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Abstract

Reinforcement learning (RL) is a machine learning
technique with strong links to natural learning. How-
ever, it shares several “unnatural” limitations with many
other successful machine learning algorithms. RL
agents are not typically able to take advice or to ad-
just to new situations beyond the specific problem they
are asked to learn. Due to limitations like these, RL
remains slower and less adaptable than natural learning.
Our recent work focuses on extending RL to include the
naturally inspired abilities ofadvice takingand trans-
fer learning. Through experiments in the RoboCup do-
main, we show that doing so can make RL faster and
more adaptable.

Introduction
In reinforcement learning (RL), an agent navigates through
an environment trying to earn rewards. While many machine
learning tasks require learning a single decision model,
an RL task involves revising a decision model over many
episodes. The challege for the agent is to handle delayed
rewards; that is, to learn to choose actions that may be lo-
cally sub-optimal in order to maximize later rewards. The
RL framework can be viewed as a formalization of the trial-
and-error process that natural learners often use.

However, RL diverges from natural learning in that agents
typically begin without any information about their environ-
ment or rewards. While natural learners often have a teacher
or previous experience to apply, agents in model-free RL
typically aretabula rasa. Therefore RL often requires sub-
stantial amounts of random exploration in the early stages of
learning, and it can require long training times in complex
domains.

Our recent work focuses on providing RL with two bene-
fits that natural learners often have: the ability to take advice
from a teacher, and the ability to transfer knowledge from
previous experiences. We refer to these abilities asadvice
taking and transfer learning. Through experiments in the
complex domain of RoboCup soccer, we show that they can
speed up RL significantly.
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Reinforcement Learning in RoboCup
We begin with a brief overview of reinforcement learn-
ing (Sutton and Barto 1998), particularly in the context of
our experimental domain of RoboCup soccer (Noda et al.
1998).

An RL agent navigates through an environment trying to
earn rewards. The environment’s state is described by a set
of features, and the agent takes actions to cause the state to
change. In one common form calledQ-learning (Watkins
1989), the agent learns aQ-function to estimate the value of
taking an action from a state. An agent’spolicy is typically
to take the action with the highestQ-value in the current
state, except for occasional exploratory actions. After taking
the action and receiving some reward (possibly zero), the
agent updates itsQ-value estimates for the current state.

Stone and Sutton (2001) introduced RoboCup as an RL
domain that is challenging because of its large, continu-
ous state space and non-deterministic action effects. Since
the full game of soccer is quite complex, they developed a
smaller RL task called KeepAway and did some feature en-
gineering to make it feasible. Using a similar feature design,
other researchers have developed other small tasks, such as
MoveDownfield and BreakAway (see Figure 1).

In M -on-N KeepAway, the objective of theM keepers
is to keep the ball away from theN takers, by takingpass
and hold actions and receiving a +1 reward for each time
step they keep the ball. InM -on-N MoveDownfield, the
objective of theM attackers is to move across a line on the
opposing team’s side of the field, by takingmoveandpass
actions and receiving symmetrical positive and negative re-
wards for horizontal movement forward and backward. In
M -on-N BreakAway, the objective of theM attackers is to

KeepAway BreakAway MoveDownfield

Figure 1: Snapshots of RoboCup soccer tasks.



Table 1: The features that describe a BreakAway state.

distBetween(a0, Player)
distBetween(a0, GoalPart)
distBetween(Attacker, goalCenter)
distBetween(Attacker, ClosestDefender)
distBetween(Attacker, goalie)
angleDefinedBy(topRight, goalCenter, a0)
angleDefinedBy(GoalPart, a0, goalie)
angleDefinedBy(Attacker, a0, ClosestDefender)
angleDefinedBy(Attacker, a0, goalie)
timeLeft

score a goal againstN − 1 defenders and a goalie, by taking
move, pass, andshootactions and receiving a +1 reward for
scoring.

RoboCup tasks are inherently multi-agent games, but a
standard simplification is to have only one learning agent.
This agent controls the attacker currently in possession of
the ball, switching its “consciousness” between attackersas
the ball is passed. Attackers without the ball follow sim-
ple hand-coded policies that position them to receive passes.
Opponents also follow hand-coded policies.

The set of features describing the environment in each
task mainly consists of distances and angles between play-
ers and objects. For example, Table 1 shows the BreakAway
features. They are represented in logical notation for future
convenience, though our RL algorithm uses the grounded
versions of these predicates in a fixed-length feature vector.
Capitalized atoms indicate typed variables, while constants
and predicates are uncapitalized. The attackers (labeleda0,
a1, etc.) are ordered by their distance to the agent in posses-
sion of the ball (a0), as are the non-goalie defenders (d0, d1,
etc.).

Our RL implementation uses aSARSA(λ) variant ofQ-
learning (Sutton 1988) and employs a support vector ma-
chine for function approximation (Maclin et al. 2005b).
Because this method is more appropriate for batch learning
than for incremental learning, we relearn theQ-function af-
ter every batch of 25 games.

We represent the state with a set of numeric features and
approximate theQ-function for each action with a weighted
linear sum of those features, learned via support-vector re-
gression. To find the feature weights, we solve a linear opti-
mization problem, minimizing the following quantity:

ModelSize+ C × DataMisfit

HereModelSizeis the sum of the absolute values of the
feature weights, andDataMisfitis the disagreement between
the learned function’s outputs and the training-example out-
puts (i.e., the sum of the absolute values of the differences
for all examples). The numeric parameterC specifies the
relative importance of minimizing disagreement with the
data versus finding a simple model.

Formally, for each action the agent finds an optimal
weight vectorw that has one numeric weight for each feature
in the feature vectorx. The expectedQ-value of taking an
action from the state described by vectorx is wx + b, where

b is a scalar offset. Our learners use theǫ-greedy exploration
method (Sutton and Barto 1998).

To learn the weight vector for an action, we find the sub-
set of training examples in which that action was taken and
place those feature vectors into rows of a data matrixA. Us-
ing the current model and the actual rewards received in the
examples, we computeQ-value estimates and place them
into an output vectory. The optimal weight vector is then
described by Equation 1.

Aw + b−→e = y (1)

where−→e denotes a vector of ones (we omit this for simplic-
ity from now on).

In practice, we prefer to have non-zero weights for only
a few important features in order to keep the model simple
and avoid overfitting the training examples. Furthermore,
an exact linear solution may not exist for any given train-
ing set. We therefore introduceslackvariabless that allow
inaccuracies on some examples, and a penalty parameterC
for trading off these inaccuracies with the complexity of the
solution. The resulting minimization problem is

min
(w,b,s)

||w||1 + ν|b| + C||s||1

s.t. −s ≤ Aw + b − y ≤ s.
(2)

where| · | denotes an absolute value,|| · ||1 denotes the one-
norm (a sum of absolute values), and the scalarν is a penalty
on the offset term. By solving this problem, we can produce
a weight vectorw for each action that compromises between
accuracy and simplicity. This is the algorithm that we refer
to throughout the paper as “standard RL” and that we extend
to perform advice taking and transfer.

Figure 2 shows the learning curve in 3-on-2 BreakAway
using this algorithm. It measures the probability that the
agents will score a goal as they train on more games. The
curve is an average of 25 runs and each point is smoothed
over the previous 500 games to account for the high variance
in the RoboCup domain.

The RL agents have an asymptotic performance of scoring
in around 50% of their games. Given that their hand-coded
opponents begin with a much higher skill level, scoring in
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Figure 2: Probability of scoring a goal in 3-on-2 BreakAway
as the RL algorithm trains.



50% of the games is a relatively good rate. A random policy,
despite the engineered actions, only scores about 1% of the
time.

It takes the RL agents about 2000 episodes to reach this
asymptote, which is much slower than the human learning
rate might be in a real-world version of this task. How-
ever, the agents have several disadvantages compared to hu-
mans. A human playing soccer knows the objective of the
game in advance, while the agents have to learn it indirectly
through rewards. The agents’ only rewards come upon scor-
ing, while humans can derive intermediate feedback by rea-
soning; humans can also generalize that feedback across a
wider range of situations than agents typically can. Humans
can apply logic and planning to the problem, while RL has
only trial-and-error and statistical analysis, which requires
a certain amount of data to produce an accurate function
approximation. The agents also lack any previous experi-
ence or outside instruction in the task, which humans usually
have.

Despite all these disadvantages, reinforcement learning is
often eventually successful in learning a good policy. How-
ever, it can take a long time to do so. In this paper, we
address two of the disadvantages and propose methods for
speeding up RL by incorporating abilities that humans typi-
cally have.

Advice Taking
When humans learn complex tasks, we often have instruc-
tions to follow or teachers to provide guidance. This allows
us to avoid the blind exploration that typically occurs at the
beginning of reinforcement learning. In this section, we de-
scribe an RL algorithm that accepts guidance from an out-
side source. We refer to this guidance asadvice.

There is a body of related work on advice taking in RL,
some of which we describe briefly here. Maclin and Shav-
lik (1996) accept rules for action selection and incorporate
them into a neural-networkQ-function model. Driessens
and Dzeroski (2002) use behavior traces from an expert to
learn a partial initialQ-function for relational RL. Kuhlmann
et al. (2004) accept rules that give a small boost to theQ-
values of actions, which is also one method used for transfer
in Taylor and Stone (2007).

We view advice as a set of soft constraints on theQ-
function of an RL agent. For example, here is a possible
advice rule for passing in RoboCup:

IF an opponent is near meAND
a teammate is open

THEN passis the best action

In the IF portion of the rule, there are two conditions de-
scribing the agent’s environment: an opponent is getting
close and there is an unblocked path to a teammate. The
THEN portion gives a constraint saying thatpassshould have
the highestQ-value when the environment matches these
conditions.

Our advice-taking RL algorithm incorporates advice into
our support-vector function-approximation method. Advice

creates new constraints on the problem solution, in addition
to the usual constraints that encourage fitting the data in the
episodes played so far. This method allows for imperfect
advice because it balances between fitting the training data
and following the advice. We believe this is important for
advice-taking in RL, since advice is likely to come from hu-
man users who may not have perfect domain knowledge.

Formally, our advice takes the following form:

Bx ≤ d =⇒ Qp(x) − Qn(x) ≥ β, (3)

This can be read as:

If the current statex satisfiesBx ≤ d, then theQ-value
of the preferred actionp should exceed that of the non-
preferred actionn by at leastβ.

For example, consider giving the advice that actionp is
better than actionn when the value of feature 5 is at most 10.
The vectorB would have one row with a1 in the column for
feature 5 and zeros elsewhere. The vectord would contain
only the value10, andβ could be set to some small positive
number.

Just as we allowed some inaccuracy on the training ex-
amples in Equation 2, we allow advice to be followed only
partially. To do so, we introduce slack variables as well as a
penalty parameterµ for trading off the impact of the advice
with the impact of the training examples.

The new optimization problem solves theQ-functions for
all the actions simultaneously so that it can apply constraints
to their relative values. Multiple pieces of preference advice
can be incorporated, each with its ownB, d, p, n, andβ,
which makes it possible to advise taking a particular action
by stating that it is preferred over all the other actions. We
use the CPLEX commercial software to minimize:

ModelSize+ C × DataMisfit+ µ × AdviceMisfit

See Maclin et al. (Maclin et al. 2005a) for further details
on how advice is converted into constraints in the linear pro-
gram.

Advice can speed up RL significantly. To demonstrate
this, we provide the following simple advice to 3-on-2
BreakAway learners:

IF distBetween(a0, GoalPart)< 10
AND angleDefinedBy(GoalPart, a0, goalie)> 40
THEN prefer shoot(GoalPart) over all actions

Figure 3 shows the results of this experiment. With ad-
vice, BreakAway learners perform significantly better in the
early stages of learning, and they maintain an advantage un-
til they reach their performance asymptote. Based on un-
pairedt-tests between points on the curves at the 95% confi-
dence level, scoring is more probable with advice until about
1750 training games.

Transfer Learning
Knowledge transfer is an inherent aspect of human learning.
When humans learn to perform a task, we rarely start from
scratch. Instead, we recall relevant knowledge from previ-
ous learning experiences and apply that knowledge to help
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Figure 3: Probability of scoring a goal in 3-on-2 BreakAway
with and without shooting advice.

us master the new task more quickly. In this section, we de-
scribe several algorithms for transferring knowledge froma
source taskto atarget taskin reinforcement learning.

There is a body of related work on transfer learning in RL,
some of which we describe briefly here. Taylor, Stone and
Liu (2005) begin performing the target task using the source-
task value functions, after performing a suitable mapping
between features and actions in the tasks. Fernandez and
Veloso (2006) follow source-task policies during the explo-
ration steps of normal RL in the target task. Croonenborghs,
Driessens and Bruynooghe (2007) learn multi-step action se-
quences called options from the source task, and add these
as possible actions in the target task.

This section discusses three algorithms from our recent
work: skill transfer, macro transfer, and Markov Logic Net-
work transfer. The common property of these algorithms
is that they arerelational. Relational methods generalize
across objects in a domain and may use first-order logic to
describe knowledge. This can allow them to produce better
generalization to new tasks because they capture concepts
about logical variables rather than constants. We also view
first-order logic as a naturally inspired tool for transfer,since
humans often perform this type of reasoning.

To do relational learning in these transfer methods, we
use inductive logic programming (ILP), and specifically the
Aleph system (Srinivasan 2001). Aleph selects an example,
builds the most specific clause that entails the example, and
searches for generalizations of this clause that cover other
examples while maximizing a provided scoring function.

Scoring functions typically involveprecisionand recall.
The precision of a rule is the fraction of examples it calls
positive that are truly positive, and the recall is the fraction
of truly positive examples that it correctly calls positive. The
scoring function we use is

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

because we consider both precision and recall to be impor-
tant. We use both a heuristic and randomized search algo-
rithm to find potential rules.

Skill Transfer

Skill transfer (Torrey et al. 2006b; 2006a) is a method that
gives advice about skills the source and target tasks have
in common. We use ILP to learn first-order logical rules
describing when actions have highQ-values in the source
task. Then we use our advice-taking algorithm, as described
earlier, to apply these rules as soft constraints on when to
take actions in the target task. The difference between skill
transfer and advice taking is that the advice comes from au-
tomated analysis of a source task rather than from a human.

For example, Figure 4 shows the process of transferring
the skill pass(Teammate)from KeepAway to BreakAway.
We assume the user provides a mapping between logical ob-
jects in the source and target tasks (e.g.,k0 in KeepAway
maps toa0 in BreakAway) and we only allow the ILP sys-
tem to use feature predicates that exist in both tasks during
its search for rules.

To make the search space finite, it is necessary to replace
continuous features (like distances and angles) with finite
sets of discrete features. Our system finds the 25 thresholds
with the highest information gain and allows the intervals
above and below those thresholds to appear as constraints in
rules. At the end of the ILP search, it chooses one rule per
skill with the highest F1 score to transfer.

Because some skills might be new in the target task,
and because we are already using the advice-taking mech-
anism, we also allow human-provided advice about new ac-
tions in this method. For example, when transferring from
KeepAway or MoveDownfield to BreakAway, we learn the
pass(Teammate)skill with ILP but we manually provide ad-
vice forshoot(GoalPart).

Skill transfer can speed up RL significantly. To demon-
strate this, we learn 3-on-2 BreakAway with transfer from
three source tasks: 2-on-1 BreakAway, 3-on-2 MoveDown-
field, and 3-on-2 KeepAway. Figure 5 shows the results
of these experiments. With transfer learning, BreakAway
learners perform significantly better in the early stages of
learning, and they maintain an advantage until they reach
their performance asymptote. Based on unpairedt-tests be-
tween points on the curves at the 95% confidence level, scor-
ing is more probable with skill transfer from 2-on-1 Break-
Away until about 1500 training games, from 3-on-2 Move-
Downfield until about 1750 training games, and from 3-on-2
KeepAway until about 2750 training games.

ILP

Mapping

State 1:

distBetween(k0,k1) = 15

distBetween(k0,k2) = 10

distBetween(k0,t0) = 6

...

action = pass(k1)

outcome = caught(k1)

Training examples

IF    distBetween(k0,T) > 14

distBetween(k0,t0) < 7

THEN  prefer pass(T)

Skill concept

IF   distBetween(a0,a2) > 14

distBetween(a0,d0) < 7

THEN prefer pass(a2)

Advice

Figure 4: An example of the skill transfer process for the
pass(Teammate) skill when KeepAway is the source task and
BreakAway is the target task. This uses the same capitaliza-
tion conventions as in Table 1.
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Figure 5: Probability of scoring a goal while training in 3-
on-2 BreakAway, with standard RL and with skill transfer
(ST) from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield
(MD) and 3-on-2 KeepAway (KA).

Macro Transfer
Macro transfer (Torrey et al. 2007) is a method that transfers
action plans composed of several skills in sequence. We use
ILP to learn relational macros and apply them in the target
task bydemonstration; agents follow the macros directly for
an initial period before reverting to standard RL.

A relational macro is a finite-state machine (Gill 1962),
which models the behavior of a system in the form of a di-
rected graph. The nodes of the graph represent states of the
system, and in our case they represent internal states of the
agent in which different policies apply.

The policy of a node can be to take a single action, such
asmove(ahead)or shoot(goalLeft), or to choose from a class
of actions, such aspass(Teammate). In the latter case a node
has first-order logical clauses to decide which grounded ac-
tion to choose. A finite-state machine begins in a start node
and has conditions for transitioning between nodes. In a re-
lational macro, these conditions are also sets of first-order
logical clauses.

Figure 6 shows a sample macro. When executing this
macro, a KeepAway agent begins in the initial node on the
left. The only action it can choose in this node ishold. It re-
mains there, taking the default self-transition, until thecon-
dition isClose(Opponent)becomes true for some opponent
player. Then it transitions to the second node, where it evalu-
ates thepass(Teammate)rule to choose an action. If the rule
is true for just one teammate player, it passes to that team-
mate; if several teammates qualify, it randomly chooses be-
tween them; if no teammate qualifies, it abandons the macro
and reverts to using theQ-function to choose actions. As-
suming it does not abandon the macro, once another team-
mate receives the ball it becomes the learning agent and re-
mains in thepassnode if an opponent is close or transitions
back to theholdnode otherwise.

Figure 6 is a simplification in one respect: each transition
and node in a macro can have an entire set of rules, rather
than just one rule. This allows us to represent disjunctive
conditions. When more than one grounded action or transi-
tion is possible (when multiple rules match), the agent obeys
the rule that has the highest score. The score of a rule is the

isClose(Opponent)
hold

IF    open(T)

THEN  pass(T)
not isClose(Opponent)

Figure 6: A possible strategy for the RoboCup game Keep-
Away, in which the RL agent in possession of the soccer
ball must execute a series ofhold or passactions to prevent
its opponents from getting the ball. The rules inside nodes
show how to choose actions. The labels on arcs show the
conditions for taking transitions. Each node has an implied
self-transition that applies by default if no exiting arc ap-
plies. If no action can be chosen in a node, the macro is
abandoned.

estimated probability that following it will lead to a success-
ful game, as estimated from the source-task data.

Since a macro consists of a set of nodes along with rule-
sets for transitions and action choices, the simplest algo-
rithm for learning a macro might be to have Aleph learn
both the structure and the rulesets simultaneously. However,
this would be a very large search space. To make the search
more feasible, we separate it into two phases: first we learn
the structure, and then we learn each ruleset independently.

In the structure-learning phase, the objective is to find
a sequence of actions that distinguishes successful games
from unsuccessful games. We use Aleph to find the action
sequence with the highest F1 score. For example, a Break-
Away source task might produce the sequence in Figure 7.

In the ruleset-learning phase, the objective is to describe
when transitions and actions should be taken within the
macro structure. These decisions are made based on the RL
state features. We use Aleph to search for rules, and we store
all the clauses that Aleph encounters during the search that
classify the training data with at least 50% accuracy.

Instead of selecting a single best clause as we did for
structure learning, we select a set of rules for each transi-
tion and each action. We wish to have one strategy (i.e. one
finite-state machine), but there may be multiple reasons for
making internal choices. To select rules we use a greedy ap-
proach: we sort the rules by decreasing precision and walk
through the list, adding rules to the final ruleset if they in-
crease the set’s recall and do not decrease its F1 score.

We assign each rule a score that may be used to decide
which rule to obey if multiple rules match while executing
the macro. The score is an estimate of the probability that
following the rule will lead to a successful game. We de-
termine this estimate by collecting training-set games that
followed the rule and calculating the fraction of these that
ended successfully. Since BreakAway hasQ-values ranging
from zero to one, we simply estimateQ-values by the rule
score (otherwise we could multiply the probability by an ap-
propriate scaling factor to fit a largerQ-value range).

move(ahead) pass(Teammate) shoot(GoalPart)

Figure 7: A macro structure that could be learned for Break-
Away in the structure-learning phase of macro transfer.



A relational macro describes a strategy that was success-
ful in the source task. There are several ways we could use
this information to improve learning in a related target task.
One possibility is to treat it as advice, as we did in skill trans-
fer, putting soft constraints on theQ-learner that influence
its solution. The benefit of this approach is its robustness
to error: if the source-task knowledge is less appropriate to
the target task than the user expected, the target-task agent
can learn to disregard the soft constraints, avoiding negative
transfer effects.

On the other hand, the advice-taking approach is conser-
vative and can be somewhat slow to reach its full effect, even
when the source-task knowledge is highly appropriate to the
target task. Since a macro is a full strategy rather than iso-
lated skills, we might achieve good target-task performance
more quickly by executing the strategy in the target task and
using it as a starting point for learning. Thisdemonstration
method is a more aggressive approach, carrying more risk
for negative transfer if the source and target tasks are not
similar enough. Still, if the user believes that the tasks are
similar, the potential benefits could outweigh that risk.

Our target-task learner therefore begins by simply exe-
cuting the macro strategy for a set of episodes, instead of
exploring randomly as an untrained RL agent would tradi-
tionally do. In this demonstration period, we generate (state,
Q-value) pairs: each time the macro chooses an action be-
cause a high-scoring rule matched, we use the rule score to
estimate theQ-value of the action. The demonstration pe-
riod lasts for 100 games in our system, and as usual after
each batch of 25 games we relearn theQ-function.

After 100 games, we continue learning the target task
with standard RL. This generates newQ-value examples
in the standard way, and we combine these with the old
macro-generated examples as we continue relearning theQ-
function after each batch. As the new examples accumulate,
we gradually drop the old examples by randomly removing
them at the rate that new ones are being added.

Macro transfer can speed up RL significantly as well, but
in a different way than skill transfer does. To demonstrate
this, we learn 3-on-2 BreakAway with transfer from 2-on-1
BreakAway. Figure 8 shows the results of this experiment.
It also includes results for the same experiment with skill
transfer and with value-function transfer, which simply uses
the final source-task model as the initial target-task model.
Macro transfer speeds up RL more dramatically than skill
transfer at the beginning of learning, but it loses its advan-
tage sooner as learning proceeds. Based on unpairedt-tests
between points on the curves at the 95% confidence level,
scoring is more probable with macro transfer until about
1000 training games.

Markov Logic Network Transfer
Statistical relational learning (SRL) is a type of machine
learning designed to operate in domains that have both un-
certainty and rich relational structure. It focuses on combin-
ing the two powerful paradigms of first-order logic, which
generalizes among the objects in a domain, and probability
theory, which handles uncertainty. One recent and popular
SRL formalism is the Markov Logic Network (MLN), in-
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Figure 8: Probability of scoring a goal in 3-on-2 BreakAway,
with standard RL and with three transfer approaches that use
2-on-1 BreakAway as the source task.

troduced by Richardson and Domingos (2005), which inter-
prets first-order statements as soft constraints with weights.
This framework can allow us to express source-task knowl-
edge with relational structure as well as non-deterministic
events.

MLN transfer (Torrey et al. 2008) is a method that trans-
fers an MLN describing the source-taskQ-function. We
use both ILP and MLN software to learn the MLN. As in
macro transfer, we apply this knowledge in the target task
by demonstration.

A Markov network can be viewed as a set of ground pred-
icates with potential functions that define a probability dis-
tribution over possible worlds. A Markov Logic Network
is a set of first-order logic formulas that can be grounded
to form a Markov network. Each formula describes a prop-
erty that may be present in the world, and has an associated
real-valued weight. Worlds become more probable as they
satisfy more high-weighted formulas.

Given a set of formulas along with positive and negative
examples of worlds, the weights can be learned via gradient
descent (Lowd and Domingos 2007). Then, given a set of
evidenceabout a world–a list of predicates that are known to
be true or false–standard inference in the ground Markov
network can determine the probability that the remaining
predicates are true or false.

We use an MLN to define a probability distribution for
the Q-value of an action, conditioned on the state features.
In this scenario, a world corresponds to a state in the RL
environment, and a formula describes some characteristic
that helps determine theQ-value of an action in that state.
For example, assume that there is a discrete set ofQ-values
that a RoboCup action can have:high, medium, andlow. In
this simplified case, formulas in an MLN representing the
Q-function for BreakAway could look like the following ex-
ample:

IF distBetween(a0, GoalPart)< 10 AND
angleDefinedBy(GoalPart, a0, goalie)> 40

THEN levelOfQvalue(shoot(GoalPart)) = high

The MLN could contain multiple formulas like this for



each action, each with a weight learned via gradient descent
from a training set of source-task states in which all the prop-
erties andQ-values are known. We could then use this MLN
to evaluate actionQ-values in a target-task state: we evalu-
ate which properties are present and absent in the state, give
that information as evidence, and infer the probability that
each action’sQ-value is high, medium, or low.

Note thatQ-values in RoboCup are continuous rather than
discrete, so we do not actually learn rules classifying them
as high, medium, or low. However, we do discretize theQ-
values into bins, using hierarchical clustering to find bins
that fit the data. Initially every training example is its own
cluster, and we repeatedly join clusters whose midpoints are
closest until there are no midpoints closer thanǫ apart. The
final cluster midpoints serve as the midpoints of the bins.

The value ofǫ is domain-dependent. For BreakAway,
which hasQ-values ranging from approximately 0 to 1, we
useǫ = 0.1. This leads to a maximum of about 11 bins, but
there are often less because training examples tend to be dis-
tributed unevenly across the range. We experimented withǫ
values ranging from 0.05 to 0.2 and found very minimal dif-
ferences in the results; the approach appears to be robust to
the choice ofǫ within a reasonably wide range.

The MLN transfer process begins by finding these bins
and learning rules with Aleph that classify the training ex-
amples into the bins. We select the final rulesets for each
bin with the same greedy algorithm as for rulesets in macro
transfer. We then learn formula weights for these rules us-
ing the scaled conjugate-gradient algorithm in the Alchemy
MLN implementation (Kok et al. 2005). We typically end
up with a few dozen formulas per bin in our experiments.

To use a transferred MLN in a target task, we use the
demonstration approach again. Given an MLNQ-function,
we can estimate theQ-value of an action in a target-task state
with the algorithm in Table 2. We begin by performing infer-
ence in the MLN to estimate the probability, for each action
and bin, thatlevelOfQvalue(action, bin)is true. Typically,
inference in MLNs is approximate because exact inference
is intractable for most networks, but in our case exact infer-
ence is possible because there are no missing features and
the Markov blanket of a query node contains only known
evidence nodes.

For each actiona, we infer the probabilitypb that the
Q-value falls into each binb. We then use these probabilities
as weights in a weighted sum to calculate theQ-value ofa:

Table 2: Our algorithm for calculating theQ-value of action
a in target-task states using the MLNQ-function.

Provide states to the MLN as evidence
For each binb ∈ [1, 2, ..., n]

Infer the probabilitypb thatQa(s) falls into binb
Find the training examplet in bin b most similar tos
Let E[Qa|b] = Qa(t)

ReturnQa(s) =
P

b
(pb ∗ E[Qa|b])

Qa(s) =
∑

b

(pb ∗ E[Qa|b])

whereE[Qa|b] is the expectedQ-value given thatb is the
correct bin. We estimate this by theQ-value of the train-
ing example in the bin that is most similar to states. This
method performed slightly better than taking the averageQ-
value of all the training examples in the bin, which would be
another reasonable estimate for the expectedQ-value. The
similarity measure between two states is the dot product of
two vectors that indicate which of the bin clauses the states
satisfy. For each formula, a vector has a+1 entry if the state
satisfies it or a−1 entry if it does not.

MLN transfer can also speed up RL significantly at the
beginning of learning. To demonstrate this, we learn 3-on-2
BreakAway with transfer from 2-on-1 BreakAway. Figure 9
shows the results of this experiment, compared with macro
transfer and value-function transfer. MLN transfer performs
comparably to macro transfer. Based on unpairedt-tests be-
tween points on the curves at the 95% confidence level, scor-
ing is more probable with MLN transfer until about 1000
training games.

Conclusions
Advice taking and transfer learning are naturally inspired
abilities that our work incorporates into reinforcement learn-
ing. We describe algorithms for doing so and show that
they can speed up RL significantly in complex domains like
RoboCup. Our algorithms are relational, using first-order
logic to describe concepts.

Our advice-taking method allows humans to provide
guidance to RL agents with rules about theQ-values of ac-
tions under specified conditions. The advice need not be
complete or perfectly correct, since it is treated as a soft con-
straint that can be violated if the agent’s experience indicates
that it is faulty.

Our three transfer methods involve learning relational
knowledge about the source-task solution and using it in
the target task. The skill-transfer method learns rules about
the Q-values of actions under specified conditions, and ap-
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Figure 9: Probability of scoring a goal in 3-on-2 BreakAway,
with Q-learning and with three transfer approaches that use
2-on-1 BreakAway as the source task.



plies them using our advice-taking algorithm. The macro-
transfer and MLN-transfer approaches learn more complex
structures and use them to demonstrate useful behavior at the
beginning of the target task. All three methods can speed
up learning significantly, but they have different strengths.
Macro and MLN transfer can provide a higher initial perfor-
mance than skill transfer, but skill transfer is more robustto
differences between the source and target tasks.

This work is inspired by the natural abilities for advice
taking and transfer learning that we observe in humans. Re-
inforcement learning can be faster and more adaptable with
these abilities. Though we do not know exactly how hu-
mans handle advice or transfer, we suspect that representing
knowledge with relational structures is part of the human
approach.

Many machine learning algorithms might be improved by
developing their links to natural learning. Traditionally, ma-
chine learning operates only from a set of training examples,
and a large number of these are often needed to learn con-
cepts well. Natural learning tends to need fewer examples
because it uses other sources of information as well, such as
advice and prior experience. These sources may not be per-
fect or complete, but they provide valuable biases for learn-
ing that can speed it up significantly.
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