
Learning from Human Teachers:
Issues and Challenges for ILP in Bootstrap Learning

Sriraam Natarajan1, Gautam Kunapuli1, Richard Maclin3, David Page1,
Ciaran O'Reilly2, Trevor Walker1 and Jude Shavlik1

1University of Wisconsin-Madison
Department of Biostatistics

{natarasr, kunapg, page, walker,
shavlik}@biostat.wisc.edu

2SRI International
Artificial Intelligence Center

ciaran.oreilly@sri.com

3University of Minnesota, Duluth
Department of Computer Science

rmaclin@d.umn.edu

ABSTRACT
Bootstrap Learning (BL) is a new machine learning paradigm that
seeks to build an electronic student that can learn using natural
instruction provided by a human teacher and by bootstrapping on
previously learned concepts. In our setting, the teacher provides
(very few) examples and some advice about the task at hand using
a natural instruction interface. To address this task, we use our
Inductive Logic Programming system called WILL to translate the
natural instruction into first-order logic. We present approaches
to the various challenges BL raises, namely automatic translation
of domain knowledge and instruction into an ILP problem and the
automation of ILP runs across different tasks and domains, which
we address using a multi-layered approach. We demonstrate that
our system is able to learn effectively in over fifty different
lessons across three different domains without any human-
performed parameter tuning between tasks.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving –
logic programming.

General Terms
Algorithms, Design, Reliability, Experimentation, Human Factors.

Keywords
inductive logic programming, human teachers, automating setup
problem

1. INTRODUCTION
One of the long cherished goals of Artificial Intelligence (AI) is to
design agents that learn by interacting with humans, performing
actions, receiving guidance and/or feedback from the human and
improving its performance[3]. Traditional supervised learning
approaches treat learning as a problem where some problem-
dependent criteria (such as learning error, possibly combined with
other means to control the inductive bias) is optimized given
labeled examples.

Bootstrap Learning (BL) is a new learning paradigm proposed by
Oblinger [5] which views learning as knowledge acquisition. The
electronic student assumes all relevant knowledge is possessed by

the teacher who teaches through human-like natural instruction
methods including providing domain descriptions, pedagogical
examples, telling of instructions, demonstration and feedback. In
addition to teacher instruction, the student learns concepts that
build upon one another through a “ladder” of lessons; lower rungs
of the lesson ladder teach simpler concepts which are learned first
and bootstrap (i.e., are used to learn more complex concepts).

The electronic student, called MABLE, the Modular Architecture
for Bootstrap Learning Experiments [9] addresses the
aforementioned limitations of the classical learning paradigm.
First, MABLE consists of several different learning algorithms,
which it is able to employ depending on the concept being taught
and hence can learn a diverse range of tasks across different
domains. Second, by virtue of the abstracted natural instruction
and its ability to bootstrap complex behaviors, MABLE can be
taught by non-programmers and non-experts. Thus, while
traditional learning specializes by domain, BL specializes by the
various natural instruction methods.

In this paper, we focus on one particular modality of teacher
input: instruction by example, including teacher hints about
specific examples. We use a logic-based approach that creates
learned models expressed in first-order logic, which is called
Inductive Logic Programming (ILP) [4]. ILP is especially well-
suited for the “learning from examples” component in MABLE for
two reasons. First, it can use a rich knowledge base that may have
been provided to the learner initially or may have been
learned/augmented during earlier lessons. Second, the declarative
representation of both examples and learned rules makes it easier
for the teacher and student to communicate about what has been
learned so far; for example, a teacher can identify and correct
student mistakes from earlier lessons. Similarly, the use of logic
allows for sharing lessons of learned knowledge between modules
that learn from different kinds of instruction.

This paper makes four key contributions: First, we present an ILP
based system that learns from a human teacher in the presence of
a very small number of examples. Second, we present the first of
its kind methodology to automatically setup ILP runs that do not
require intervention by an ILP expert (or any human for that
matter). Third, is our algorithm that converts human advice and
feedback into sentences written in first-order logic that are then
used to guide the ILP search. The final and a very important
contribution is the evaluation of the system in 5 different domains
with teaching lessons for over 50 different concepts and where the

Cite as: Learning from Human Teachers: Issues and Challenges in
Bootstrap Learning, Sriraam Natarajan, Gautam Kunapuli, David Page,
Trevor Walker, Ciaran O'Reilly and Jude Shavlik, AAMAS 2010
Workshop on Agents Learning Interactively from Human Teachers.
(www.ifaamas.org). All rights reserved.

1 1300 University Avenue, Medical Sciences Center, Madison WI 53705
2 333 Ravenswood Avenue, Menlo Park CA 94025
3 320 Heller Hall, 1114 Kirby Drive, Duluth MN 55812

correct concepts are learned without any modification of our
algorithm between the lessons. Our computerized student is
scored based on several test examples for each lesson and our
student achieves a near-perfect grade when given advice prepared
by a third party (who is not from our institution).

2. BL Challenges
We first introduce the learning framework and then outline the
challenges of ILP and BL.

2.1 Learning Framework
The learning framework consists of the teacher, the environment,
and the student interacting with each other. Given a domain
within which learning takes place, the concepts to be learned are
organized as lessons within a curriculum created by a separate
group of researchers from outside our institution and not under
our control. A lesson may be taught by more than one so-called
natural instruction method. A lesson that teaches more complex
concepts is broken down into two or more simpler lessons which
are learned first and the more complex lesson is bootstrapped
from the simpler ones. The structure of the curriculum is
analogous to a "lesson" ladder with lower rungs representing
simpler concepts and the complexity of the lessons increasing as
we climb higher.

The teacher interacts with the student during teaching lessons
using utterance messages and with the simulator using imperative
messages which are actions that change the world state. The
teacher can test during testing sessions with imperative messages
requiring MABLE to answer questions and the teacher then
evaluates the student's responses by providing a grade.

2.2 Inductive Logic Programming
ILP combines principles of two of the most important fields of AI:
machine learning and knowledge representation. An ILP system
learns a logic program given background knowledge as a set of
first-order logic formulae and a set of examples expressed as facts
represented in logic. In first-order logic, terms represent objects in
the world and comprise constants (e.g., Mary), variables (x), and
functions (fatherOf(John)). Predicates are functions with
boolean return value. Literals are truth-valued and represent
properties of objects and relations among objects, e.g.
married(John, Mary). Literals can be combined into compound
sentences using connectives such as AND, OR and NOT. It is
common [10] to convert sets of sentences into a canonical form,
producing sets of clauses. We are developing a Java-based ILP

system called WILL.

 Now, consider the ILP search space presented in Error!
Reference source not found., where logical variables are left out
for simplicity and the possible features are denoted by a letter in A
through Z. Let us assume that the true target concept is a
conjunction of the predicates A,Z,R and W. ILP's search space
without relevance is presented within the dashed box. Normally,
ILP adds literals one after another, seeking the a short rule that
covers all (or most of the) positive examples and none (or few) of
the negatives. If there are n predicates then this can lead to a
search of O(n!) combinations to discover the target concept. As
can be seen by the portion of the search space that is outside the
box, if a human teacher tells the ILP system that predicates A, Z,
and R are relevant to the concept being learned, the amount of
search that is needed can be greatly reduced. Such reduction can
enable an ILP system to learn from a rather small number of
examples. In the example, the teacher's hint specifies 3 out of 4
predicates that should appear in the target concept and hence an
ILP learner needs to search over a smaller set of hypotheses to
discover the correct concept.

Of course if the teacher is malicious or incompetent, then teacher-
provided hints will increase the number of hypotheses that need to
be considered since they increase the branching factor of the space
being searched, but in this work we assume the human teacher has
useful things to say, even if a bit imperfectly (teacher errors of
omission are less harmful to WILL than errors of commission, as
Figure 1 illustrates). The major BL challenge for ILP is that it has
to be used, not only for different lessons within the same domain,
but also across different domains; this necessitates the automation
of the ILP setup problem without the intervention of an ILP
expert.

Another important aspect requiring automated ILP runs is that the
parameter settings cannot change between different runs. We
cannot expect any human guidance regarding settings and need to
find good default values that work broadly. Actually, our
algorithms themselves try out a few parameter settings and use
cross validation to choose good settings. However, given the
large number of parameters in typical ILP systems (maximum rule
length, modes, minimal acceptable accuracy of learned clauses,
etc.), our algorithms cannot exhaustively try all combinations and
hence must choose an appropriate set of candidate parameters that
will work across dozens of learning tasks.

The goal of our ILP based agent is to translate the teacher's
instructions into first-order logic. The instructions can be labels
on example, as well as advice and/or feedback about these
examples. We have created an interpreter that converts the advice
to first-order logic by combining and generalizing the advice from
individual examples and uses a cost-based search through the
possible set of hypothesis to learn the target concept. BL also
provides the opportunity for the student to refine its concept if it
had learned an incorrect one. This setting is called learning by
feedback, where the teacher provides explicit feedback such as
providing the correct answer, pointing to important features or
previously learned concept that the student should consider, etc.
Our interpreter also interprets such feedback provided by the
teacher and refines its learned concept.

2.3 BL Domains & Challenges
The domains of the BL project are Unmanned Aerial Vehicle
(UAV) control, Automated Task Force (ATF), International
Space Station (ISS).

Figure 1. Sample search space to illustrate the usefulness of
relevant statements to ILP.

UAV Domain Description: This domain involves operating a
UAV and its camera to execute a reconnaissance mission. Tasks
include determining if the UAV has enough fuel to accomplish a
mission, achieving appropriate latitude, altitude, learning if there
is a single (or multiple) stopped (or moving) truck(s) in a scenario,
whether an object (say truck, building or intersection) is near
another object of intersect. The idea is that the UAV is flying
around and has to automatically identify scenarios that are
potentially interesting from the defense perspective.
Figure 2 presents the lesson hierarchy for the domain. Each lesson
is presented as an oval in the figure. An arrow between lessons
indicate the bootstrapping relationship between them. For
example, an arrow between Near and TruckIsAtIntersection
indicates that the latter lesson requires the concept learned by
former.

Figure 2. UAV lesson Hierarchy: A relationship A→B
between lessons A and B indicates that B uses A in its concept.

UAV Challenges: The learner has to deal with complex
structures such as position, which consists of attributes such as
latitude, longitude, altitude, etc. Encoding these spatial attributes
as part of one position literal would enable WILL to learn a
smaller clause, but would increase the branching factor during
search due to the additional arguments introduced by such a large-
arity predicate. Representing these spatial attributes as separate
predicates would decrease the branching factor at the expense of
the target concept being a longer clause. In addition, the tasks
involve learning the concept of "near" that can exist between any
two objects of interest. In a later lesson, this concept might be
used, for instance, to determine if a truck is at an intersection in
which case the objects must be specialized to be of the types truck
and intersection. It is a challenge for ILP systems to
automatically generalize and specialize at different levels of the
type hierarchy. Finally, this domain requires extensive
"bootstrapping" as can be seen from Figure 2, which presents a
heirarchy organizing the UAV lessons, and requires the object
hierarchies to be able to generalize across different lessons.
ATF Domain Description: The goal of the ATF domain is to
teach the student how to command a company of armored
platoons to move from one battlefield location to another in
accordance with military doctrine. The lessons are organized
based on the complexity of tasks. At the lowest level are the tasks
concerning individual vehicles and segments of vehicles. At a
higher level are the tasks concerning platoons (sets of segments)
while at the top-most level are the tasks of a company which is a
set of platoons.
ATF Challenges: ATF poses at least two key challenges for
application of ILP to BL. First, is the presence of a large number

of numeric features. For example, there are distances and angles
between vehicles, segments, platoons, and companies. For each
of these objects, there are numeric attributes such as direction,
location (in three dimensions), speed, etc. All these numeric
features require ILP to select good thresholds or intervals, which
can lead to a large number of features. The second important
challenge is the deep nesting of the object structure. Each
company has a list of platoons each of which has a list of
segments that contain a list of vehicles. This deep nesting requires
ILP to construct the predicates and features at the appropriate
level of the object hierarchy. While this might not appear as a
major issue with individual runs, it should be noted that the same
settings have to be used across all the lessons for all the domains.

ISS Domain Description: The ISS curriculum places the student
in a role of a flight controller who must detect and diagnose
problems within the thermal control system of the International
Space Station. The lessons include teaching the student what
constitutes an emergency/alert, and how to post observation
reports concerning actionable alerts. Examples of these include
learning the conditions for alerting abnormal observations,
warning, emergency and caution
ISS Challenges: This domain poses several issues that are not
prominent in the other ones. The key challenge is that the number
of features in the domain is very large. The fact-base of the
domain consists of all the small parts, measurements, reports of
the ISS and hence is significantly larger than the other domains
(100's of features for a single example). A direct consequence is
that the amount of time taken to construct the predicates is far
greater than the other domains. This is an important issue due to
the fact the learning strategies (in our case, learning by examples)
have a fixed learning time. Within this time limit, the student has
to interpret the teacher's statements, convert to its internal
representation (in our case, first-order logic statements), learn and
get evaluated on the test-example. Unlike the domains, this is not
inherently relational. There are specific valves and meters that
should be considered while learning the target concept. ILP,
which is a powerful tool for learning first-order logic models that
allow for generalization needs to consider objects at the grounded
level in this domain.

3. SOLVING BL PROBLEMS
We now present the two main steps of our approach, namely,
interpreting relevance and adopting a multi-layered strategy for
automating ILP runs.

3.1 Interpreting Relevance
One of the key challenges in BL is learning from a very small
number of examples. A human teacher will not spare the time and
effort to specify thousands of examples that any common machine
learning algorithm requires to learn a reasonable target concept.
Instead, the human teacher provides some information (that we
call relevance statements or advice) about the target concept that
the student uses to accelerate its learning. For instance, when
teaching the concept of a full fuel tank, the teacher might gesture
to the fuel capacity of the tank and the current fuel level of the
tank. The student might then infer the relationship between the
two attributes. The main advantage of such a specification of
relevant attributes is that it drastically reduces the search space
(i.e., the search through the list of possible features in the target
concept). Note that many possible features, such as color, length,
weight, tire pressure, etc. could spuriously discriminate between
positive and negative examples if the total number of examples is

ComputeScenarioInterestingnes
s

StoppedTrucksAreInteresting MovingTrucksAreInteresting

RecognizeSingleStoppedTruck
Scenario

RecognizeSingleMovingTruck
Scenario

ReadyToFly TruckIsAtIntersection

FullFuelTank Near AssessGoal

very small (which is the case in the BL lessons, see Section 5).
Thus, relevance statements become very critical in discovering the
correct target concept.

We next outline our algorithm for interpreting the relevance
statements provided by the teacher. We first illustrate the process
of interpretation with an example before presenting the algorithm
formally. Consider the lesson, RecognizeSingleStoppedTruckScenario
in the UAV domain. The goal in this lesson is to identify if there
is one and only one stopped truck in the scenario . We now
present the teacher utterances followed by our interpretation of the
statements.
 RelevantRelationship(arg1=SameAs(arg1 = 1,
 arg2 = GetLength(arg1 = Of(arg1 =actors)
 arg2 = Scenario(actors = [Truck(name =
 Truck19, latitude = -10,longitude =
 10,moveStatus = Stopped)]))))

Advice is provided using Relevant statements in BL. In the above
statement, the teacher states that the length (size) of the actor list
of the current scenario, should be 1. After the above relevance
statement the teacher proceeds to give further instructions, here
talking about a different example:
 Gesture(atObject = Truck(name= Truck17, latitude
=-10,longitude = 10, moveStatus = Stopped))

RelevantRelationship(arg1= InstanceOf (arg1 =
this, arg2 = Truck))

In the above statements, the teacher first gestures at (points to) an
object (Truck17 in this case) and explains that it being an instance
of a truck is relevant to the target concept. The teacher further
utters the following:
RelevantRelationship(arg1 =SameAs(arg1 = Of(arg1 =
moveStatus, arg2 = Indexical(name = this))

 arg2 = Stopped))

The above statement specifies that the moveStatus of the truck
being "Stopped" is relevant to the target concept. The term
Indexical is used to access the object that is being gestured at most
recently by the teacher. Hence Indexical(name = this) here refers
to the truck that has been gestured to earlier. Hence the teacher
utters that the actors list of the scenario must be of size 1, that the
object in that list must be of the type truck and that its move status
must be equal to stopped. We will now proceed to explain how
WILL interprets these statements and constructs background
knowledge and partial answers correspondingly.

First, WILL identifies the interesting and relevant features from
the above statements. WILL first creates the following interesting
predicates:
 isaInterestingComposite(Truck19)
 isaInterestingComposite(Truck17)
 isaInterestingNumber(1)
 isaInterestingComposite(Scenario1)
 isaInterestingSymbol(Stopped)

A key challenge when dealing with teacher-instruction about
specific examples is "what should be generalized (i.e., to a logical
variable) and what should remain constant?" The above facts
provide WILL with some candidate constants that should be
considered; WILL initially uses variables for all the arguments in
the rules it is learning, but it also considers replacing variables
with constants. WILL next creates the following relevant
statements:
 relevant: Vehicle_moveStatus
 relevant: Scenario

 relevant: Scenario_actors
 relevant: Truck
 relevant: sameAs

The features (attributes, objects, and relations) that are mentioned
in the relevant statements are considered as relevant for the target
concept. Consequentially, these features get lower scores when
searching through the space of ILP rules and computing the cost
of candidate rules. WILL then proceeds to construct rules
corresponding to the relevance statements it receives. In the
following rules, assume S is of type scenario, L is of type list, T is
of type truck, and I is an integer. Following Prolog notation,
commas denote logical AND. One rule WILL creates from
teacher-provided instruction is
 pred3(S) IF
 Scenario_actors(S,L),length(L,I),sameAs(I,1).

The above rule is constructed from the first relevant statement (of
a positive example) that specifies that the length of the actors list
in a scenario must be of size 1. A rule will now be constructed for
the gesture that points at Truck19 in the list.
 pred5(T,S) IF Scenario_actors(S,L),member(T,L)

Similarly, rules will be created for the other relevant statements
corresponding to the instance of and the move status of the truck.
 pred7(T,S) IF Truck(T, S)

The above rules uses the previous rule in asserting that the object
that is a member of the list is of the type truck. Finally, the last
relevance statement is interpreted as:
 pred9(T,S) IF moveStatus(T,S),sameAs(S,stopped)

Once these rules are created for a particular example, WILL
creates the combinations by combining the pieces of advice using
the logical connective AND.
 relevantFromPosEx1(S) IF
 pred3(S),pred5(T,S),pred7(T,S), pred9(T,S)

WILL then proceeds to construct similar statements for the second
example. Once all the individual examples are processed and the
rules are created for each of the examples, WILL then proceeds to
construct combinations of the rules in order to generalize across
all the examples. The simplest combination is the combination of
all rules from all positive examples and all the rules from all
negative examples.
 posCombo(S) IF
 relevantFromPosEx1(S),...,relevantFromPosExN(S)

Similarly the negCombo is constructed by taking the negation of
the negative relevantANDs.
negCombo(S) IF
~relevantFromNegEx1(S),...,~relevantFromNegExN(S)

We denote the negation of a concept by ~. Hence, by now our
rules generalize positive and negative examples separately. Then
WILL constructs the cross product across the different
combinations and adds them to the background.
 allCombo(S) IF posCombo(S),negCombo(S)

All the predicates (relevantFrom's, posCombo, negCombo,
allCombo, etc) are added to the background during search. and are
marked as being relevant to the target concept. We also combine
the advice about examples using the logical connective OR. We
use both AND and OR to combine because a human teacher might
be teaching the computer learning a new conjunctive concept with
each example illustrating only one piece of the concept, or the
teacher might be teaching a concept with several alternatives, with

each alternative illustrated via a different example. We refer to
such rules as comboRules.

The algorithm for interpreting relevance is presented in Table 1.
(Our ILP system can handle tasks that involve multiple categories
by repeatedly treating them as "1 versus the others" classification
problems.) WILL interprets the advice and creates relevant
features corresponding to the objects and features mentioned in
the relevant statements, as illustrated above.

The net result is that our algorithm has hypothesized a relatively
small number of individual and 'compound' general rules that can
be evaluated using the (small number of) labeled examples
provided by its human teacher. Should these prove insufficient,
WILL can combine and extend (by using the 'primitive' features in
the domain at hand) by further searching of the hypothesis space.

Table 1. Algorithm For Interpreting Relevance.

For each category (e.g. TRUE and FALSE)
For each example
For each relevant statement about that example
Construct relevant features
Construct relevant rules for the particular example

Combine the rules from individual examples to form
"combo" rules about the current category.

Combine the rules from different examples to form "mega"
rules about the concept as a whole.

3.2 Multi-Layered Strategy
One of the key issues with several machine learning methods

is the periodic intervention by the domain expert to select
features, tune parameters and set up runs. This is particularly true
of ILP where researchers face the problem of designing new
predicates, guiding ILP’s search, setting additional parameters,
etc. BL brings a major challenge for ILP in this area, because
WILL must automatically set up training without the intervention
of an ILP expert. This is needed because human teachers cannot
be expected to understand the algorithmic details of a learning
approach; rather they communicate with the student in and as
natural and human-like dialog as is feasible [8]. This necessitates
the guiding of search automatically in a domain independent
manner. Automatic parameter selection methods such as the one
proposed in [1] are not useful in our system due to the fact that we
do not have access to a large number of examples. Instead we
resort to a multi-layered strategy that tries several approaches to
learn the target concept.

Table 2 presents the algorithm of multi-layered strategy called
Onion. The innermost layer implements the basic strategy:
invoking WILL after automated mode construction, using only the
relevant combinations of features (as told by the teacher). This
means that WILL initially explores a very restricted hypothesis
space. If no theory is learned or if the learned theory has a poor
score (based on heuristics), then the hypothesis space is expanded,
say by considering features mentioned by the teacher. Continuing
this way, our multi-layered approach successively expands the
space of hypotheses until an acceptable theory is found. At each
level, the algorithm considers different clause length and different
values of coverage (#pos examples covered - #neg examples
covered). Whenever a theory that fits the specified criteria is
found, the algorithm returns the theory.

As a final note, while the teacher and the learner follow a
fixed protocol while communicating via Interlingua, interpreting

relevance amounts to more than simply implementing a rule-based
parsing system. This is because of the ambiguity that is prevalent
in every teacher relevance statement, in particular as to how
general the advice. It is this ambiguity, of whether the teacher
advice is about specific examples or applies to all examples
generally, that necessitates a relevance interpreter as in Table 1.

Table 2 Multi-layered Strategy.

Procedure: Onion (facts, background, examples) returns theory

// n positive examples and m negative examples

While (time remaining)

1. Include only combo-rules that are generated by WILL for
the search. Call WILLSEARCH. If perfect theory found,
return

2. Expand search space to include all relevant features. Call
WILLSEARCH. If perfect theory found, return

3. Expand search space to include all features. Call
WILLSEARCH. If perfect theory found, return

4. Flip the example labels and call Onion with new
examples

End-while

If no theory learned, return the largest combo-rule

Procedure: WILLSEARCH returns theory

• For rule length 2 to maxRuleLength
• For coverage = n to n/2
• Search for the acceptable theory. If found, return it

3.3 A Layered Approach for ILP
Having outlined the relevance interpreter and Onion, we now
present the complete learning strategy in Table 3. We first parse
all the Interlingua messages and create examples both positive
and negative. In the case of multi-class problems, we pose the
problem as one vs. others. Then the ground facts and background
knowledge are constructed. The relevance interpreter then creates
the comboRules. Finally, Onion is called with the background
rules and facts to learn the target concept. Once the target concept
is learned, the teacher evaluates the target on a few test examples.
If the theory is unacceptable, the teacher provides more examples
and/or relevant statements as a feedback, thus aiding WILL to
learn a better concept.

Table 3. Learning Strategy.

Procedure: Strategy(IL Messages) returns theory
1. Construct examples(pos and neg), facts (ground truth) &

background
2. Parse relevant statements, construct comboRules and add to

background
3. Call Onion(facts, background, examples)
4. If acceptable theory is found, return theory
 Else call for the feedback lesson to obtain more examples

and/or relevant statements. Go to Step 1.

4. ADDITIONAL ISSUES
Generation of Negative Examples. In general, ILP requires

a large number of examples to learn a concept. While this is a
challenge in all of machine learning, the need to learn complex
relational concepts in first-order logic makes it even more so in
ILP. In some domains, it is natural for a teacher to say that a

particular world state contains a single positive example; for
example, it is natural for a teacher to point to a set of three blocks
and state that they form a stack. It is a reasonable assumption that
various combinations of the rest of the blocks in that scene do not
form a stack and hence, WILL assumes these are (putative)
negative examples. We have found that for most of the lessons
provided in BL there is such a need for automatically constructing
negatives because instruction contains mainly positive examples.

Another way to express negative examples is to say some
world state does not contain any instances of the concept being
taught: "the current configuration of blocks contains no stacks".
Assume the teacher indicates isaStack takes three arguments,
each of which is of type block. If WILL is presented with a
world containing N blocks where there are no stacks, it can create
N3 negative examples. In general, negative examples are
generated by instantiating the arguments of predicates whose
types we may have been told, in all possible ways using typed
constants encountered in world states; examples known to be
positive are filtered out. Depending on the task, the student may
have either teacher-provided negatives or induced negatives. As
we do not want to treat these identically, WILL allows costs to be
assigned to examples ensuring that the cost of covering a putative
negative can be less than covering a teacher-provided one.

Learning the Negation of a Concept. Human teachers typically
gauge the difficulty of concepts being taught by human
comprehensibility, in terms of which, accurate, short, conjunctive
rules are preferred. When learning concepts such as
outOfBounds in a soccer field, the target concept might have a
large set of disjunctions (since it can be out of bounds on any of
four sides). It is easier to learn if the ball is in bounds and then
negate the learned concept. Our learning bias here is that our
benevolent teacher is teaching a concept that is simple to state, but
we are not sure if the concept or its negation is simple to state, so
we always consider both. For a small number of examples, it is
usually hard to learn a disjunctive rule, especially if the examples
are not the best ones, but rather only 'reasonable' in that they were
near the boundaries, but not exactly next to them.

5. CONCLUSION
As mentioned earlier, our implemented system perfectly learned
(100% accuracy) 56 lessons from a combination of training
examples and teacher-provided hints. Running our ILP system
without these hints - i.e., only using the training examples, for
which there was an average of 7.6 labeled examples per concept
taught - produced an average accuracy on held-aside examples of
63.9% (there was a 50-50 mixture of positive and negative
examples, so 50% is the default accuracy of random guessing).

We have shown how the naturally provided human advice can be
absorbed by ILP approach in order to learn a large number of
concepts across a handful of domains. None of the advice, nor the
lessons solved were created by us. Instead our task was to make
effective use of the provided advice to learn the intended concepts
while given only a small number of labeled examples.

The ILP approach allows learning to be applied to much richer
types of data than the vast majority of machine-learning methods,
due to its use of first-order logic as a representation for both data
and hypotheses. However, ILP requires substantial experience to
properly set up the 'hypothesis space' it searches. The natural
teacher-learner interaction in our BL project is being interpreted
by WILL as guidance for defining ILP hypothesis spaces, as well

as biasing the search in such spaces toward the most promising
areas. Finally, it should be noted that while these teacher
instructions significantly influence the ILP algorithm in terms of
which hypotheses it considers, the algorithm is still able to make
additions to the teacher's instructions; decide which teacher
instructions should be kept and which should be discarded; and
choose how to integrate instructions about individual examples
into a general concept. In other words, the human teacher is
advising, rather than commanding, the student who still has the
capability to make decisions on its own.

Human advice taking has long been explored in AI in the context
of reinforcement learning [2], where the knowledge provided by
the human is converted into a set of rules and knowledge-based
neural networks are used to represent the utility function of the
RL agent. Advice has also been incorporated in ILP systems [7] to
learn constant free horn clauses. The key difference in our system
is the presence of a very small number of examples.

Currently, we are focusing on our layered approach, to more
robustly automate ILP in these different tasks. Also, we are
currently looking at more richly exploiting teacher-provided
feedback beyond statements about which features and objects are
relevant. One possible future direction is to explore the possibility
of refining the learned theories using teacher feedback in the lines
of theory refinement for ILP [6]. Refining teacher's advice is
important as it provides room for teacher mistakes.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge support of the Defense
Advanced Research Projects Agency under DARPA grant
HR0011-07-C-0060. Views and conclusions contained in this
document are those of the authors and do not necessarily represent
the official opinion or policies, either expressed or implied of the
US government or of DARPA.

7. REFERENCES
 [1] Kohavi, R. and John, G. Automatic parameter selection by
 minimizing estimated error. In ICML, 1995.
[2] Maclin, R. and Shavlik, J. W. Creating advice-taking
 reinforcement learners. Mach. Learn., 22, 1996.
[3] McCarthy, J. The advice taker, a program with common sense.
 In Symp. on the Mechanization of Thought Processes, 1958.
[4] Muggleton S. and De Raedt, L. Inductive logic programming:
 Theory and methods. Journal of Logic Programming,
 19/20:629–679, 1994.
[5] Oblinger, D. Bootstrap learning - external materials.
 http:// www.sainc.com/bl-extmat, 2006.
[6] Ourston, D. and Mooney, R. Theory refinement combining
 analytical and empirical methods. Artificial Intelligence,
 66:273–309, 1994.
[7] Pazzani, M. and Kibler D. The utility of knowledge in
 inductive learning. Mach. Learn. 9:57–94, 1992.
[8] Quinlan, J. R. Induction of decision trees. Mach. Learn.,
 1(1):81–106, 1986.
[9] Shen, J., Mailler, R., Bryce, D. and O’Reilly, C. MABLE: a
 framework for learning from natural instruction. In AAMAS,
 2009.
[10] Russell, S. and Norvig, P. Artificial Intelligence: A Modern
 Approach (Second Edition). Prentice Hall, 2003.

	1. INTRODUCTION
	2. BL Challenges
	2.1 Learning Framework
	2.2 Inductive Logic Programming
	2.3 BL Domains & Challenges

	3. SOLVING BL PROBLEMS
	3.1 Interpreting Relevance
	RelevantRelationship(arg1= InstanceOf (arg1 = this, arg2 = Truck))
	3.2 Multi-Layered Strategy
	3.3 A Layered Approach for ILP

	4. ADDITIONAL ISSUES
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

