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ABSTRACT 
Bootstrap Learning (BL) is a new machine learning paradigm that 
seeks to build an electronic student that can learn using natural 
instruction provided by a human teacher and by bootstrapping on 
previously learned concepts.  In our setting, the teacher provides 
(very few) examples and some advice about the task at hand using 
a natural instruction interface.  To address this task, we use our 
Inductive Logic Programming system called WILL to translate the 
natural instruction into first-order logic.  We present approaches 
to the various challenges BL raises, namely automatic translation 
of domain knowledge and instruction into an ILP problem and the 
automation of ILP runs across different tasks and domains, which 
we address using a multi-layered approach.  We demonstrate that 
our system is able to learn effectively in over fifty different 
lessons across three different domains without any human-
performed parameter tuning between tasks. 

Categories and Subject Descriptors 
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 
logic programming. 

General Terms 
Algorithms, Design, Reliability, Experimentation, Human Factors. 

Keywords 
inductive logic programming, human teachers, automating setup 
problem 

1. INTRODUCTION 
One of the long cherished goals of Artificial Intelligence (AI) is to 
design agents that learn by interacting with humans, performing 
actions, receiving guidance and/or feedback from the human and 
improving its performance[3]. Traditional supervised learning 
approaches treat learning as a problem where some problem-
dependent criteria (such as learning error, possibly combined with 
other means to control the inductive bias) is optimized given 
labeled examples.  

Bootstrap Learning (BL) is a new learning paradigm proposed by 
Oblinger [5] which views learning as knowledge acquisition. The 
electronic student assumes all relevant knowledge is possessed by 

the teacher who teaches through human-like natural instruction 
methods including providing domain descriptions, pedagogical 
examples, telling of instructions, demonstration and feedback. In 
addition to teacher instruction, the student learns concepts that 
build upon one another through a “ladder” of lessons; lower rungs 
of the lesson ladder teach simpler concepts which are learned first 
and bootstrap (i.e., are used to learn more complex concepts).  

The electronic student, called MABLE, the Modular Architecture 
for Bootstrap Learning Experiments [9] addresses the 
aforementioned limitations of the classical learning paradigm. 
First, MABLE consists of several different learning algorithms, 
which it is able to employ depending on the concept being taught 
and hence can learn a diverse range of tasks across different 
domains. Second, by virtue of the abstracted natural instruction 
and its ability to bootstrap complex behaviors, MABLE can be 
taught by non-programmers and non-experts. Thus, while 
traditional learning specializes by domain, BL specializes by the 
various natural instruction methods. 

In this paper, we focus on one particular modality of teacher 
input: instruction by example, including teacher hints about 
specific examples. We use a logic-based approach that creates 
learned models expressed in first-order logic, which is called 
Inductive Logic Programming (ILP) [4]. ILP is especially well-
suited for the “learning from examples” component in MABLE for 
two reasons.  First, it can use a rich knowledge base that may have 
been provided to the learner initially or may have been 
learned/augmented during earlier lessons. Second, the declarative 
representation of both examples and learned rules makes it easier 
for the teacher and student to communicate about what has been 
learned so far; for example, a teacher can identify and correct 
student mistakes from earlier lessons.  Similarly, the use of logic 
allows for sharing lessons of learned knowledge between modules 
that learn from different kinds of instruction. 

This paper makes four key contributions:  First, we present an ILP 
based system that learns from a human teacher in the presence of 
a very small number of examples.  Second, we present the first of 
its kind methodology to automatically setup ILP runs that do not 
require intervention by an ILP expert (or any human for that 
matter).  Third, is our algorithm that converts human advice and 
feedback into sentences written in first-order logic that are then 
used to guide the ILP search.  The final and a very important 
contribution is the evaluation of the system in 5 different domains 
with teaching lessons for over 50 different concepts and where the 
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correct concepts are learned without any modification of our 
algorithm between the lessons. Our computerized student is 
scored based on several test examples for each lesson and our 
student achieves a near-perfect grade when given advice prepared 
by a third party (who is not from our institution). 

2. BL Challenges 
We first introduce the learning framework and then outline the 
challenges of ILP and BL. 

2.1 Learning Framework 
The learning framework consists of the teacher, the environment, 
and the student interacting with each other. Given a domain 
within which learning takes place, the concepts to be learned are 
organized as lessons within a curriculum created by a separate 
group of researchers from outside our institution and not under 
our control. A lesson may be taught by more than one so-called 
natural instruction method. A lesson that teaches more complex 
concepts is broken down into two or more simpler lessons which 
are learned first and the more complex lesson is bootstrapped 
from the simpler ones. The structure of the curriculum is 
analogous to a "lesson" ladder with lower rungs representing 
simpler concepts and the complexity of the lessons increasing as 
we climb higher.  

The teacher interacts with the student during teaching lessons 
using utterance messages and with the simulator using imperative 
messages which are actions that change the world state.  The 
teacher can test during testing sessions with imperative messages 
requiring MABLE to answer questions and the teacher then 
evaluates the student's responses by providing a grade. 

2.2 Inductive Logic Programming 
ILP combines principles of two of the most important fields of AI: 
machine learning and knowledge representation. An ILP system 
learns a logic program given background knowledge as a set of 
first-order logic formulae and a set of examples expressed as facts 
represented in logic. In first-order logic, terms represent objects in 
the world and comprise constants (e.g., Mary), variables (x), and 
functions (fatherOf(John)). Predicates are functions with 
boolean return value. Literals are truth-valued and represent 
properties of objects and relations among objects, e.g. 
married(John, Mary).  Literals can be combined into compound 
sentences using connectives such as AND, OR and NOT. It is 
common [10] to convert sets of sentences into a canonical form, 
producing sets of clauses. We are developing a Java-based ILP 

system called WILL. 

 Now, consider the ILP search space presented in Error! 
Reference source not found., where logical variables are left out 
for simplicity and the possible features are denoted by a letter in A 
through Z.  Let us assume that the true target concept is a 
conjunction of the predicates A,Z,R and W.  ILP's search space 
without relevance is presented within the dashed box. Normally, 
ILP adds literals one after another, seeking the a short rule that 
covers all (or most of the) positive examples and none (or few) of 
the negatives.  If there are n predicates then this can lead to a 
search of O(n!) combinations to discover the target concept.  As 
can be seen by the portion of the search space that is outside the 
box, if a human teacher tells the ILP system that predicates A, Z, 
and R  are relevant to the concept being learned, the amount of 
search that is needed can be greatly reduced.  Such reduction can  
enable an ILP system to learn from a rather small number of 
examples. In the example, the teacher's hint specifies 3 out of 4 
predicates that should appear in the target concept and hence an 
ILP learner needs to search over a smaller set of hypotheses to 
discover the correct concept. 

Of course if the teacher is malicious or incompetent, then teacher-
provided hints will increase the number of hypotheses that need to 
be considered since they increase the branching factor of the space 
being searched, but in this work we assume the human teacher has 
useful things to say, even if a bit imperfectly (teacher errors of 
omission are less harmful to WILL than errors of commission, as 
Figure 1 illustrates). The major BL challenge for ILP is that it has 
to be used, not only for different lessons within the same domain, 
but also across different domains; this necessitates the automation 
of the ILP setup problem without the intervention of an ILP 
expert. 

Another important aspect requiring automated ILP runs is that the 
parameter settings cannot change between different runs.  We 
cannot expect any human guidance regarding settings and need to 
find good default values that work broadly.  Actually, our 
algorithms themselves try out a few parameter settings and use 
cross validation to choose good settings.  However, given the 
large number of parameters in typical ILP systems (maximum rule 
length, modes, minimal acceptable accuracy of learned clauses, 
etc.), our algorithms cannot exhaustively try all combinations and 
hence must choose an appropriate set of candidate parameters that 
will work across dozens of learning tasks.  

The goal of our ILP based agent is to translate the teacher's 
instructions into first-order logic.  The instructions can be labels 
on example, as well as advice and/or feedback about these 
examples.  We have created an interpreter that converts the advice 
to first-order logic by combining and generalizing the advice from 
individual examples and uses a cost-based search through the 
possible set of hypothesis to learn the target concept.  BL also 
provides the opportunity for the student to refine its concept if it 
had learned an incorrect one.  This setting is called learning by 
feedback, where the teacher provides explicit feedback such as 
providing the correct answer, pointing to important features or 
previously learned concept that the student should consider, etc. 
Our interpreter also interprets such feedback provided by the 
teacher and refines its  learned concept. 

2.3 BL Domains & Challenges 
The domains of the BL project are Unmanned Aerial Vehicle 
(UAV) control, Automated Task Force (ATF), International 
Space Station (ISS).   

Figure 1. Sample search space to illustrate the usefulness of 
relevant statements to ILP. 



UAV Domain Description: This domain involves operating a 
UAV and its camera to execute a reconnaissance mission.  Tasks 
include determining if the UAV has enough fuel to accomplish a 
mission, achieving appropriate latitude, altitude,  learning if there 
is a single (or multiple) stopped (or moving) truck(s) in a scenario, 
whether an object (say truck, building or intersection) is near 
another object of intersect.  The idea is that the UAV is flying 
around and has to automatically identify scenarios that are 
potentially interesting from the defense perspective.  
Figure 2 presents the lesson hierarchy for the domain. Each lesson 
is presented as an oval in the figure. An arrow between lessons 
indicate the bootstrapping relationship between them. For 
example, an arrow between Near and TruckIsAtIntersection 
indicates that the latter lesson requires the concept learned by 
former. 
 
 

 

 

 

 

 

 

 

 

Figure 2. UAV lesson Hierarchy: A relationship A→B 
between lessons A and B indicates that B uses A in its concept. 

UAV Challenges:  The learner has to deal with complex 
structures such as position, which consists of attributes such as 
latitude, longitude, altitude, etc.  Encoding these spatial attributes 
as part of one position literal would enable WILL to learn a 
smaller clause, but would increase the branching factor during 
search due to the additional arguments introduced by such a large-
arity predicate.  Representing these spatial attributes as separate 
predicates would decrease the branching factor at the expense of 
the target concept being a longer clause.  In addition, the tasks 
involve learning the concept of "near" that can exist between any 
two objects of interest.  In a later lesson, this concept might be 
used, for instance, to determine if a truck is at an intersection in 
which case the objects must be specialized to be of the types truck 
and intersection.  It is a challenge for ILP systems to 
automatically generalize and specialize at different levels of the 
type hierarchy.  Finally, this domain requires extensive 
"bootstrapping" as can be seen from Figure 2, which presents a 
heirarchy organizing the UAV lessons, and requires the object 
hierarchies to be able to generalize across different lessons. 
ATF Domain Description: The goal of the ATF domain is to 
teach the student how to command a company of armored 
platoons to move from one battlefield location to another in 
accordance with military doctrine.  The lessons are organized 
based on the complexity of tasks.  At the lowest level are the tasks 
concerning individual vehicles and segments of vehicles.  At a 
higher level are the tasks concerning platoons (sets of segments) 
while at the top-most level are the tasks of a company which is a 
set of platoons.  
ATF Challenges: ATF poses at least two key challenges for 
application of ILP to BL.  First, is the presence of a large number 

of numeric features. For example, there are distances and angles 
between vehicles, segments, platoons, and companies.  For each 
of these objects, there are numeric attributes such as direction, 
location (in three dimensions), speed, etc.  All these numeric 
features require ILP to select good thresholds or intervals, which 
can lead to a large number of features. The second important 
challenge is the deep nesting of the object structure. Each 
company has a list of platoons each of which has a list of 
segments that contain a list of vehicles. This deep nesting requires 
ILP to construct the predicates and features at the appropriate 
level of the object hierarchy. While this might not appear as a 
major issue with individual runs, it should be noted that the same 
settings have to be used across all the lessons for all the domains.   

ISS Domain Description: The ISS curriculum places the student 
in a role of a flight controller who must detect and diagnose 
problems within the thermal control system of the International 
Space Station.  The lessons include teaching the student what 
constitutes an emergency/alert, and how to post observation 
reports concerning actionable alerts.  Examples of these include 
learning the conditions for alerting abnormal  observations, 
warning, emergency and caution 
ISS Challenges: This domain poses several issues that are not 
prominent in the other ones. The key challenge is that the number 
of features in the domain is very large. The fact-base of the 
domain consists of all the small parts, measurements, reports of 
the ISS and hence is significantly larger than the other domains 
(100's of features for a single example). A direct consequence is 
that the amount of time taken to construct the predicates is far 
greater than the other domains.  This is an important issue due to 
the fact the learning strategies (in our case, learning by examples) 
have a fixed learning time. Within this time limit, the student has 
to interpret the teacher's statements, convert to its internal 
representation (in our case, first-order logic statements), learn and 
get evaluated on the test-example.  Unlike the domains, this is not 
inherently relational.  There are specific valves and meters that 
should be considered while learning the target concept. ILP, 
which is a powerful tool for learning first-order logic models that 
allow for generalization needs to consider objects at the grounded 
level in this domain. 

3. SOLVING BL PROBLEMS  
We now present the two main steps of our approach, namely, 
interpreting relevance and adopting a multi-layered strategy for 
automating ILP runs. 

3.1 Interpreting Relevance 
One of the key challenges in BL is learning from a very small 
number of examples. A human teacher will not spare the time and 
effort to specify thousands of examples that any common machine 
learning algorithm requires to learn a reasonable target concept. 
Instead, the human teacher provides some information (that we 
call relevance statements or advice) about the target concept that 
the student uses to accelerate its learning. For instance, when 
teaching the concept of a full fuel tank, the teacher might gesture 
to the fuel capacity of the tank and the current fuel level of the 
tank.  The student might then infer the relationship between the 
two attributes. The main advantage of such a specification of 
relevant attributes is that it drastically reduces the search space 
(i.e., the search through the list of possible features in the target 
concept). Note that many possible features, such as color, length, 
weight, tire pressure, etc. could spuriously discriminate between 
positive and negative examples if the total number of examples is 
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very small (which is the case in the BL lessons, see Section 5). 
Thus, relevance statements become very critical in discovering the 
correct target concept. 

We next outline our algorithm for interpreting the relevance 
statements provided by the teacher. We first illustrate the process 
of interpretation with an example before presenting the algorithm 
formally. Consider the lesson, RecognizeSingleStoppedTruckScenario 
in the UAV domain. The goal in this lesson is to identify if there 
is one and only one stopped truck in the scenario . We now 
present the teacher utterances followed by our interpretation of the 
statements. 
  RelevantRelationship(arg1=SameAs(arg1 = 1, 
     arg2 = GetLength(arg1 = Of(arg1 =actors) 
      arg2 = Scenario(actors = [Truck( name =             
 Truck19, latitude = -10,longitude = 
 10,moveStatus = Stopped)])))) 

Advice is provided using Relevant statements in BL. In the above 
statement, the teacher states that the length (size) of the actor list 
of the current scenario, should be 1.  After the above relevance 
statement the teacher proceeds to give further instructions, here 
talking about a different example: 
 Gesture(atObject = Truck(name= Truck17, latitude                 
=-10,longitude = 10, moveStatus = Stopped)) 

RelevantRelationship(arg1= InstanceOf (arg1 =                                                  
this, arg2 = Truck)) 

In the above statements, the teacher first gestures at (points to) an 
object (Truck17 in this case) and explains that it being an instance 
of a truck is relevant to the target concept. The teacher further 
utters the following: 
RelevantRelationship(arg1 =SameAs(arg1 = Of(arg1 = 
moveStatus, arg2 = Indexical(name =  this)) 

  arg2 = Stopped)) 

The above statement specifies that the moveStatus of the truck 
being "Stopped" is relevant to the target concept.  The term 
Indexical is used to access the object that is being gestured at most 
recently by the teacher.  Hence Indexical(name = this) here refers 
to the truck that has been gestured to earlier.  Hence the teacher 
utters that the actors list of the scenario must be of size 1, that the 
object in that list must be of the type truck and that its move status 
must be equal to stopped.  We will now proceed to explain how 
WILL interprets these statements and constructs background 
knowledge and partial answers correspondingly. 

First, WILL identifies the interesting and relevant features from 
the above statements. WILL first creates the following interesting 
predicates:  
  isaInterestingComposite(Truck19) 
  isaInterestingComposite(Truck17) 
  isaInterestingNumber(1) 
  isaInterestingComposite(Scenario1) 
  isaInterestingSymbol(Stopped) 

A key challenge when dealing with teacher-instruction about 
specific examples is "what should be generalized (i.e., to a logical 
variable) and what should remain constant?"   The above facts 
provide WILL with some candidate constants that should be 
considered; WILL initially uses variables for all the arguments in 
the rules it is learning, but it also considers replacing variables 
with constants. WILL next creates the following relevant 
statements: 
  relevant: Vehicle_moveStatus 
  relevant: Scenario 

  relevant: Scenario_actors 
  relevant: Truck 
  relevant: sameAs 

The features (attributes, objects, and relations) that are mentioned 
in the relevant statements are considered as relevant for the target 
concept.  Consequentially, these features get lower scores when 
searching through the space of ILP rules and computing the cost 
of candidate rules.  WILL then proceeds to construct rules 
corresponding to the relevance statements it receives. In the 
following rules, assume S is of type scenario, L is of type list, T is 
of type truck, and I is an integer.  Following Prolog notation, 
commas denote logical AND.  One rule WILL creates from 
teacher-provided instruction is 
  pred3(S) IF 
   Scenario_actors(S,L),length(L,I),sameAs(I,1). 

The above rule is constructed from the first relevant statement (of 
a positive example) that specifies that the length of the actors list 
in a scenario must be of size 1. A rule will now be constructed for 
the gesture that points at Truck19 in the list. 
  pred5(T,S) IF Scenario_actors(S,L),member(T,L) 

Similarly, rules will be created for the other relevant statements 
corresponding to the instance of and the move status of the truck.  
  pred7(T,S) IF Truck(T, S) 

The above rules uses the previous rule in asserting that the object 
that is a member of the list is of the type truck. Finally, the last 
relevance statement is interpreted as: 
  pred9(T,S) IF moveStatus(T,S),sameAs(S,stopped) 

Once these rules are created for a particular example, WILL 
creates the combinations by combining the pieces of advice using 
the logical connective AND. 
  relevantFromPosEx1(S) IF 
  pred3(S),pred5(T,S),pred7(T,S), pred9(T,S) 

WILL then proceeds to construct similar statements for the second 
example.  Once all the individual examples are processed and the 
rules are created for each of the examples, WILL then proceeds to 
construct combinations of the rules in order to generalize across 
all the examples. The simplest combination is the combination of 
all rules from all positive examples and all the rules from all 
negative examples.  
  posCombo(S) IF  
  relevantFromPosEx1(S),...,relevantFromPosExN(S) 

Similarly the negCombo is constructed by taking the negation of 
the negative relevantANDs.  
negCombo(S) IF 
~relevantFromNegEx1(S),...,~relevantFromNegExN(S) 

We denote the negation of a concept by ~.  Hence, by now our 
rules generalize positive and negative examples separately.  Then 
WILL constructs the cross product across the different 
combinations and adds them to the background. 
  allCombo(S) IF  posCombo(S),negCombo(S)  

All the predicates (relevantFrom's, posCombo, negCombo, 
allCombo, etc) are added to the background during search. and are 
marked as being relevant to the target concept. We also combine 
the advice about examples using the logical connective OR.  We 
use both AND and OR to combine because a human teacher might 
be teaching the computer learning a new conjunctive concept with 
each example illustrating only one piece of the concept, or the 
teacher might be teaching a concept with several alternatives, with 



each alternative illustrated via a different example. We refer to 
such rules as comboRules. 

The algorithm for interpreting relevance is presented in Table 1. 
(Our ILP system can handle tasks that involve multiple categories 
by repeatedly treating them as "1 versus the others" classification 
problems.)  WILL interprets the advice and creates relevant 
features corresponding to the objects and features mentioned in 
the relevant statements, as illustrated above. 

The net result is that our algorithm has hypothesized a relatively 
small number of individual and 'compound' general rules that can 
be evaluated using the (small number of) labeled examples 
provided by its human teacher.  Should these prove insufficient, 
WILL can combine and extend (by using the 'primitive' features in 
the domain at hand) by further searching of the hypothesis space. 

Table 1. Algorithm For Interpreting Relevance. 

For each category (e.g. TRUE and FALSE) 
For each example 
For each relevant statement about that example 
Construct relevant features 
Construct relevant rules for the particular example 

Combine the rules from individual examples to form 
"combo" rules about the current category. 

Combine the rules from different examples  to form "mega" 
rules about the concept as a whole. 

3.2 Multi-Layered Strategy  
One of the key issues with several machine learning methods 

is the periodic intervention by the domain expert to select 
features, tune parameters and set up runs. This is particularly true 
of ILP where researchers face the problem of designing new 
predicates, guiding ILP’s search, setting additional parameters, 
etc.  BL brings a major challenge for ILP in this area, because 
WILL must automatically set up training without the intervention 
of an ILP expert.  This is needed because human teachers cannot 
be expected to understand the algorithmic details of a learning 
approach; rather they communicate with the student in and as 
natural and human-like dialog as is feasible [8]. This necessitates 
the guiding of search automatically in a domain independent 
manner. Automatic parameter selection methods such as the one 
proposed in [1] are not useful in our system due to the fact that we 
do not have access to a large number of examples. Instead we 
resort to a multi-layered strategy that tries several approaches to 
learn the target concept. 

Table 2 presents the algorithm of multi-layered strategy called 
Onion. The innermost layer implements the basic strategy: 
invoking WILL after automated mode construction, using only the 
relevant combinations of features (as told by the teacher). This 
means that WILL initially explores a very restricted hypothesis 
space.  If no theory is learned or if the learned theory has a poor 
score (based on heuristics), then the hypothesis space is expanded, 
say by considering features mentioned by the teacher.  Continuing 
this way, our multi-layered approach successively expands the 
space of hypotheses until an acceptable theory is found.  At each 
level, the algorithm considers different clause length and different 
values of coverage (#pos examples covered - #neg examples 
covered). Whenever a theory that fits the specified criteria is 
found, the algorithm returns the theory. 

As a final note, while the teacher and the learner follow a 
fixed protocol while communicating via Interlingua, interpreting 

relevance amounts to more than simply implementing a rule-based 
parsing system. This is because of the ambiguity that is prevalent 
in every teacher relevance statement, in particular as to how 
general the advice. It is this ambiguity, of whether the teacher 
advice is about specific examples or applies to all examples 
generally, that necessitates a relevance interpreter as in Table 1. 

Table 2 Multi-layered Strategy. 

Procedure: Onion (facts, background, examples) returns theory 

// n positive examples and m negative examples 

While (time remaining) 

1. Include only combo-rules that are generated by WILL for 
the search. Call WILLSEARCH. If perfect theory found, 
return 

2. Expand search space to include all relevant features. Call 
WILLSEARCH. If perfect theory found, return 

3. Expand search space to include all features. Call 
WILLSEARCH. If perfect theory found, return 

4. Flip the example labels and call Onion with new 
examples 

End-while 

If no theory learned, return the largest combo-rule 

Procedure: WILLSEARCH returns theory 

• For rule length 2 to maxRuleLength 
• For coverage = n to n/2 
• Search for the acceptable theory. If found, return it 

 

3.3 A Layered Approach for ILP  
Having outlined the relevance interpreter and Onion, we now 
present the complete learning strategy in Table 3. We first parse 
all the Interlingua messages and create examples both positive 
and negative. In the case of multi-class problems, we pose the 
problem as one vs. others. Then the ground facts and background 
knowledge are constructed. The relevance interpreter then creates 
the comboRules. Finally, Onion is called with the background 
rules and facts to learn the target concept. Once the target concept 
is learned, the teacher evaluates the target on a few test examples. 
If the theory is unacceptable, the teacher provides more examples 
and/or relevant statements as a feedback, thus aiding WILL to 
learn a better concept. 

Table 3. Learning Strategy. 

Procedure: Strategy(IL Messages) returns theory 
1. Construct  examples(pos and neg),  facts (ground truth) &    

background 
2. Parse relevant statements, construct comboRules and add to 

background 
3. Call Onion(facts, background, examples) 
4. If acceptable theory is found, return theory 
    Else call for the feedback lesson to obtain more examples 

and/or relevant statements. Go to Step 1. 

4. ADDITIONAL ISSUES 
Generation of Negative Examples.  In general, ILP requires 

a large number of examples to learn a concept.  While this is a 
challenge in all of machine learning, the need to learn complex 
relational concepts in first-order logic makes it even more so in 
ILP.  In some domains, it is natural for a teacher to say that a 



particular world state contains a single positive example; for 
example, it is natural for a teacher to point to a set of three blocks 
and state that they form a stack.  It is a reasonable assumption that 
various combinations of the rest of the blocks in that scene do not 
form a stack and hence, WILL assumes these are (putative) 
negative examples. We have found that for most of the lessons 
provided in BL there is such a need for automatically constructing 
negatives because instruction contains mainly positive examples.  

Another way to express negative examples is to say some 
world state does not contain any instances of the concept being 
taught: "the current configuration of blocks contains no stacks". 
Assume the teacher indicates isaStack takes three arguments, 
each of which is of type block.  If WILL is presented with a 
world containing N blocks where there are no stacks, it can create 
N3 negative examples. In general, negative examples are 
generated by instantiating the arguments of predicates whose 
types we may have been told, in all possible ways using typed 
constants encountered in world states; examples known to be 
positive are filtered out.  Depending on the task, the student may 
have either teacher-provided negatives or induced negatives. As 
we do not want to treat these identically, WILL allows costs to be 
assigned to examples ensuring that the cost of covering a putative 
negative can be less than covering a teacher-provided one. 

Learning the Negation of a Concept.  Human teachers typically 
gauge the difficulty of concepts being taught by human 
comprehensibility, in terms of which, accurate, short, conjunctive 
rules are preferred. When learning concepts such as 
outOfBounds in a soccer field, the target concept might have a 
large set of disjunctions (since it can be out of bounds on any of 
four sides).  It is easier to learn if the ball is in bounds and then 
negate the learned concept. Our learning bias here is that our 
benevolent teacher is teaching a concept that is simple to state, but 
we are not sure if the concept or its negation is simple to state, so 
we always consider both. For a small number of examples, it is 
usually hard to learn a disjunctive rule, especially if the examples 
are not the best ones, but rather only 'reasonable' in that they were 
near the boundaries, but not exactly next to them.   

5. CONCLUSION 
As mentioned earlier, our implemented system perfectly learned 
(100% accuracy) 56 lessons from a combination of training 
examples and teacher-provided hints.  Running our ILP system 
without these hints - i.e., only using the training examples, for 
which there was an average of 7.6 labeled examples per concept 
taught - produced an average accuracy on held-aside examples of 
63.9% (there was a 50-50 mixture of positive and negative 
examples, so 50% is the default accuracy of random guessing). 

We have shown how the naturally provided human advice can be 
absorbed by ILP approach in order to learn a large number of 
concepts across a handful of domains. None of the advice, nor the 
lessons solved were created by us.  Instead our task was to make 
effective use of the provided advice to learn the intended concepts 
while given only a small number of labeled examples.  

The ILP approach allows learning to be applied to much richer 
types of data than the vast majority of machine-learning methods, 
due to its use of first-order logic as a representation for both data 
and hypotheses. However, ILP requires substantial experience to 
properly set up the 'hypothesis space' it searches. The natural 
teacher-learner interaction in our BL  project is being interpreted 
by WILL as guidance for defining ILP hypothesis spaces, as well 

as biasing the search in such spaces toward the most promising 
areas.  Finally, it should be noted that while these teacher 
instructions significantly influence the ILP algorithm in terms of 
which hypotheses it considers, the algorithm is still able to make 
additions to the teacher's instructions; decide which teacher 
instructions should be kept and which should be discarded; and 
choose how to integrate instructions about individual examples 
into a general concept.  In other words, the human teacher is 
advising, rather than commanding, the student who  still has the 
capability to make decisions on its own. 

Human advice taking has long been explored in AI in the context 
of reinforcement learning [2], where the knowledge provided by 
the human is converted into a set of rules and knowledge-based 
neural networks are used to represent the utility function of the 
RL agent. Advice has also been incorporated in ILP systems [7] to 
learn constant free horn clauses. The key difference in our system 
is the presence of a very small number of examples.  

Currently, we are focusing on our layered approach, to more 
robustly automate ILP in these different tasks.  Also, we are 
currently looking at more richly exploiting teacher-provided 
feedback beyond statements about which features and objects are 
relevant. One possible future direction is to explore the possibility 
of refining the learned theories using teacher feedback in the lines 
of theory refinement for ILP [6]. Refining teacher's advice is 
important as it provides room for teacher mistakes. 
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