthAndEast
END

This statement says that when the condition GoalIsNorthAndEast is true, the agent should
execute the plan of first moving east, then at the next step moving north, as long as the

condition GoalIsNorthAndEast is true.

64

Note that in a looping construct such as a REPEAT statement, the condition of the loop
is checked only at the end of the sequence of actions — the condition is not checked at each
step of the sequence (e.g., after executing the action MoveEast in the above MULTIACTION,
the agent does not check to see whether GoalIsNorthAndEast is still true before executing

MoveNorth).

5.4 The RATLE Preprocessor

In order to make articulating certain sets of related statements easier, I included a prepro-
cessor to the RATLE advice language. A preprocessor statement takes one of the following

forms:

FOREACH Variable IN “{” Value [“,” Value |* “}” statement+ ENDFOREACH
FOREACH “(” Variablel [“” Variable2] “)” IN
(7 Valuel [« Value2 |+)7 [« “(7 Value2 [) Value2 | «)” |x “}”
statemeni+ ENDFOREACH

The teacher uses a preprocessor statement to define a set of statements that are similar. A
preprocessor statement indicates the name of one or more variables and the string(s) with
which those variables are to be replaced in order to produce the statements.

For example, imagine that the agent is able to move in four directions (East, North,

West, and South). The teacher may want to give advice in the following form:

IF GoalIsNorth THEN
MoveNorth
END

But the teacher may want to indicate that this advice applies to any of the four directions.

The teacher can use the preprocessor to specify these four rules at once:

FOREACH dir IN { East, North, West, South }
IF GoalIs$(dir) THEN
Move$(dir)
END
ENDFOREACH

65

The form $(dir) in the statements within the FOREACH indicates the strings to be replaced
with the list of values (e.g., East, North, West, South) to form the actual statements.
Hence, the above FOREACH would produce four statements.

The teacher uses the second type of preprocessor command to assign a group of values

to a set of variables en masse. For example, a FOREACH could take the following form:

FOREACH (ahead, back) IN
{ (East,West), (West,East), (North,South), (South,North) }
IF EnemyIs$(ahead) THEN
Move$(back)
END
ENDFOREACH

This statement defines four rules, where each rule checks whether there is an Enemy in one
direction, and if so, suggests the agent move in the opposite direction. The teacher may also
nest preprocessor statements.

Note that following preprocessing, the resulting rules, which may share similar struc-
tures, are decoupled. Thus, each statement produced by the preprocessor is treated as a
separate statement. (See Sun (1992) and Shastri (1988) for work on variable binding in neu-
ral networks that do not learn.) A method such as soft-weight sharing (Nowlan & Hinton,
1992), would allow the agent to maintain connections between similar pieces of advice, but
requiring the advice to do so would detract from the agent’s ability to refine each piece of

advice individually.

5.5 Limitations of and Extensions to the RATLE Ad-
vice Language

My intent in developing RATLE was to provide a language that allows a teacher to express
a wide range of advice in a form that could be easily transferred into an RL agent. The
statements [implemented were chosen in part because of my experiences acting as the teacher
for the testbeds I present in Chapter 7. But I also tried to focus on programming statements
that seem to exist in one form or another in most programming languages. In this section
I will discuss some features that are missing from the RATLE language and ways in which

those features might be included in future versions of the language.

66

5.5.1 Limitation One: Embedding Statements within Statements

RATLE statements cannot be embedded within other statements. Such a capability would
be very useful for implementing multi-step plans. Currently, when the teacher indicates a
multi-step plan, she may specify only a condition that holds true at the start of the plan. It
would be useful if the teacher could add conditions that should still hold during the execution
of the plan. For example, imagine we have a robot agent attempting to pick up blocks in an
environment where multiple robots are trying to perform this task. A useful piece of advice

might be:

IF NextToBlockl AND OnGroundBlockl THEN
MULTIACTION
ExtendRobotArm
GraspObject
RetractRobotArm
END
END

Should another robot pick up the block while the first robot is extending its arm, the first
robot would waste time trying to grasp a block that is no longer on the ground.

If RATLE allowed embedded statements, the teacher could address this problem with an
IF statement within the MULTIACTION of the outer IF statement:

IF NextToBlockl AND OnGroundBlockl THEN
MULTIACTION
ExtendRobotArm
IF OnGroundBlockl THEN
MULTIACTION
GraspObject
RetractRobotArm
END
END
END
END

This type of embedded statement would be straightforward to implement, since the condition

that occurs before the second step of the inner multi-step plan could be added to the unit

67

that checks if the second step of the plan should be taken (see Section 6.3.4). Allowing loops
within loop statements would require more care, since the state units defining the loop have
to be connected together appropriately, but would still be straightforward to implement.

A related approach would be to give the teacher a language keyword (e.g., ALWAYS) that
she could use to indicate that a condition must hold before each step of a multi-step plan.

The teacher then could give the following advice in the above situation:

IF ALWAYS (NextToBlockl AND OnGroundBlockl) THEN
MULTIACTION
ExtendRobotArm
GraspObject
RetractRobotArm
END
END

The ALWAYS would state that the condition (NextToBlockl AND OnGroundBlockl) should
be checked before the agent attempts each action in the plan.

5.5.2 Limitation Two: Defining Procedures

Simple procedures are another helpful feature that could be added to the advice language.
The teacher could give a name to a set of actions that she could then use in multiple other

pieces of advice. For example, the teacher could define a procedure PickupObject as follows:

PROCEDURE PickupObject
MULTIACTION
ExtendRobotArm
GraspObject
RetractRobotArm
END
END

Implementing procedures would be fairly straightforward, since RATLE could simply parse
the body of the procedure and substitute the body every time the procedure name is used
by the teacher.

68

5.5.3 Limitation Three: Using Complex Functions

Currently, the teacher may specify only logical combinations of Boolean functions in condi-
tions. RATLE relies on the initializer to create fuzzy conditions that turn the non-Boolean
input features into Boolean conditions. Relaxing this limitation and letting the teacher con-
struct conditions that include arithmetic functions would be helpful, especially in domains
in which many of the features are not Boolean. The main difficulty with allowing other func-
tions is that RATLE currently uses sigmoidal activation functions for all of its neural-network
units. In order to implement other types of functions, RATLE would have to allow other
types of units (e.g., units that can perform multiplication, division, square roots, etc.), and

different neural-network learning rules would be needed for these units.

5.5.4 Limitation Four: Providing Agent Goals

Goals are a useful form of advice a teacher can give to an RL agent (Gordon & Subramanian,
1994; Mataric, 1994); they represent conditions of the environment that the agent should
try to achieve. The teacher can use goals to divide a task into sub-tasks that the agent may
find easier to learn.

For example, imagine an agent trying to transport a box from a warehouse to a fac-
tory. A good sub-goal of this task might be for the agent to be holding a box (e.g.,
GOAL HoldingBox). In RATLE, I could implement goals as teacher-defined reinforcement
signals — when the environment matches the condition of the goal the agent would receive a
reinforcement (e.g., the agent would get a positive reward for holding a box). This imple-
mentation might be problematic, however, since we want the agent to eventually ignore the
teacher-defined reinforcements (since they are not “real,” in some sense) and concentrate
only on the actual reinforcements. One way to solve this problem would be to have the
reinforcement decay a bit every time the agent receives the reinforcement, so that over time
the teacher-defined reinforcements would disappear.

More complex forms of goals might use fuzzy terms to allow the teacher to indicate the
strength of a reinforcement the agent should receive (e.g., the teacher could attach names
like strong, medium, and weak to goals). We could also imagine advice about conditions to

avoid in the environment, which could be implemented as negative reinforcements.

69

5.6 The Input Language

Recall that before the teacher can provide advice to the agent, the initializer must attach
names to the each of the input features. The teacher uses these names to reference input
features that are combined to form conditions. Currently, RATLE understands two types of
input features: BOOLEAN and REAL values. The initializer gives a name to each feature of
the feature vector using one of the input language structures explained below. The question
of who exactly defines the set of features used in the feature vector is left open. The features
of the feature vector could be defined by the initializer, but they could also be defined by yet
another person who defines the task being addressed. The job of the initializer is to name
the input features, no matter who defines them.

Although the specifics of defining inputs and fuzzy terms are somewhat task-dependent,
it is important to know how input features are described in order to understand how I
implement fuzzy conditions in RATLE. Readers not interested in these details may skip this

section and Section 5.7.

5.6.1 Inputs: Name Strings

The teacher uses names to refer to input features, intermediate terms, and actions. RATLE
uses name strings that are similar in definition to Pascal name strings: a name string begins
with a lower or upper case character of the alphabet (i.e., from ’a’ to 'z’ or A’ to 'Z’);
followed by an arbitrary number of alphabet, numeric (i.e., 0’ to '9’), or underscore (_)
characters. Exceptions are the keywords of the RATLE language (e.g., WHILE, REPEAT, END,
MULTIACTION, etc.) which cannot be used as names by the teacher.

5.6.2 Inputs: BOOLEAN Features

BOOLEAN Name

The simplest type of input is a BOOLEAN feature. The name in a BOOLEAN feature is simply
a name string. This type of input is assumed to have a value of 0 or 1 (i.e., false or true),
and can be used in a condition by simply including the name.

The initializer can use BOOLEAN features to implement Nominal features as well. For

example, if the color of a Block can be Red, Green, or Blue, the initializer would create three

70

BOOLEAN input features: BlockIsRed, BlockIsGreen, and BlockIsRed. The initializer
could also represent the color of the block using a single REAL feature, but then he or she

would have to assign arithmetic values to each of the possible colors, Red, Green, and Blue.

5.6.3 Inputs: REAL Features

REAL FeatureName Propertyx
“I” LowValue “..” HighValue [“,” NormLowValue “..” NormHighValue | “]”

The initializer represents a feature that has an arithmetic value (e.g., the height of Treel
in feet) using a REAL construct. The string Feature Name in a REAL feature is the name of the
feature. The optional Properties are characteristics that each of the object(s) being measured
share — the definition of properties appears below. The name of a REAL feature that has no
properties must have a unique string for Feature Name — a string not used for any other input,
action, or fuzzy term. The LowValue and HighValue part of a REAL definition indicates the
minimum and maximum value that the REAL will take on, and the NormLowValue and
NormHighValue are included if the input value is normalized in the feature vector. These

values must be numbers. For example:

REAL TreelHeight [0 ..20,0 .. 1]

is a REAL value indicating the height of Treel is a value between 0 and 20, but that the value
is normalized to be between 0 and 1 (e.g., if Tree! was height 16, the value of this input
would be 0.8).

A REAL input feature that has properties does not need a unique name string; in fact,
it is assumed that generally several such variables share name strings. REAL features may
have properties to indicate that multiple input features measure the same aspect for different
groups of objects. For example, the set of input features could include three “tree-height”
features, one that counts the number trees of height 0 to 20, another that counts the number
of trees of height 20 to 40, and a third that counts trees of height 40 to 60. In this case, the
initializer can give each of the input features the same base name (e.g. NumberOfTrees or
Trees) and then indicate the differences between the three input features using properties.
The advantage of this approach is that the teacher can use fuzzy conditions that perform

operations that look at all of the inputs (e.g., an operator that counts the number of trees

71

disregarding how tall they are). More details on how such fuzzy terms are defined are given
in Section 5.7.

REAL feature properties have the following possible forms:

PropertyName IN “[” LowProp Value “..” HighProp Value “|”

[14

PropertyName “=" PropertyValue

A property name is a name string, and property values are numbers. The first type of
property indicates that the object(s) being measured have values of PropertyName that are
between LowPropValue and HighPropValue. The second type of property indicates that
each object being measured has the value PropertyValue for PropertyName. An example of

a REAL feature with properties is:
REAL Trees Height IN [40 .. 60] Branches=0 [0..20,0..1]

This is an input feature that represents how many trees are of Height 40 to 60 with zero
Branches. Many input features can have the FeatureName Trees, each defined by a different
set of properties.

In RATLE, conditions are made up of logical combinations of Boolean arguments. REAL
features, since they are not Boolean in nature, can only be referenced using the fuzzy terms
described below. These fuzzy terms allow the teacher to create BOOLEAN features based on

the values of REAL input features.

5.7 Fuzzy Language Terms

Besides naming the input features and actions, the initializer may also provide a set of fuzzy
terms. These terms allow the teacher to make reference to input features using general terms
like Big and Near. These terms also convert the REAL features of the input language into
Boolean terms that the teacher may combine into conditions.

Recall that fuzzy conditions come in two forms:

Object { 1S | ARE } Descriptor [Typel]
Quantifier Object { 1S | ARE } Properties [Type2]

In the first type of fuzzy condition, the term Descriptor refers to a fuzzy term of type
DESCRIPTOR. In the second type of fuzzy condition, the terms Quantifier and Properties

72

refer to fuzzy terms of type QUANTIFIER and PROPERTY. The DESCRIPTOR, QUANTIFIER,
and PROPERTY terms are defined by the initializer.

5.7.1 Fuzzy Terms: Descriptors

DESCRIPTOR PartialName “::=" PartialName Operator Value
DESCRIPTOR PartialName “::="
“7 [“=7] PartialName { {“+7|“="} PartialName }x “)” Operator Value

The initializer uses a DESCRIPTOR to describe a simple fuzzy function of the input features. A
fuzzy condition of the first type contains the name of an object and the name of a function
(Descriptor) to calculate with respect to that object. RATLE determines the appropriate
fuzzy function to calculate by matching the name Descriptor from the fuzzy condition to the
names of the DESCRIPTORs. These DESCRIPTORs may contain variables (as described below);
thus RATLE applies a string-matching process, instantiating the variables in the names to
find the appropriate function(s). These variables allow the initializer to define fuzzy terms
that may apply to a number of different objects (e.g., one term for “big” that applies to
the input features Size0OfObjectl, SizeofObject2, etc.). When more than one descriptor
matches, RATLE creates multiple network units and then creates a disjunction of those units.
After the variables in the DESCRIPTOR names are instantiated by RATLE, each name in the
resulting function has to correspond to an existing input feature of type REAL (that has no
properties). RATLE discards any match that results in names that are not defined.

Following the string-matching process, the DESCRIPTOR defines a simple sum of the input

features (the portion of a DESCRIPTOR to the right of the “::=" before the Operator). The
Operator in the DESCRIPTOR must be one of the following: “>7; “<7; “<="; “>="; “=";
and “! =" (not equals). Value is a number that is used in the comparison to the sum of

input features. The resulting function is fuzzy because it is implemented using sigmoidal
neural-network units. Therefore, these functions cannot have any discontinuities.

The key to a DESCRIPTOR is the PartialName construct. A PartialName has the form:

{ NameString | “7” “(” NameString)" }+

That is, a PartialName consists of a series of name strings and variable strings of the form

?(Name). Each DESCRIPTOR can have any number of these variable strings. One predefined

73

variable string for each DESCRIPTOR is 7(0bject), which is always bound to the value of
Object from the fuzzy condition. For example, ?(0bject) would be bound to Treel in this

condition:
Treel IS Tall

To create a fuzzy unit for this fuzzy condition, RATLE matches the DESCRIPTOR in the
fuzzy condition to all of the DESCRIPTORs defined previously and then instantiates each of
the DESCRIPTORs that match. For most fuzzy descriptors, this is simple; for example, the
DESCRIPTOR Tall might match only a single DESCRIPTOR:

DESCRIPTOR Tall ::= 7(0bject)Height > 40

But this process can be more complex when a fuzzy term contains variables other than the

object variable. For example, a fuzzy condition could be:
Treel IS CloserThanTree2

where CloserThanTree?2 could be defined by the following DESCRIPTOR:

DESCRIPTOR CloserThan?(Other) ::=
(DistTo?(0bject) - DistTo?(0ther)) < 0

This DESCRIPTOR also contains the variable ?(0ther), which RATLE must instantiate in
order to match this DESCRIPTOR.

5.7.2 Fuzzy Terms: Properties

PROPERTY Name “::=" Property

In the second type of fuzzy condition, the teacher uses a set of Properties to select the input
features that the fuzzy function will examine. The second type of fuzzy condition can be
applied only to input features that have properties.

PROPERTY descriptors are simple names associated with properties; they are defined
in the same manner as properties for input features (see Section 5.6.3). An example of a

PROPERTY 1s:

PROPERTY Tall ::= Height IN [50 .. 70 |

74

This says that an input feature is considered to match the PROPERTY Tall if it represents
items of height 50 to 70. PROPERTYs are used to select input features whose properties match
the properties indicated in a fuzzy condition (e.g., input features that represent objects that
are of height 50 to 70 would match the PROPERTY Tall). Properties are not fuzzy in the
standard sense, but they can result in partial matches, because a PROPERTY range of values
does not have to exactly match a range associated with an input feature. For example, if an
input feature counted trees with heights ranging from 40 to 60, RATLE would assume that
only half of the trees match the PROPERTY Tall defined above. In general, RATLE assumes

that the uniform distribution applies to ranges.

5.7.3 Fuzzy Terms: Quantifiers

QUANTIFIER Name “::=" [SUM | Operator Value
QUANTIFIER Name “::=" [SUM | IN “[” LowValue “..” HighValue “]”

The second type of fuzzy condition T'ype2 specifies a type of object being examined (e.g.,
Trees), a property or properties that those objects must have (e.g., Tall), and a QUANTIFIER
(e.g., Many) which indicates the type of fuzzy function that should be applied to all of the

matching objects. For example:
Many Trees ARE Tall

This condition holds if Many Trees satisfy the property Tall.

QUANTIFIERs specify an operator and a threshold that the input features must meet.
The operators available are the same as for descriptors (e.g., “>7; “<7; “<="; “>="; “=";
and “! =”). Number in a QUANTIFIER is the number against which the function is measured.
The form of a QUANTIFIER using an IN is a shorthand for specifying that the desired value
is between the two values LowValue and HighValue.

An example of a QUANTIFIER is:
QUANTIFIER Many ::= > 3

Since the keyword sUM is omitted, RATLE finds the input features that match the property
Tall, and then determines if any of these inputs meets the fuzzy criterion Many. For example,
if three input features all count the number of Trees that are Tall, RATLE would create

fuzzy functions that determine whether there are Many Trees at each of these input features

75

individually. Then RATLE creates a disjunction of these fuzzy functions that determines if
any of the input features meet the condition.

When the QUANTIFIER includes the keyword suM, the above process is differently. For
example, the above QUANTIFIER could be rewritten as:

QUANTIFIER Many ::= SUM > 3

In this case, RATLE determines whether the total across all of the inputs matching the
property Tall meet the test. If three inputs count the number of Trees and match the
property Tall, RATLE creates a fuzzy function that determines if the sum of Trees across
these three input units meets the test associated with Many.

To illustrate the difference between using a QUANTIFIER with the keyword SuUM and
one without, consider the following example. Assume that the input vector includes three
features that count the number of Tall Trees: one feature counts Tall Trees with zero
to four branches, one counts Tall Trees with five to eight branches, and one counts Tall
Trees with more than eight branches. Further assume that in the current input vector,
there is one Tall Tree with zero branches, two Tall Trees with five branches, and one
Tall Tree with nine branches. Assuming the QUANTIFIER Many is defined as above without
the keyword SUM, the fuzzy condition Many Trees ARE Tall would be false, since none of
the input features meets the condition Many individually (i.e., none of these inputs indicates
more than three trees). However, if the keyword SUM is specified by the initializer, the
condition would be true, since there are more than three Trees that are Tall across the set

of matching input features.

5.8 Limitations of the Input and Fuzzy Term Languages

There are a number of types of input features and fuzzy terms that I have not implemented.
As I noted above, my choices for allowable input features and fuzzy terms were driven largely
by the environments I explored in my tests. An array exemplifies an input feature construct
that would be useful. This could be helpful when the input vector includes a 2D array of
pixel variables from a picture, for example, so that the teacher could make reference to a
pixel and its surrounding pixels. For fuzzy terms, a means to attach initial fuzzy values to
nominally-valued features would be helpful. For example, the teacher may want to refer to
“Dark” and “Light” objects. The initializer could make this possible by assigning initial

fuzzy values to different colors. Black would closely match the term “Dark” and the term

76

“Light” not at all, while Purple would match “Dark” somewhat less and “Light” somewhat
more and Yellow would match “Dark” very little and “Light” quite a bit. As with input
constructs, implementing new types of fuzzy terms will likely be driven by the needs of a

task, though the current constructs should already cover a large percentage of cases.

5.9 Summary

The RATLE advice language allows a teacher to give an RL agent advice about actions to take,
given conditions of the world. Table 20 presents a complete grammar for RATLE’s advice

language. Note that RATLE typechecks the instructions after parsing them, to determine

Table 20: The grammar used for parsing RATLE’s advice language; ¢ is the empty string.

stmts < stmt | stmts ;7 stmt

stmlt < IF ante THEN conc else END
| WHILE ante DO act postact END
| pre REPEAT act UNTIL ante postact END

else < ¢ | ELSE conc
postact < ¢ | THEN act
pre < ¢ | WHEN ante

conc < act | INFER name | remember name
act < cons | MULTIACTION clist END

clist <« cons | cons clist

cons < Name | DO.NOT Name | “(” corlst «)”
corlst < Name | Name OR corlst

ante < Name | “(” ante “)” | NOT ante
| ante AND ante | ante OR ante
| quant Name isare desc

quant < ¢ | Name
isare < 1S | ARE

desc < Name | NOT desc | (dexpr)
dexpr ¢+ desc | dexpr AND dexpr | dexpr OR dexpr

77

if the Name constructs are appropriate for their location in the grammar. Examples of
statements provided to RATLE are shown in Table 19 and in Chapter 7.

The RATLE language is designed around three programming language constructs similar
to the Pascal 1IF, REPEAT, and WHILE statements. An IF statement allows the teacher to
specify a condition and a corresponding action, as well as an action to take should the
condition be false. The teacher can also use an IF statement to build new intermediate
terms based on existing terms. A REPEAT statement specifies a loop that is terminated
under a particular condition, and a WHILE statement is a loop with an entry condition. In
each loop body, the teacher specifies an action to be taken during the loop.

RATLE provides a complex language for specifying conditions. Conditions can range
from single Boolean input features to complex logical combinations of inputs. Conditions
may also be fuzzy conditions, which are based on input features that are not Boolean-valued.
Fuzzy conditions are based on fuzzy terms defined prior to the teacher’s instruction by the
initializer; these terms will generally be specific to a particular environment. Grammars for
the language used by the initializer to define the input features and the fuzzy terms are
shown in Tables 21 and 22, respectively.

Each type of statement in RATLE’s language indicates an action or actions that the teacher
suggests the agent should perform (possibly in loops) given certain conditions of the world.
Actions can be single actions, action alternatives (the teacher may indicate a list of actions
that are reasonable), and action prohibitions (suggestions to not take an action). Actions

can also be plans (sequences of actions). In the following chapter, I provide further details

Table 21: The grammar used for parsing RATLE’s input language.

w,”

inputs <« input | inputs ;7 input

inpul < BOOLEAN Name

| REAL proplst “[” Number “..” Number normuvs “|”
proplst < prop | proplst prop
prop < Name IN “[” Number .7 Number “]7,

| Name “=" Number

normus < € | “” Number .. Number

Table 22: The grammar used for parsing RATLE’s fuzzy terms.

78

terms

term

qrest

partial
nameuv

psum
plist
0sign
stgn
op
prop

sum

— term | terms “;” term
< DESCRIPTOR partial “::=" psum op Number
| PROPERTY Name “::— prop

]

| QUANTIFIER Name

< op Number
| IN “[” Number “..” Number “]”

sum qrest

namev | partial namev
Name | “?7(” Name «)”

partial | “(” osign partial plist ©)”
els zgn partial plist
e -

“+7

[14 ” [14 ” 14 ” [14 ” [14 ” 14 ”
U R B el B B

T TTTT T7T

< Name IN “[” Number “..” Number “|”
| Name “=" Number

— ¢ | sum

about the implementation of the features of the RATLE advice language.

