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Abstract The goal of transfer learning is to speed up learning in a new task by
transferring knowledge from one or more related source tasks. We describe a trans-
fer method in which a reinforcement learner analyzes its experience in the source
task and learns rules to use as advice in the target task. The rules, which are learned
via inductive logic programming, describe the conditions under which an action is
successful in the source task. The advice-taking algorithmused in the target task
allows a reinforcement learner to benefit from rules even if they are imperfect. A
human-provided mapping describes the alignment between the source and target
tasks, and may also include advice about the differences between them. Using three
tasks in the RoboCup simulated soccer domain, we demonstrate that this transfer
method can speed up reinforcement learning substantially.

1 Introduction

Machine learning tasks are often addressed independently,under the implicit as-
sumption that each new task has no exploitable relation to the tasks that came be-
fore. Transfer learningis a machine learning paradigm that rejects this assumption
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Fig. 1 Three ways in which transfer might improve reinforcement learning.

and uses known relationships between tasks to improve learning. The goal of trans-
fer is to improve learning in atarget taskby transferring knowledge from a related
source task.

One context in which transfer learning can be particularly useful isreinforcement
learning (RL), where an agent learns to take actions in an environmentto receive
rewards [26]. Complex RL tasks can require very long training times. However,
when learning a new task in the same domain as previously learned tasks, there are
opportunities for reducing the training times through transfer.

There are three common measures by which transfer might improve learning
in RL. First is the initial performance achievable in the target task using only the
transferred knowledge, before any further learning is done, compared to the initial
performance of an ignorant agent. Second is the amount of time it takes to fully
learn the target task given the transferred knowledge compared to the amount of
time to learn it from scratch. Third is the final performance level achievable in the
target task compared to the final level without transfer. Figure 1 illustrates these
three measures.

Our transfer method learnsskills from a source task that may be useful in a
target task. Skills are rules in first-order logic that describe when an action should be
successful. For example, suppose an RL soccer player has learned, in a source task,
to pass to its teammates in a way that keeps the ball from falling into the opponents’
possession. In the target task, suppose it must learn to workwith teammates to score
goals against opponents. If this player could remember its passing skills from the
source task, it should master the target task more quickly.

Even when RL tasks have shared actions, transfer between them is a difficult
problem because differences in reward structures create differences in the results of
actions. For example, the passing skill in the source task above is incomplete for the
target task – in the target, unlike the source, passing needsto cause progress toward
the goal in addition to maintaining ball possession. This indicates that RL agents
using transferred information must continue to learn, filling in gaps left by transfer.
Since transfer might also produce partially irrelevant or incorrect skills, RL agents
must also be able to modify or ignore transferred information that is imperfect. Our
transfer method allows this by applying skills asadvice, with a learning algorithm
that treats rules as soft constraints.
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We require a human observer to provide amappingbetween the source and tar-
get task. A mapping describes the structural similarities between the tasks, such as
correspondences between player objects in the example above. It might also include
simple advice that reflects the differences between the tasks. In our example, ad-
ditional advice like “prefer passing toward the goal” and “shoot when close to the
goal” would be helpful.

Our chapter’s presence in this memorial volume is due to the way that our work
touches on several topics of interest to Professor Ryszard Michalski. He contributed
significantly to the area of rule learning in first-order logic [14], which we use to
learn skills for transfer. He also did important work involving expert advice [2],
which has connections to our advice-taking methods, and analogical learning [15],
which is closely related to transfer learning.

The rest of the chapter is organized as follows. Section 2 provides background
information on RL: an overview, and a description of our standard RL and advice-
taking RL implementations. Section 3 presents RoboCup simulated soccer and ex-
plains how we learn tasks in the domain with RL. Section 4 provides background
information on inductive logic programming, which is the machine-learning tech-
nique we use to learn skills. Section 5 then describes our transfer method, with ex-
perimental results in Section 6. Section 7 surveys some related work, and Section 8
reflects on some interesting issues that our work raises.

2 Background on Reinforcement Learning

A reinforcement learning agent operates in a episodic sequential-control environ-
ment. It senses thestateof the environment and performsactionsthat change the
state and also triggerrewards. Its objective is to learn a policy for acting in order to
maximize its cumulative reward during an episode. This involves solving a temporal
credit-assignment problem, since an entire sequence of actions may be responsible
for a single reward received at the end of the sequence.

A typical RL agent behaves according to the diagram in Figure2. At time stept,
it observes the current statest and consults its current policyπ to choose an action,
π(st) = at . After taking the action, it receives a rewardrt and observes the new state
st+1, and it uses that information to update its policy before repeating the cycle.
Often RL consists of a sequence ofepisodes, which end whenever the agent reaches
one of a set of ending states (e.g. the end of a game).

Formally, a reinforcement learning domain has two underlying functions that
determine immediate rewards and the state transitions. Thereward functionr(s,a)
gives the reward for taking actiona in states, and the transition functionδ (s,a) gives
the next state the agent enters after taking actiona in states. If these functions are
known, the optimal policyπ⋆ can be calculated directly by maximizing thevalue
functionat every state. The value functionVπ(s) gives the discounted cumulative
reward achieved by policyπ starting in states (see Equation 1).
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Fig. 2 A reinforcement learning agent interacts with its environment: it receives information about
its state (s), chooses an action to take (a), receives a reward (r), and then repeats.

Vπ(st) = rt + γrt+1 + γ2rt+2 + ... (1)

The discount factorγ ∈ [0,1]. Settingγ < 1 gives later rewards less impact on the
value function than earlier rewards, which may be desirablefor tasks without fixed
lengths.

During learning, the agent must balance betweenexploiting the current policy
(acting in areas that it knows to have high rewards) andexploringnew areas to find
higher rewards. A common solution is theε-greedy method, in which the agent
takes random exploratory actions a small fraction of the time (ε << 1), but usually
takes the action recommended by the current policy.

Often the reward and transition functions are not known, andtherefore the opti-
mal policy cannot be calculated directly. In this situation, one applicable RL tech-
nique isQ-learning [36], which involves learning aQ-function instead of a value
function. TheQ-function,Q(s,a), estimates the discounted cumulative reward start-
ing in states and taking actiona and following the current policy thereafter. Given
the optimalQ-function, the optimal policy is to take the actionargmaxaQ(st ,a). RL
agents in deterministic worlds can begin with an inaccurateQ-function and recur-
sively update it after each step according to the rule in Equation 2.

Q(st ,at)←− rt + γ maxa Q(st+1,a) (2)

In this equation, the current estimate of aQ-value on the right is used to produce
a new estimate on the left. In the SARSA variant [26], the new estimate uses the
actualat+1 instead of thea with the highestQ-value inst+1; this takes theε-greedy
action selections into account. In non-deterministic worlds, a learning rateα ∈ (0,1]
is required to form a weighted average between the old estimate and the new one.
Equation 3 shows the SARSA update rule for non-deterministic worlds.

Q(st ,at)←− (1−α) Q(st ,at)+α (rt + γ Q(st+1,at+1)) (3)

While these equations give update rules that look just one step ahead, it is pos-
sible to perform updates over multiple steps. In temporal-difference learning [25],
agents can combine estimates over multiple lookahead distances.

When there are small finite numbers of states and actions, theQ-function can
be represented in tabular form. However, some RL domains have states that are
described by very large feature spaces, or even infinite oneswhen continuous-valued
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features are present, making a tabular representation infeasible. A solution is to use a
function approximator to represent theQ-function (e.g., a neural network). Function
approximation has the additional benefit of providing generalization across states;
that is, changes to theQ-value of one state affect theQ-values of similar states.

Under certain conditions,Q-learning is guaranteed to converge to an accurateQ-
function [37]. Although these conditions are typically violated (by using function
approximation, for example) the method can still produce successful learning. For
further information on reinforcement learning, there are more detailed introductions
by Mitchell [16] and Sutton and Barto [26].

2.1 Performing RL with Support Vector Regression

Our implementation is a form ofQ-learning called SARSA(λ ), which is the SARSA
variant combined with temporal-difference learning. We represent the state with
a set of numeric features and approximate theQ-function for each action with a
weighted linear sum of those features, learned via support-vector regression (SVR).
To find the feature weights, we solve a linear optimization problem, minimizing the
following quantity:

ModelSize+ C× DataMisfit

Here ModelSizeis the sum of the absolute values of the feature weights, and
DataMisfit is the disagreement between the learned function’s outputsand the
training-example outputs (i.e., the sum of the absolute values of the differences for
all examples). The numeric parameterC specifies the relative importance of mini-
mizing disagreement with the data versus finding a simple model.

Most Q-learning implementations make incremental updates to theQ-functions
after each step the agent takes. However, completely re-solving the SVR optimiza-
tion problem after each data point would be too computationally intensive. Instead,
our agents perform batches of 25 full episodes at a time and re-solve the optimiza-
tion problem after each batch.

Formally, for each action the agent finds an optimal weight vectorw that has one
weight for each feature in the feature vectorx. The expectedQ-value of taking an
action from the state described by vectorx is wx+b, whereb is a scalar offset. Our
learners use theε-greedy exploration method.

To compute the weight vector for an action, we find the subset of training exam-
ples in which that action was taken and place those feature vectors into rows of a
data matrixA. WhenA becomes too large for efficient solving, we begin to discard
episodes randomly such that the probability of discarding an episode increases with
the age of the episode. Using the current model and the actualrewards received in
the examples, we computeQ-value estimates and place them into an output vector
y. The optimal weight vector is then described by Equation 4.

Aw+b−→e = y (4)
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where−→e denotes a vector of ones (we omit this for simplicity from nowon).
Our matrixA contains 75% exploitation examples, in which the action is the one

recommended by the current policy, and 25% exploration examples, in which the
action is off-policy. We do this so that bad moves are not forgotten, as they could
be if we used almost entirely exploitation examples. When there are not enough
exploration examples, we create synthetic ones by randomlychoosing exploitation
steps and using the current model to score unselected actions for those steps.

In practice, we prefer to have non-zero weights for only a fewimportant fea-
tures in order to keep the model simple and avoid overfitting the training examples.
Furthermore, an exact linear solution may not exist for any given training set. We
therefore introduceslackvariabless that allow inaccuracies on some examples. The
resulting minimization problem is

min
(w,b,s)

||w||1 +ν |b|+C||s||1

s.t. −s≤ Aw+b−y≤ s.
(5)

where| · | denotes an absolute value,|| · ||1 denotes the one-norm (a sum of absolute
values), andν is a penalty on the offset term. By solving this problem, we can
produce a weight vectorw for each action that compromises between accuracy and
simplicity. We letC decay exponentially over time so that solutions may be more
complex later in the learning curve.

Several other parameters in our system also decay exponentially over time: the
temporal-difference parameterλ , so that earlier episodes combine more lookahead
distances than later ones; the learning rateα, so that earlier episodes tend to produce
larger Q-value updates than later ones; and the exploration rateε, so that agents
explore less later in the learning curve.

2.2 Performing Advice Taking in RL

Advice taking is learning with additional knowledge that may be imperfect. It at-
tempts to take advantage of this knowledge to improve learning, but avoids trusting
it completely. Advice often comes from humans, but in our work it also comes from
automated analysis of successful behavior in a source task.

We view advice as a set of soft constraints on theQ-function of an RL agent. For
example, here is a vague advice rule for passing in soccer:

IF an opponent is near meAND

a teammate is open
THEN passhas a highQ-value

In this example, there are two conditions describing the state of the agent’s en-
vironment: an opponent is nearby and there is an unblocked path to a teammate.
These form theIF portion of the rule. TheTHEN portion gives a constraint on the
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Q-function that the advice indicates should hold when the environment matches the
conditions.

In our advice-taking system, an agent can follow advice, only follow it approx-
imately (which is like refining it), or ignore it altogether.We extend the support-
vector regression technique described in Section 2.1 to accomplish this. Recall that
Equation 5 describes the optimization problem for learningthe weights that deter-
mine an action’sQ-function. We incorporate advice into this optimization problem
using a method called Knowledge-Based Kernel Regression (KBKR), designed by
Mangasarian et al. [12] and applied to reinforcement learning by Maclin et al. [8].

An advice rule creates new constraints on the problem solution in addition to
the constraints from the training data. In particular, since we use an extension of
KBKR called Preference-KBKR [9], our advice rules give conditions under which
one action is preferred over another action. Our advice therefore takes the following
form:

Bx≤ d =⇒Qp(x)−Qn(x)≥ β , (6)

This can be read as:

If the current state satisfiesBx≤ d, then theQ-value of the preferred actionp should exceed
that of the non-preferred actionn by at leastβ .

For example, consider giving the advice that actionp is better than actionn when
the value of feature 5 is at most 10. The vectorB would have one row with a 1 in
the column for feature 5 and zeros elsewhere. The vectord would contain only the
value 10, andβ could be set to some small positive number.

Just as we allowed some inaccuracy on the training examples in Equation 5, we
allow advice to be followed only partially. To do so, we introduce slack variablesz
and penalty parametersµ for trading off the impact of the advice with the impact of
the training examples. Over time, we decayµ so that advice has less impact as the
learner gains more experience.

The new optimization problem [9] solves theQ-functions for all the actions si-
multaneously so that it can apply constraints to their relative values. Multiple pieces
of preference advice can be incorporated, each with its ownB, d, p, n, andβ , which
makes it possible to advise taking a particular action by stating that it is preferred
over all the other actions. We use the CPLEX commercial software to solve the
resulting linear program. We do not show the entire formalization here, but it mini-
mizes the following quantity:

ModelSize+ C× DataMisfit+ µ × AdviceMisfit

We have also developed a variant of Preference-KBKR called ExtenKBKR [10]
that incorporates advice in a way that allows for faster problem-solving. We will not
present this variant in detail here, but we do use it for transfer when there is more
advice than Preference-KBKR can efficiently handle.
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KeepAway BreakAway MoveDownfield
Fig. 3 Snapshots of RoboCup soccer tasks. In KeepAway, the keepers pass the ball around and
keep it away from the takers. In BreakAway, the attackers attempt to score a goal against the
defenders. In MoveDownfield, the attackers attempt to move the ball toward the defenders’ side.

3 RoboCup: A Challenging Reinforcement Learning Domain

One motivating domain for transfer in reinforcement learning is RoboCup simulated
soccer. The RoboCup project [17] has the overall goal of producing robotic soccer
teams that compete on the human level, but it also has a software simulator for
research purposes. Stone and Sutton [24] introduced RoboCup as an RL domain
that is challenging because of its large, continuous state space and nondeterministic
action effects.

Since the full game of soccer is quite complex, researchers have developed sev-
eral smaller games in the RoboCup domain (see Figure 3). These are inherently
multi-agent games, but a standard simplification is to have only one agent (the one
in possession of the soccer ball) learning at a time using a shared model built with
data combined from all the players on its team.

The first RoboCup task we use isM-on-N KeepAway [24], in which the objective
of theM reinforcement learners calledkeepersis to keep the ball away fromN hand-
coded players calledtakers. The keeper with the ball may choose either to hold it
or to pass it to a teammate. Keepers without the ball follow a hand-coded strategy
to receive passes. The game ends when an opponent takes the ball or when the ball
goes out of bounds. The learners receive a +1 reward for each time step their team
keeps the ball.

Our KeepAway state representation is the one designed by Stone and Sutton [24].
The features are listed in Table 1. The keepers are ordered bytheir distance to the
learnerk0, as are the takers.

Note that we present these features as predicates in first-order logic. Variables
are capitalized and typed (Player, Keeper, etc.) and constants are uncapitalized.
For simplicity we indicate types by variable names, leavingout implied terms like
player(Player), keeper(Keeper), etc. Since we are not using fully relational rein-
forcement learning, the predicates are actually grounded and used as propositional
features during learning. However, since we transfer relational information, we rep-
resent them in a relational form here.
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Table 1 Feature spaces for RoboCup tasks. The functionsminDistTaker(Keeper)andminAngle-
Taker(Keeper)evaluate to the player objectst0, t1, etc. that are closest in distance and angle re-
spectively to the given Keeper object. Similarly, the functionsminDistDefender(Attacker)andmi-
nAngleDefender(Attacker)evaluate to the player objectsd0, d1, etc.

KeepAway features

distBetween(k0, Player) Player∈ {k1, k2, ...} ∪ {t0, t1, ...}
distBetween(Keeper, minDistTaker(Keeper)) Keeper∈ {k1, k2, ...}
angleDefinedBy(Keeper, k0, minAngleTaker(Keeper)) Keeper∈ {k1, k2, ...}
distBetween(Player, fieldCenter) Player∈ {k0, k1, ...} ∪ {t0, t1, ...}

MoveDownfield features

distBetween(a0, Player) Player∈ {a1, a2, ...} ∪ {d0, d1, ...}
distBetween(Attacker, minDistDefender(Attacker)) Attacker ∈ {a1, a2, ...}
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker)) Attacker∈ {a1, a2, ...}
distToRightEdge(Attacker) Attacker∈ {a0, a1, ...}
timeLeft

BreakAway features

distBetween(a0, Player) Player∈ {a1, a2, ...} ∪ {d0, d1, ...}
distBetween(Attacker, minDistDefender(Attacker)) Attacker ∈ {a1, a2, ...}
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker)) Attacker∈ {a1, a2, ...}
distBetween(Attacker, goalPart) Attacker∈ {a0, a1, ...}
distBetween(Attacker, goalie) Attacker∈ {a0, a1, ...}
angleDefinedBy(Attacker, a0, goalie) Attacker∈ {a1, a2, ...}
angleDefinedBy(GoalPart, a0, goalie) GoalPart∈ {right, left, center}
angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft

A second RoboCup task isM-on-N MoveDownfield, where the objective of the
M reinforcement learners calledattackersis to move across a line on the opposing
team’s side of the field while maintaining possession of the ball. The attacker with
the ball may choose to pass to a teammate or to move ahead, away, left, or right with
respect to the opponent’s goal. Attackers without the ball follow a hand-coded strat-
egy to receive passes. The game ends when they cross the line,when an opponent
takes the ball, when the ball goes out of bounds, or after a time limit of 25 sec-
onds. The learners receive symmetrical positive and negative rewards for horizontal
movement forward and backward.

Our MoveDownfield state representation is the one presentedin Torrey et al. [32].
The features are listed in Table 1. The attackers are orderedby their distance to the
learnera0, as are the defenders.

A third RoboCup task isM-on-N BreakAway, where the objective of theM at-
tackers is to score a goal againstN− 1 hand-codeddefendersand a hand-coded
goalie. The attacker with the ball may choose to pass to a teammate, to move ahead,
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away, left, or right with respect to the opponent’s goal, or to shoot at the left, right,
or center part of the goal. Attackers without the ball followa hand-coded strategy
to receive passes. The game ends when they score a goal, when an opponent takes
the ball, when the ball goes out of bounds, or after a time limit of 10 seconds. The
learners receive a +1 reward if they score a goal, and zero reward otherwise.

Our BreakAway state representation is the one presented in Torrey et al. [33].
The features are listed in Table 1. The attackers are orderedby their distance to the
learnera0, as are the non-goalie defenders.

Our system discretizes each feature in these tasks into 32 tiles, each of which is
associated with a Boolean feature. For example, the tile denoted bydistBetween(a0,
a1)[10,20] takes value 1 whena1 is between 10 and 20 units away froma0 and 0
otherwise. Stone and Sutton [24] found tiling to be important for timely learning in
RoboCup.

The three RoboCup games have substantial differences in features, actions, and
rewards. The goal, goalie, and shoot actions exist in BreakAway but not in the other
two tasks. The move actions do not exist in KeepAway but do in the other two
tasks. Rewards in KeepAway and MoveDownfield occur for incremental progress,
but in BreakAway the reward is more sparse. These differences mean the solutions
to the tasks may be quite different. However, some knowledgeshould clearly be
transferable between them, since they share many features and some actions, such as
thepassaction. Furthermore, since these are difficult RL tasks, speeding up learning
through transfer would be desirable.

4 Inductive Logic Programming

Inductive logic programming (ILP) is a technique for learning classifiers in first-
order logic [16]. Our transfer algorithms uses ILP to extract knowledge from the
source task. This section provides a brief introduction to ILP.

4.1 What ILP Learns

An ILP algorithm learns a set of first-order clauses, usuallydefinite clauses. A def-
inite clause has ahead, which is a predicate that is implied to be true if the con-
junction of predicates in thebodyis true. Predicates describe relationships between
objects in the world, referring to objects either as constants (lower-case) or variables
(upper-case). In Prolog notation, the head and body are separated by the symbol :-
denoting implication, and commas denotingandseparate the predicates in the body,
as in the rest of this section.

As an example, consider applying ILP to learn a clause describing when an ob-
ject in an agent’s world is at the bottom of a stack of objects.The world always
contains the objectfloor, and may contain any number of additional objects. The
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configuration of the world is described by predicatesstackedOn(Obj1, Obj2), where
Obj1andObj2are variables that can be instantiated by the objects, such as:

stackedOn(chair, floor).
stackedOn(desk, floor).
stackedOn(book, desk).

Suppose we want the ILP algorithm to learn a clause that impliesisBottomOfS-
tack(Obj) is true whenObj = deskbut not whenObj ∈ {floor, chair, book}. Given
those positive and negative examples, it would learn the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor),
stackedOn(OtherObj, Obj).

That is, an object is at the bottom of the stack if it is on the floor and there exists
another object on top of it. On its way to discovering the correct clause, the ILP
algorithm would probably evaluate the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor).

This clause correctly classifies 3 of the 4 objects in the world, but incorrectly
classifieschair as positive. In domains with noise, a partially correct clause like this
might be optimal, though in this case the concept can be learned exactly.

Note that the clause must be first-order to describe the concept exactly: it must
include the variablesObj andOtherObj. First-order logic can posit the existence of
an object and then refer to properties of that object. Most machine learning algo-
rithms usepropositionallogic, which does not include variables, but ILP is able to
use a more powerful and natural type of reasoning.

In many domains, the true concept is disjunctive, meaning that multiple clauses
are necessary to describe the concept fully. ILP algorithmstherefore typically at-
tempt to learn a set of clauses rather than just one. The entire set of clauses is called
a theory.

4.2 How ILP Learns

There are several types of algorithms for producing a set of first-order clauses,
including Michalski’s AQ algorithm [14]. This section focuses on the Aleph sys-
tem [23], which we use in our experiments.

Aleph constructs a ruleset throughsequential covering. It performs a search for
the rule that best classifies the positive and negative examples (according to a user-
specified scoring function), adds that rule to the theory, and then removes the posi-
tive examples covered by that rule and repeats the process onthe remaining exam-
ples.

The default procedure Aleph uses in each iteration is a heuristic search. It ran-
domly chooses a positive example as theseedfor its search for a single rule. Then
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it lists all the predicates in the world that are true for the seed. This list is called the
bottom clause, and it is typically too specific, since it describes a singleexample in
great detail. Aleph conducts a search to find a more general clause (a variablized
subset of the predicates in the bottom clause) that maximizes the scoring function.
The search process is top-down, meaning that it begins with an empty rule and adds
predicates one by one to greedily maximize a scoring function.

Our rule-scoring function is the F(1) measure, which relieson the concepts of
precisionandrecall. Theprecisionof a rule is the fraction of examples it calls pos-
itive that are truly positive, and therecall is the fraction of truly positive examples
that it correctly calls positive. The F(1) measure combinesthe two:

F(1) =
2∗Precision∗Recall
Precision+Recall

An alternative Aleph procedure that we also use is a randomized search [34]. This
also uses a seed example and generates a bottom clause, but itbegins by randomly
drawing a legal clause of lengthN from the bottom clause. It then makes local moves
by adding and removing literals from the clause. AfterM local moves, and possibly
K repeats of the entire process, it returns the highest-scoring rule encountered.

5 Skill Transfer in RL via Advice Taking

Our method for transfer in reinforcement learning, calledskill transfer, begins by
analyzing games played by a successful source-task agent. Using the ILP algorithm
from Section 4.2, it learns first-order rules that describeskills. We define a skill
as a rule that describes the circumstances under which an action is likely to be
successful [32]. Our method then uses a human-provided mapping between the tasks
to translate skills into a form usable in the target task. Finally, it applies the skills as
advice in the target task, along with any additional human advice, using the KBKR
algorithm from Section 2.2.

Figure 4 shows an example of skill transfer from KeepAway to BreakAway. In
this example, KeepAway games provide training examples forthe concept “states
in which passing to a teammate is a good action,” and ILP learns a rule representing
thepassskill, which is mapped into advice for BreakAway.

We learn first-order rules because they can be more general than propositional
rules, since they can contain variables. For example, the rule pass(Teammate)is
likely to capture the essential elements of the passing skill better than rules for
passing to specific teammates. We expect these common skill elements to transfer
better to new tasks.

In a first-order representation, corresponding feature andaction predicates can
ideally be made identical throughout the domain so that there is no need to map
them. However, we assume the user provides a mapping betweenlogical objects in
the source and target tasks (e.g.,k0 in KeepAway maps toa0 in BreakAway).
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ILP

Mapping

State 1:

distBetween(k0,k1) = 10

distBetween(k0,k2) = 15

distBetween(k0,t0) = 6

...

action = pass(k2)

outcome = caught(k2)

Training examples

pass(Teammate) :-

distBetween(k0,Teammate) > 14,

distBetween(k0,t0) < 7.

Skill concept

IF   distBetween(a0,a2) > 14

distBetween(a0,d0) < 7

THEN prefer pass(a2)

Advice

Fig. 4 Example showing how we transfer skills. We provide positive and negative source-task
examples ofpassactions to ILP, which learns a rule describing thepassskill, and we apply a
mapping to produce target-task advice.

The actions in the two tasks need not have one-to-one correspondences. If an
action in the source does not exist in the target, we do not attempt to transfer a skill
for it. The feature sets also do not need to have one-to-one correspondences, because
the ILP search algorithm can limit its search space to only those feature predicates
that are present in the target task. We therefore allow only feature predicates that
exist in the target task to appear in advice rules. This forces the algorithm to find
skill definitions that are applicable to the target task.

5.1 Learning Skills in a Source Task

For each action, we conduct a search with ILP for the rule withthe highest F(1)
score. To produce datasets for this search, we examine states from games in the
source task and select positive and negative examples. Not all states should be used
as training examples; some are not unambiguously positive or negative and should
be left out of the datasets. These states can be detected by looking at theirQ-values,
as described below. Figure 5 summarizes the overall processwith an example from
RoboCup.

In a good positive example, several conditions should be met: the skill is per-
formed, the desired outcome occurs (e.g. a pass reaches its intended recipient), the
expectedQ-value (using the most recentQ-function) is above the 10th percentile in
the training set and is at least 1.05 times the predictedQ-values of all other actions.
The purpose of these conditions is to remove ambiguous examples in which several
actions may be good or no actions seem good.

There are two types of good negative examples. These conditions describe one
type: some other action is performed, that action’sQ-value is above the 10th per-
centile in the training set, and theQ-value of the skill being learned is at most 0.95
times thatQ-value and below the 50th percentile in the training set. These condi-
tions also remove ambiguous examples. The second type of good negative example
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action = pass(Teammate) ?

outcome = caught(Teammate) ?

pass(Teammate) good?

pass(Teammate) 
clearly best?

some action good?

pass(Teammate) 
clearly bad?

Positive example for 
pass(Teammate)

Negative example 
for pass(Teammate)

yes

no

yes

yes

yes

yes

yes

Reject 
example

no

no

no

no

no

Fig. 5 Example of how our algorithm selects training examples for skills.

includes states in which the skill being learned was taken but the desired outcome
did not occur.

To make the search space finite, it is necessary to replace continuous features
(like distances and angles) with finite sets of discrete features. For example, the
rule in Figure 4 contains the Boolean constraintdistBetween(k0,t0)< 7, derived
from the continuous distance feature. Our algorithm finds the 25 thresholds with the
highest information gain and allows the intervals above andbelow those thresholds
to appear as constraints in rules. Furthermore, we allow up to 7 constraints in each
rule. We found these parameters to produce reasonable running times for RoboCup,
but they would need to be adjusted appropriately for other domains.

5.2 Mapping Skills for a Target Task

To convert a skill into transfer advice, we need to apply an object mapping and
propositionalize the rule. Propositionalizing is necessary because our KBKR advice-
taking algorithm only works with propositional advice. This automated process pre-
serves the meaning of the first-order rules without losing any information, but there
are several technical details involved.

First we instantiate skills likepass(Teammate)for the target task. For 3-on-2
BreakAway, this would produce two rules,pass(a1)and pass(a2). Next we deal
with any other conditions in the rule body that contain variables. For example, a
rule might have this condition:

10< distBetween(a0, Attacker)< 20

This is effectively a disjunction of conditions: either thedistance toa1 or the
distance toa2 is in the interval[10,20]. Since disjunctions are not part of the advice
language, we use tile features to represent them. Recall that each feature range is
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divided into Boolean tiles that take the value 1 when the feature value falls into their
interval and 0 otherwise. This disjunction is satisfied if atleast one of several tiles
is active; for 3-on-2 BreakAway this is:

distBetween(a0, a1)[10,20] + distBetween(a0, a2)[10,20] ≥ 1

If these exact tile boundaries do not exist in the target task, we add new tile
boundaries to the feature space. Thus transfer advice can beexpressed exactly even
though the target-task feature space is unknown at the time the source task is learned.

It is possible for multiple conditions in a rule to refer to the same variable. For
example:

distBetween(a0, Attacker)> 15,
angleDefinedBy(Attacker, a0, ClosestDefender)> 25

Here the variableAttacker represents the same object in both clauses, so the
system cannot propositionalize the two clauses separately. Instead, it defines a new
predicate that puts simultaneous constraints on both features:

newFeature(Attacker, ClosestDefender) :-
Dist is distBetween(a0, Attacker),
Ang is angleDefinedBy(Attacker, a0, ClosestDefender),
Dist > 15, Ang> 25.

It then expresses the entire condition using the new feature; for 3-on-2 Break-
Away this is:

newFeature(a1, d0) + newFeature(a2, d0)≥ 1

We add these new Boolean features to the target task. Thus skill transfer can
actually enhance the feature space of the target task.

Each advice item produced from a skill says to prefer that skill over the other
actions shared between the source and target task. We set thepreference amount∆
to approximately 1% of the target task’sQ-value range.

5.3 Adding Human Advice

Skill transfer produces a small number of simple, interpretable rules. This introduces
the possibility of further user input in the transfer process. If users can understand
the transfer advice, they may wish to add to it, either further specializing rules or
writing their own rules for new, non-transferred skills in the target task. Our skill-
transfer method therefore allows optionaluser advice.

For example, the passing skills transferred from KeepAway to BreakAway make
no distinction between passing toward the goal and away fromthe goal. Since the
new objective is to score goals, players should clearly prefer passing toward the goal.
A user could provide this guidance by instructing the systemto add a condition like
this to thepass(Teammate)skill:

distBetween(a0, goal) - distBetween(Teammate, goal)≥ 1
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Even more importantly, there are several actions in this transfer scenario that are
new in the target task, such asshootandmoveAhead. We allow users to write simple
rules to approximate skills like these, such as:

IF distBetween(a0, GoalPart)< 10
AND angleDefinedBy(GoalPart, a0, goalie)> 40
THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter)> 10
THEN prefer moveAhead over moveAway and the shoot actions

The advice-taking framework is a natural and powerful way for users to provide
information not only about the correspondences between tasks, but also about the
differences between them.

6 Results

We performed experiments with skill transfer in many scenarios with RoboCup
tasks. Some areclose transferscenarios, where the tasks are closely related: the tar-
get task is the same as the source task except each team has onemore player. Others
aredistant transferscenarios, where the tasks are more distantly related: fromKeep-
Away to BreakAway and from MoveDownfield to BreakAway. With distant transfer
we concentrate on moving from easier tasks to harder tasks.

For each task, we use an appropriate measure of performance to plot against the
number of training games in a learning curve. In BreakAway, it is the probability that
the agents will score a goal in a game. In MoveDownfield, it is the average distance
traveled towards the right edge during a game. In KeepAway, it is the average length
of a game.

Section 6.1 shows examples of rules our method learned in various source tasks.
Section 6.2 shows learning curves in various target tasks with and without skill
transfer.

6.1 Skills Learned

From 2-on-1 BreakAway, one rule our method learned for theshootskill is:

shoot(GoalPart) :-

distBetween(a0, goalCenter)≥ 6,

angleDefinedBy(GoalPart, a0, goalie)≥ 52,

distBetween(a0, oppositePart(GoalPart))≥ 6,

angleDefinedBy(oppositePart(GoalPart), a0, goalie)≤ 33,

angleDefinedBy(goalCenter, a0, goalie)≥ 28.
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This rule requires a large open shot angle, a minimum distance to the goal, and angle
constraints that restrict the goalie’s position to a small area.

From 3-on-2 MoveDownfield, one rule our method learned for thepassskill is:

pass(Teammate) :-

distBetween(a0, Teammate)≥ 15,

distBetween(a0, Teammate)≤ 27,

angleDefinedBy(Teammate, a0, minAngleDefender(Teammate))≥ 24,

distToRightEdge(Teammate)≤ 10,

distBetween(a0, Opponent)≥ 4.

This rule specifies an acceptable range for the distance to the receiving teammate
and a minimum pass angle. It also requires that the teammate be close to the finish
line on the field and that an opponent not be close enough to intercept.

From 3-on-2 KeepAway, one rule our method learned for thepassskill is:

pass(Teammate) :-

distBetween(Teammate, fieldCenter)≥ 6,

distBetween(Teammate, minDistTaker(Teammate))≥ 8,

angleDefinedBy(Teammate, a0, minAngleTaker(Teammate))≥ 41,

angleDefinedBy(OtherTeammate, a0, minAngleTaker(OtherTeammate))≤ 23.

This rule specifies a minimum pass angle and an open distance around the re-
ceiving teammate. It also requires that the teammate not be too close to the center
of the field and gives a maximum pass angle for the alternate teammate.

Some parts of these rules were unexpected, but make sense in hindsight. For
example, the shoot rule specifies a minimum distance to the goal rather than a max-
imum distance. Presumably this is because large shot anglesare only available at
reasonable distances anyway. This shows the advantages that advice learned through
transfer can have over human advice.

6.2 Learning Curves

Figures 6, 7, and 8 are learning curves from our transfer experiments. One curve in
each figure is the average of 25 runs of standard reinforcement learning. The other
curves are RL with skill transfer from various source tasks.For each transfer curve
we average 5 transfer runs from 5 different source runs, for atotal of 25 runs (this
way, the results include both source and target variance). Because the variance is
high, we smooth they-value at each data point by averaging over they-values of the
last 250 games.
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These figures show that skill transfer can have a large overall positive impact in
both close-transfer and distant-transfer scenarios. The statistical results in Table 2
indicate that in most cases the difference (in area under thecurve) is statistically
significant.

We use appropriate subsets of the human-advice examples in Section 5.3 for all
of our skill-transfer experiments. That is, from KeepAway to BreakAway we use all
of it, from MoveDownfield to BreakAway we use only the parts advisingshoot, and
for close-transfer experiments we use none.
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Table 2 Statistical results from skill transfer (ST) experiments in BreakAway (BA), MoveDown-
field (MD), and KeepAway (KA), comparing area under the curve to standard reinforcement learn-
ing (SRL).

Scenario Conclusion p-value 95% confidence interval

BA to BA ST higher with 99% confidence 0.0003 63.75, 203.36
MD to BA ST higher with 99% confidence< 0.0001 153.63, 278.02
KA to BA ST higher with 97% confidence< 0.0001 176.42, 299.87
MD to MD ST higher with 98% confidence< 0.0001 3682.59, 6436.61
KA to KA ST and SRL equivalent 0.1491 -114.32, 389.20

6.3 Further Experiments with Human Advice

To show the effect of adding human advice, we performed skilltransfer without
any (Figure 9). In the scenario shown, MoveDownfield to BreakAway, we compare
learning curves for skill transfer with and without human advice. Our method still
improves learning significantly when it includes no human advice about shooting,
though the gain is smaller. The addition of our original human advice produces
another significant gain.

To demonstrate that our method can cope with incorrect advice, we also per-
formed skill transfer with intentionally bad human advice (Figure 10). In the sce-
nario shown, KeepAway to BreakAway, we compare learning curves for skill trans-
fer with our original human advice and with its opposite. In the bad advice the
inequalities are reversed, so the rules instruct the learner to pass backwards, shoot
when far away from the goal and at a narrow angle, and move whenclose to the
goal. Our method no longer improves learning significantly with this bad advice,
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but since the KBKR algorithm can learn to ignore it, learningis never impacted
negatively.

The robustness indicated by these experiments means that users need not worry
about providing perfect advice in order for the skill-transfer method to work. It also
means that skill transfer can be applied to reasonably distant tasks, since the source-
task skills need not be perfect for the target task. It can be expected that learning
with skill transfer will perform no worse than standard reinforcement learning, and
it may perform significantly better.
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7 Related Work

There is a strong body of related work on transfer learning inRL. We divide RL
transfer into five broad categories that represent progressively larger changes to ex-
isting RL algorithms.

7.1 Starting-point methods

Since all RL methods begin with an initial solution and then update it through ex-
perience, one straightforward type of transfer in RL is to set the initial solution in
a target task based on knowledge from a source task. Comparedto the arbitrary
setting that RL algorithms usually use at first, thesestarting-point methodscan be-
gin the RL process at a point much closer to a good target-tasksolution. There are
variations on how to use the source-task knowledge to set theinitial solution, but in
general the RL algorithm in the target task is unchanged.

Taylor et al. [30] use a starting-point method for transfer in temporal-difference
RL. To perform transfer, they copy the final value function ofthe source task and use
it as the initial one for the target task. As many transfer approaches do, this requires
a mapping of features and actions between the tasks, and theyprovide a mapping
based on their domain knowledge.

Tanaka and Yamamura [27] use a similar approach in temporal-difference learn-
ing without function approximation, where value functionsare simply represented
by tables. This greater simplicity allows them to combine knowledge from several
source tasks: they initialize the value table of the target task to the average of tables
from several prior tasks. Furthermore, they use the standard deviations from prior
tasks to determine priorities between temporal-difference backups.

Approaching temporal-difference RL as a batch problem instead of an incremen-
tal one allows for different kinds of starting-point transfer methods. In batch RL, the
agent interacts with the environment for more than one step or episode at a time be-
fore updating its solution. Lazaric et al. [7] perform transfer in this setting by finding
source-task samples that are similar to the target task and adding them to the normal
target-task samples in each batch, thus increasing the available data early on. The
early solutions are almost entirely based on source-task knowledge, but the impact
decreases in later batches as more target-task data becomesavailable.

Moving away from temporal-difference RL, starting-point methods can take even
more forms. In a model-learning Bayesian RL algorithm, Wilson et al. [38] perform
transfer by treating the distribution of previous MDPs as a prior for the current
MDP. In a policy-search genetic algorithm, Taylor et al. [31] transfer a population
of policies from a source task to serve as the initial population for a target task.
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7.2 Imitation methods

Another class of RL transfer methods involves applying the source-task policy to
choose some actions while learning the target task. While they make no direct
changes to the target-task solution the way that starting-point methods do, these
imitation methodsaffect the developing solution by producing different function
or policy updates. Compared to the random exploration that RL algorithms typi-
cally do, decisions based on a source-task policy can lead the agent more quickly
to promising areas of the environment. There are variationsin how the source-task
policy is represented and in how heavily it is used in the target-task RL algorithm.

One method is to follow a source-task policy only during exploration steps of the
target task, when the agent would otherwise be taking a random action. Madden and
Howley [11] use this approach in tabularQ-learning. They represent a source-task
policy as a set of rules in propositional logic and choose actions based on those rules
during exploration steps.

Fernandez and Veloso [5] instead give the agent a three-way choice between
exploiting the current target-task policy, exploiting a past policy, and exploring ran-
domly. They introduce a second parameter, in addition to theε of ε-greedy explo-
ration, to determine the probability of making each choice.

7.3 Hierarchical methods

A third class of RL transfer includeshierarchical methods. These view the source
as a subtask of the target, and use the solution to the source as a building block
for learning the target. Methods in this class have strong connections to the area of
hierarchical RL, in which a complex task is learned in piecesthrough division into
a hierarchy of subtasks.

An early approach of this type is to compose several source-task solutions to
form a target-task solution, as is done by Singh [22]. He addresses a scenario in
which complex tasks are temporal concatenations of simple ones, so that a target
task can be solved by a composition of several smaller solutions.

Mehta et al. [13] have a transfer method that works directly within the hierarchi-
cal RL framework. They learn a task hierarchy by observing successful behavior in
a source task, and then use it to apply the MaxQ hierarchical RL algorithm [4] in the
target task. This removes the burden of designing a task hierarchy through transfer.

Other approaches operate within the framework ofoptions, which is a term for
temporally-extended actions in RL [18]. An option typically consists of a starting
condition, an ending condition, and an internal policy for choosing lower-level ac-
tions. An RL agent treats each option as an additional actionalong with the original
lower-level ones.

In some scenarios it may be useful to have the entire source-task policy as an
option in the target task, as Croonenborghs et al. [3] do. They learn a relational
decision tree to represent the source-task policy and allowthe target-task learner to
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execute it as an option. Another possibility is to learn smaller options, either during
or after the process of learning the source task, and offer them to the target. Asadi
and Huber [1] do this by finding frequently-visited states inthe source task to serve
as ending conditions for options.

7.4 Alteration methods

The next class of RL transfer methods involves altering the state space, action space,
or reward function of the target task based on source-task knowledge. Thesealter-
ation methodshave some overlap with option-based transfer, which also changes
the action space in the target task, but they include a wide range of other approaches
as well.

One way to alter the target-task state space is to simplify itthrough state abstrac-
tion. Walsh et al. [35] do this by aggregating over comparable source-task states.
They then use the aggregate states to learn the target task, which reduces the com-
plexity significantly.

There are also approaches that expand the target-task statespace instead of re-
ducing it. Taylor and Stone [29] do this by adding a new state variable in the target
task. They learn a decision list that represents the source-task policy and use its
output as the new state variable.

While option-based transfer methods add to the target-task action space, there
is also some work in decreasing the action space. Sherstov and Stone [21] do this
by evaluating in the source task which of a large set of actions are most useful.
They then consider only a smaller action set in the target task, which decreases
the complexity of the value function significantly and also decreases the amount of
exploration needed.

Reward shaping is a design technique in RL that aims to speed up learning by
providing immediate rewards that are more indicative of cumulative rewards. Usu-
ally it requires human effort, as many aspects of RL task design do. Konidaris and
Barto [6] do reward shaping automatically through transfer. They learn to predict re-
wards in the source task and use this information to create a shaped reward function
in the target task.

7.5 New RL Algorithms for Transfer

A final class of RL transfer methods consists of entirely new RL algorithms. Rather
than making small additions to an existing algorithm or making changes to the target
task, these approaches address transfer as an inherent partof RL. They incorporate
prior knowledge as an intrinsic part of the algorithm. Our KBKR algorithm falls
into this category of methods [32].
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Price and Boutilier [19] propose a temporal-difference algorithm in which value
functions are influenced by observations of expert agents. They use a variant of the
usual value-function update that includes an expert’s experience, weighted by the
agent’s confidence in itself and in the expert. They also perform extra backups at
states the expert visits to focus attention on those areas ofthe state space.

There are several algorithms for case-based RL that accomodate transfer. Sharma
et al. [20] propose one in whichQ-functions are estimated using a Gaussian kernel
over stored cases in a library. Cases are added to the libraryfrom both the source
and target tasks when their distance to their nearest neighbor is above a threshold.
Taylor et al. [28] use source-task examples more selectively in their case-based RL
algorithm. They use target-task cases to make decisions when there are enough, and
only use source-task examples when insufficient target examples exist.

8 Conclusion

We have described a method for transferring knowledge in reinforcement learning
that learns logical rules to represent skills and uses them as advice for a new task.
This approach can provide significant benefits in target tasks, as evidenced by our
results in a complex RL domain. Our work has connections to Professor Michalski’s
interests in rule learning, advice, and analogical reasoning. As Michalski did, we
emphasize the value of logic as a means of representing knowledge. We believe that
first-order logic is a powerful mechanism for transfer.

An inherent aspect of transfer learning is recognizing the correspondences be-
tween tasks. Knowledge from one task can only be applied to another if it is ex-
pressed in a way that the target-task agent understands. If the task representations
are not identical, amappingis needed to translate between task representations. We
assume a human-provided mapping so far, but learning a mapping is also an inter-
esting task.

If a transfer method actually decreases performance, thennegative transferhas
occurred. One of the major challenges in developing transfer methods is to pro-
duce positive transfer between appropriately related tasks while avoiding negative
transfer between tasks that are less related. Ideally, a transfer method would pro-
duce positive transfer between appropriately related tasks while avoiding negative
transfer when the tasks are not a good match. In practice, these goals are difficult to
achieve simultaneously. Approaches that have safeguards to avoid negative transfer
often produce a smaller effect from positive transfer due totheir caution.

Another challenge that we have encountered in RL transfer learning is that dif-
ferences in reward structures between the source and targettask make it difficult to
transfer even shared actions. Changing the game objective or adding a new action
changes the meaning of a shared skill. This means that it is important to continue
learning in the target task and to avoid relying on source-task skills too much. We
have also addressed this issue through human guidance, by allowing additional ad-
vice that points out differences between tasks.
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