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Abstract

Bayesian learning is an effective method to learn the structure of data in variety of

applications. In this thesis, we use the Construct-TAN algorithm [Friedman et al, 1997],

an algorithm that learns a Bayesian network, to create a tool that learns the structure of

epidemiological datasets and visualizes their structure effectively. To test our methods,

we  identify  interesting relations between cardiovascular disease risk factors and mental

health status variables, from the BTH 2000 dataset. In comparing the accuracy of our

system with a naive Bayes learner, we find that the accuracy of our system is very high.

Our interface allows a user to visually  inspect and manipulate the resulting Bayesian

network to better understand interactions in the dataset. We believe that our work brings

new insights to relationships between cardiovascular diseases and mental health status

problems. It may also provide a platform for developing more visually intensive tools

that can improve visualization of survey data.
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Chapter 1: Introduction

To better  understand the  overall  health  of  the United States,  there has  been a

significant growth in the collection of data with regards to people's health in the form of

surveys.  Several  government  organizations  as  well  as  non-government  organizations

conduct surveys and collect information regarding various aspects of a person's lifestyle

related to health. This data can prove very useful in giving information about various

diseases. In this thesis we use Bayesian learning techniques on an epidemiological survey

dataset, to identify useful relationships between the variables that form the dataset and, in

particular, examine relationships between cardiovascular disease risk factors and mental

health status variables.

Heart disease and stroke, one of the main components of cardiovascular disease,

are the first and third leading causes of death for both men and women in the United

States, accounting for almost 40% of all deaths [NCCDPH, 2004]. Another staggering

statistic  is  that  64 million  Americans  (almost  one-fourth of  the population)  live with

cardiovascular  disease  and  over  6  million  hospitalizations  each  year  are  due  to

cardiovascular  disease  [NCCDPH,  2004].   According  to  the  Surgeon General's  1999

report [SGR, 1999] almost 54 million Americans suffer from some kind of mental illness.

Depression  and anxiety disorders  — the  two most  common mental  illnesses — each

affect 19 million American adults annually [NMHA, 2001].  Also, this is important as

depression greatly increases the risk of developing heart disease. People with depression

are four times more likely to have a heart attack than those with no history of depression

[NMHA, 2001]. In this thesis we present a Bayesian toolbox which we have used to

explore relationships between variables pertaining to cardiovascular health and mental

health in a regional population.

1.1 Machine Learning and Bayesian Theory

Machine Learning involves the development of methods that will allow machines
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to imitate the process of human learning. According to Dietterich [1999], 

Machine  learning  is  said  to  occur  in  a

program that can modify some aspect of itself,

often  referred  to  as  its  state,  so  that  on  a

subsequent  execution  with  the  same  input,  a

different output is produced.

Unsupervised learning, supervised learning, neural networks, decision trees and Bayesian

learning are a few of the sub-fields of Machine Learning. 

Bayesian theory is an important part of machine learning. This area of machine

learning has become highly researched and Bayesian theory has been used in fields such

as diagnosis  [Rodrigues et  al,  2000],  expert  systems [Stephen and Steven, 1986] and

planning  learning  [Stavrulaki  et  al,  2003].  In  this  thesis  we  use  Bayes  nets  to  find

probabilistic  models  to  explain  relationships  in  health  survey  data.  There  are  several

reasons why we focus on Bayesian methods. Bayesian methods provide various structure

learning   algorithms.  They  use  probability  theory  as  a  foundation  and  can  handle

uncertainty. Finally, Bayesian networks provide a way to visualize results. We want to

find  the  relationship  amongst  various  variables  in  our  data,  and  Bayesian  methods

provide a very good way of doing that. 

1.2 Thesis Statement

In this thesis we use Bayesian learning techniques to find useful structures in a

survey dataset.  We built  a toolbox of methods which lets  the user create a Bayesian

network,  learn its  structure and allow him/her to  understand the relationship between

different variables which are a part of the network. One of the main aims of this thesis is

to show how the tool can be used to find relationships between cardiovascular disease

variables and the mental health status variables in our dataset.
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1.3 Thesis Outline

This  thesis  is  organized as follows.  Chapter  2  reviews the basics  of  Bayesian

networks and how to learn from them. Chapter 3 introduces the Bridge to Health Survey

dataset which is used to find relationships between cardiovascular disease risk factors and

mental health status variables and also other features in the dataset. Chapter 4 outlines

how Bayesian networks can be used for classification and structure learning. In the same

section, we discuss the Construct-TAN algorithm [Friedman et al, 1997], which is the

basis of the design of our toolbox.  In Chapter 5 we describe the toolbox with regards to

its representation and functionality.  Chapter 6 describes our experiments to verify the

effectiveness of our tool. Chapter 7 discusses related work in development of Bayesian

networks. Chapter 8 discusses the future work that could follow the current research.

Chapter 9 concludes the thesis. 
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Chapter 2: Background

In this chapter, we present the background for this work. We will first provide a

brief introduction to Bayes theorem and some preliminary definitions. We then talk about

the Bayesian optimal classification and the naive Bayes classifier. Finally we talk about

Bayesian networks in detail.

2.1 Bayes Theorem

Bayes  theorem  is  a  mathematical  formula  used  for  calculating  conditional

probabilities.  Bayes  theorem  provides  a  method  to  calculate  the  probability  of  a

hypothesis  h based on its prior probability, the probabilities of observing various data

given the hypothesis, and the observed data itself. Bayes theorem is

P h /D=
P D /hP h

P D

where

P(h) =     the prior probability of hypothesis h, which is the probability of 

    hypothesis h without knowing the training data D

P(D) =    the prior probability of  the training data D, which is the probability of 

   the training data D depending on the data distribution of all the instances

    in the data

P(D/h) = the probability of observing data D given that hypothesis h holds, also 

   called the likelihood of data D given h

P(h/D) = the probability that hypothsis h holds given data D, also called the 

       posterior probability of h given D

The posterior probability  P(h/D)  reflects the influence of the training data  D on
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the hypothesis  h, in contrast to the prior probability  P(h), which is independent of  D.

Bayes theorem is the basis of Bayesian learning methods because it provides a way to

calculate the posterior probability of a classification from the prior probability, P(D) and

P(D/h). Thus we observe that P(h/D) increases with P(h) and with P(D/h) and decreases

as P(D) increases, because the more probable it is that D will be observed independent of

h, the less evidence D provides in support of h.

Consider an example to illustrate Bayes theorem. Assume that a doctor knows that a

particular kind of throat cancer causes the patient to have a severe sore throat 40% of the

time. A doctor also knows that the prior probability that the patient has throat cancer is

0.001%, and the prior probability that any patient has severe sore throat is 5%. Let t be a

proposition that the patient has throat cancer and s be a proposition that the patient has

sore throat, then 

P(s / t)   =  40/100 = 0.4

P(t)       =  1/10,000 = 0.00001

P(s)      =  1/20 = 0.05

P(t / s)  =  P(s / t) P(t)  /  P(s)

             =   0.4 * 0.0001 / 0.05 

             =   0.00008

This means that  a doctor can expect that 1 in 12500 patients with a sore throat to

have throat cancer. Even though throat cancer is strongly associated with sore throat, the

probability of throat cancer in the patient remains small. The reason behind this is that the

prior probability of having a sore throat is much higher than that of having throat cancer.

The maximum a posteriori (MAP) hypothesis hMAP is any hypothesis h∈H  that is

most  probable  from  a  given  set  of  hypotheses  H given  the  training  data  D.  This

maximally probable hypothesis can be determined using Bayes theorem by calculating

the posterior probability of each candidate hypothesis as
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hMAP=argmaxh∈H P h /D

hMAP=argmaxh∈H

P D /hP h
P D (2.1)

hMAP=argmaxh∈H P D /hP h (2.2)

Note that P(D) is dropped in Equation (2.2) as the prior, P(D) will be same for all

the hypotheses and can be ignored.

The  maximum  likelihood (ML)  hypothesis  hML  is  any  hypothesis  h∈H  that

maximizes  the  likelihood  of  the  training  data  D.  The  assumption  here  is  that  every

hypothesis in H is equally probable, that is,  P hi=P h j for all hi , h j∈H.

hML=argmaxh∈H P D /hP h (2.3)

 hML≃argmax P D /h (2.4)

The MAP hypothesis hMAP and the ML hypothesis hML are the same when the prior

probability P(h) is distributed uniformly over all hypotheses in H. If the prior probability

of  h is uniformly distributed, the MAP hypothesis is the one with lower error rate on

instance(s)  of  the  evaluation  data.  The  ML hypothesis  has  a  lower  error  rate  if  one

assumes the future instance(s)  of  the   evaluation  data  follows  the  same  distribution

as  the training data D.

2.2 The Bayes Optimal Classifier

Consider this problem. There are four possible hypotheses h1, h2, h3, h4 with probabilities

given a dataset D as,

P(h1 / D) = 0.2 P(h2 / D) = 0.4

P(h3 / D) = 0.3  P(h4 / D) = 0.1
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Given a new instance x,

h1(x) =  neg h2(x) =  pos

h3(x) =  neg h4(x) =  neg

We can then ask the question, what is the most probable classification of x?

Obviously hMAP  = h2  which will classify the instance  x  as positive. However the

probability of x being classified negative taking into account all of the hypotheses is 0.6,

which is higher than the most probable classification probability 0.4, which classifies the

instance x to be positive. This indicates that we could improve the overall classification

by calculating the most  probable classification of the new instance by combining the

probabilities of all hypotheses and weighting them by their posterior  probabilites.

P v j /D=∑
h∈H

P v j /hP h /D
 

P v j /D is  the  probability  that  correct  classification of  the new instance is  vj

where vj is some class from a set of class values V [Mitchell, 1997].

The Bayes optimal classification calculates the class probability in this type of case as

 argmaxv j∈V P v j /D  

        
argmaxv j∈V ∑

hi∈H

P v j /hiP hi /D

Revisiting the same problem,

P(h1/ D) = 0.2 P(neg / h1) =  1 P(pos / h1) =  0

P(h2/ D) = 0.4 P(neg / h2) =  0 P(pos / h2) =  1

P(h3/ D) = 0.3 P(neg / h3) =  1 P(pos / h3) =  0

P(h4/ D) = 0.1 P(neg / h4) =  1 P(pos / h4) =  0

therefore
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∑
hi∈H

P pos /hiP hi /D=0.4

∑
hi∈H

P neg /hiP hi /D=0.6

and so

argmaxv j∈V ∑
hi∈H

P v j /hiP hi /D=neg

where V = { pos, neg}.

However Bayes optimal  classification is  generally impossible  and in restricted

cases computationally expensive because we cannot generate all possible classifiers in

effiecient manner.

2.3 The Naive Bayes Classifier

Classification is an important task in data analysis and pattern recognition. The

naive Bayes classifier [Domingos and Pazzani, 1997] and its variants are among the most

successful known algorithms for learning to classify text documents [Kim et al, 2003],

filtering email  [Sahami et al,  1998], galaxy classification [Bazell  and Aha, 2001] and

even emotion recognition [Sebe et al, 2002]. Despite its simplicity and robust nature, its

performance is comparable to that of state-of-the art classifiers like neural networks and

decision tree learning.  It has also exhibited high accuracy and speed when applied to

large databases.

The  naive  Bayes  classifier  assigns  the  most  likely  class  label  C to  instances

described by a set of attribute values  A1...An. The naive Bayes classifier is based on an

assumption that all the attributes Ai are conditionally independent given the class label C.

Hence  the   probability   of   observing   the  conjunction  A1…An  is  just  the  product  of
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Table  2.1:  Training  Examples  used  in  our  example  of  naive  Bayes

classification.  The three attributes  are  Smoker,  Hypertensive and  Weight and are

used to predict the class variable, Heart disease.

Patient no. Smoker Hypertensive Weight Heart disease 

1 Chain-Smoker No Above 150 Lb. Yes

2 Chain-Smoker No Above 150 Lb. No

3 Chain-Smoker No Above 150 Lb. Yes

4 Non-Smoker No Above 150 Lb. No

5 Non-Smoker No Below 150 Lb. Yes

6 Non-Smoker Yes Below 150 Lb. No

7 Non-Smoker Yes Below 150 Lb. Yes

8 Non-Smoker Yes Above 150 Lb. No

9 Chain-Smoker Yes Below 150 Lb. No

10 Chain-Smoker No Below 150 Lb. Yes

probabilities for the individual attributes, which are calculated from the training data.

P C /A=P C ∏
i

P Ai /C 

C NB=argmax P C ∏
i

P Ai /C 

Thus  the  naive  Bayes  learning  method  involves  a  learning  step  in  which  the

various P(C) and P(Ai/C) terms are estimated, based on their frequencies over the training

data. There is no explicit search through the space of possible hypothesis. The hypothesis

is  formed  by  counting  the  frequency  of  various  combinations  within  the  training

examples.

Table 2.1 considers the case for training examples for the class label Heart Disease.We

want to predict whether a new patient who is a chain-smoker, hypertensive and above
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150 Lb.,  has  heart  disease or  not.  The calculated conditional  probabilities  are  shown

below.

P(Chain-Smoker/Has heart Disease) = # of patients who are Chain-Smokers and have 

  heart Disease/# of patients who have Heart Disease

= 3/5

= 0.6

P(Chain-Smoker/Has Heart Disease) = 0.6 P(Chain-Smoker/No Heart Disease) = 0.4

P(Hypertensive/Has Heart Disease)   = 0.2 P(Hypertensive/No Heart Disease)   = 0.6

P (Above 150 Lb/Has Heart Disease) = 0.4 P (Above 150 Lb/No Heart Disease) = 0.6

P(Has Heart Disease) = 0.5 P(No Heart Disease) = 0.5

Our   task   is   to   predict  whether   our   new   patient  {Smoker  =  chain-smoker,

hypertensive = yes , weight = above 150 Lb} has Heart Disease or not.

C NB=argmaxC j∈yes , noP C ∏
i

P Ai /C j

C NB=argmaxC j∈ yes , no P chain−smoker /C j∗P hypertensive /C j∗P above150 Lb./C j

P( chain-smoker & hypertensive & above 150 Lb. & has heart disease) =

P(chain-smoker/has heart disease) *  P(hypertensive/has hearth disease) * 

P(above150 Lb./has heart disease) *  P(has heart disease) = 0.6 * 0.2 * 0.4 * 0.5 =  0.024 

  

P( chain-smoker & hypertensive & above 150 Lb. & no heart disease) =

P(chain-smoker/no heart disease) *  P(hypertensive/no hearth disease) * 

P(above150 Lb/no heart disease) * P(no heart disease)  = 0.4 * 0.6 * 0.6 * 0.5 = 0.072

Thus  the  naive  Bayes  classifier  classifies  the  given  instance  with  class  label

Heart disease = no, based on the probability calculations learned from the training data.
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2.4 Bayesian Networks

The naive  Bayes  classifier  makes  a  strong assumption  about  independence of

attributes,  given  the  class  label  C.  This  assumption  simplifies  the  calculations  and

reduces the complexity of classifier but it is overly restrictive. Also if we think intuitively

about the conditional independence, we cannot ignore that there may exist correlations

among attributes which should be accounted for. Relaxing the assumption of conditional

independence could lead to more accurate classification.

Bayesian Networks (BNs), also referred as Bayes Nets or Belief Networks, are

popular  in  Machine  Learning  beacuse  they  can  handle  incomplete  datasets  for

predictions. Also they allow one to learn about causal relationships amongst attributes.

Further,  they  facilitate  the  combination  of  domain  knowledge  and  data  and  offer  an

efficient and principled approach to avoiding the overfitting of data in combination with

Bayesian statistical techniques [Heckerman 1995]. 

Figure 2.1(a) shows a typical naive Bayes network while Figure 2.1(b) shows a

typical  Bayesian  network.  The  naive  Bayes  network  has  the  strong  assumption  of

conditional independence amongst the attributes B, C and D as there are no edges among

them. This means that the likelihood of occurence of attribute B given A is independent

of the likelihood of occurence of attribute C given A. All the attributes are dependent on

class  variable  A as  there is  an edge from A to  them.  This  conditional  independence

assumptions amongst the attributes are relaxed in case of Bayesian network (see Figure

2.1(b)). This means that the likelihood of occurence of C given A is also dependent on

the liklihood of occurence of B given A. 

2.4.1 Concept of Conditional Independence

Two  discrete  random  variables    X  and  Y   are   said   to   be   independent   if

P(X) = P (X / Y). It can be alternatively stated  as  P(X, Y)  =  P(X) P(Y).  In  the  case   of
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(a)    (b)

Figure 2.1(a) An example of naive Bayes classifier with strong independence
assumption  amongst  nodes  B,  C  and  D with  no  edges  and  Figure  2.1(b)  shows
simple Bayesian network with relaxed independence assumptions amongst nodes B,
C and D as there are edges from B to C and C to D. 

three  discrete random variables  X, Y,  and Z we can say that  X and  Y  are conditionally

independent given the value of Z if the probability distribution of X is independent of the

value of Y given a value of Z, that is P (X / Y, Z) = P(X / Z). Extending this definition for

the sets of variables, we can say that  X 1. .. X m  is conditionally independent of  Y 1. ..Y n

given the set of variables Z 1. .. Z p  if 

P X1 ... X m /Y 1. ..Y n , Z 1 ... Z p=P X 1 ... X m /Z 1 ... Z p

Consider Figure 2.2. In this network, nodes B and C are both dependent however

B is independent of C given A that is P C /B , A=P C /A . Consider Figure 2.3. In this

network, nodes A and B are both independent however A is dependent on B given C.

2.4.2 Representation

Figure  2.5  shows  an  example  of  a  Bayesian  network  structure  S  and  local

probability distributions P of all nodes in the form of conditional probability tables.
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Figure 2.2 General network 1 with three nodes A, B and C with directed
edges from A to both B and C. 

Figure 2.3 General network 2 with three nodes A, B and C with directed
edges from A and B to C. 

A Bayesian  network  describes  the  probability  distribution  governing  a  set  of

variables by specifying a set of conditional independence assumptions along with a set of

conditional probabilities.  It  allows for the efficient and effective representation of the

joint probability distributions over a set of random variables [Friedman et al, 1997].

A Bayesian network for a set of variables X = {X 1. .. X n } consists of (1) a network

structure S that encodes a set of conditional independence assertions about variables in X,

and (2)   a   set   P   of   local   probability   distributions   associated   with  each  variable
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Figure 2.4 A Bayesian network with eight nodes A, B, C, D, E, F, G and H.
With respect to node E, nodes A and B are non descendants, nodes C and D are
parents while nodes F and G are descendants. Node H is a parent of node G. 

[Heckerman, 1995]. These two are the components of the joint probability distribution

for X.

   

Each  vertex  in  S is  a  random  variable  from  X,  and  each  edge  represents  a

correlation  between  the  variables.  The  lack  of  an  edge  between  two  nodes  encodes

conditional independence between the two nodes. This network structure S is essentially

an  acyclic  graph  whose  vertices  correspond  to  variables  in  X.  The  local  probability

distributions  P are represented as a table for each variable given its parents known as

conditional probability table.

A  Bayesian  network  encodes  the  Markov  Assumption.  Any  variable  X i is
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conditionally  independent  of  its  non  descendants,  given  its  parents.

P X 1 ... X n=∏
i=1

n

P X i /Parents X i , where Parents X i is set of parents of X i .

Consider Figure 2.4. For node E, nodes A and B are non descendants while nodes

C and D are parents and nodes F and G are descendants. Node E is independent of A, B

given C, D.  

In general, a  Markov blanket of some node  X is a minimal set of variables that

make the variable X independent from all the other variables in the network. It is a union

of three sets – the parents of X, the children of X and the parents of the children of X.

Figure 2.5 shows a more complete Bayesian network for our test problem. Before

explaining the Bayesian network in Figure 2.6, we will explain the variables denoted by

nodes in the figure.

Q48NEVER Had Blood Pressure Checked? {never, yes}

ALCWDBNO Accomplished less, careless work, and felt downhearted and blue 

without being depressed or anxious {yes, no}

Q5_15 Diagnosed Depression {yes, no}

Q5_10 Diagnosed Stroke Related Problem {yes, no}

Q39 Limited in the kind of work {yes, no} 

Q5_9 Diagnosed Heart Trouble {yes, no}

Q48NEVER directly affects the probability of ALCWDBNO. The value of Q5_15 to be

yes or the value of Q39 to be yes for limited in the kind of work depends only on the state

of ALCWDBNO as both the variables Q5_15 and Q39 are in the Markov blanket of

ALCWDBNO. 

The table associated with each of the  nodes  is  called  a  Conditional  Probability
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Figure 2.5 An example of typical Bayesian structure and local probability
distributions in the form of Conditional Probability Tables for each node.

Table (CPT). The CPT of the variables Q5_15, Q5_10 and Q39 have two rows each.

Each of the row corresponds to a value of the variable ALCWDBNO.  Each column of

the CPT corresponds to the particular variables value. For example, if we look at the first

row of the CPT of Q5_15, the probability of Q5_15  = yes when ALCWDBNO = yes is

0.9  and the probability  of  Q5_15 to  have value  no when ALCWDBNO=  yes is  0.1.

Again, in the second row, the probability of Q5_15 = yes when ALCWDBNO is  no is

0.05 and the probability of Q5_15 to have value no when ALCWDBNO = no is 0.95. As

we can see,  each row of  the  CPT must  add up to  1.  Each row in CPT contains  the

conditional probability of each node value for the conditioning case. A conditioning case

is  just  a possible  combination of values for the parent  node. All  the root  nodes (like
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Q48NEVER), with no parents are represented with prior probabilities of each possible

value of that variable. 

2.4.3 Inference

After a Bayesian network is created from the data and prior knowledge about the

variables, we need to determine various probabilities of our interest from this network

which  may  not  be  available  directly  from  the  net.  Thus  we  need  to  compute  this

probability distribution for any subset of variables of interest given the values of any

subset of remaining variables.

There  are  several  variants  of  probabilistic  inference  algorithms  developed  for

Bayesian networks.  Overall they all can be categorized in two  main kinds of inference:

(1) exact, and (2) approximate.

Exact inference of probabilities  for an  arbitrary Bayesian network is  NP hard

[Mitchell, 1997]. Exact inference is possible when all nodes of Bayesian network have

linear  Gaussian  distributions  [Mitchell,  1997].  There  are  two  main  types  of  exact

inference algorithms, those that work only on directed acyclic graph (DAG) models and

those that work on both directed and undirected graphs. 

The DAG-only inference algorithms exploit the chain-rule decomposition of the

joint probability,

P X =P X 1P X 2/X 1P X 3/X 1 , X 2 ...

and the “push sums inside products” approach to remove the irrelevant nodes. This kind

of algorithm is called the variable elimination algorithm. This results in a single marginal

probability P X i /X j .
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Algorithms  that  work  on  both  undirected  and  directed  graphs  are  generally

defined in terms of message passing on a tree. The tree can be directed or undirected and

the messages can be passed sequentially or in parallel. One of the advantages of message

passing  algorithms  is  that  they  use  dynamic  programming  to  avoid  redundant

computations used by variable elimination algorithms when computing all the marginal

probabilities simultaneously. A few good examples of message passing algorithms are

Pearl's algorithm [1988] and the Hugin/JLO algorithm [Jensen et al, 1990]

 

There are a couple of reasons why it is difficult to use exact inference in all cases.

In cases when exact inference is mathematically possible, the computation time to get the

exact solution is often very long. There are also cases  when  there  is  no  possible

closed-form solution. In both such cases, approximate inference is often employed. There

are few different types of approximate inference algorithms that are used. 

Sampling Methods are one of the techniques that are used to perform approximate

inference. Importance sampling is one the simplest kinds of these methods. In importance

sampling  random  samples  are  drawn  from  prior  probabilities  [Cheng  and  Druzdzel,

2000]. One of the most popular approximation approaches is the Markov Chain Monte

Carlo  (MCMC) method,  in  which  the  random samples  are  drawn from the  posterior

probabilities.  Other  methods  include  Gibbs  sampling  [MacKay,  1998]  and  the

Metropolis-Hasting algorithm [Neal, 1993].

Another kind of approximation methods are the variation methods. One example

of  these  is  the  mean-field  approximation  method  [Jordan  et  al,  1998].  This  method

exploits the law of large numbers to approximate large sums of random variables by their

means.  The  mean-field  algorithm  produces  a  lower  bound  on  the  likelihood  of  the

approximations.

Belief  Propagation algorithms  [Berrou et  al,  1993]  apply the message passing

algorithm to the original graph even if it has loops. These algorithms are closely related

to the variation methods and have been used to do approximate Bayesian inference in
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algorithms like the Expectation Propagation algorithm.

2.4.4 Learning Bayesian Network Structure

Why do we need to learn Bayesian networks? Sometimes we do not know the

structure of a network or  only know parts  of the structure.  Also,  the graph structure

provides us a method to gather new knowledge by providing an insight into the domain

of our problem.

There are two main kinds of learning: parameter learning and structure learning.

In parameter learning,  there can be two cases:  one in  which the network structure is

known and  there  are  no  hidden/missing  variables  and  another  in  which  the  network

structure is known but there are hidden/missing variables. 

In the first  case, where the network structure is known in advance and all  the

variables are fully observable, the task of parameter learning is to estimate the conditional

probability table entries. This is a simple task. There have been various algorithms that

have been proposed for such a case. If the network structure is a directed acyclic graph,

the problem decomposes fully, since we can construct the conditional probability tables

independently  of  each other.  When the  network is  undirected,  methods  like  Iterative

Proportional Fitting (IPF) and the generalized iterative scaling algorithm [Darrech and

Ratcliff, 1972] can be used. 

In the case where the network structure is  known but not  all  of  the variables'

values  are  observable  (missing  and/or  hidden  values  in  dataset),  learning  is  more

difficult.  In  this  case,  a locally  optimal  solution  is  preferred.  Algorithms such as the

Expectation Maximization (EM) algorithm [Lauritzer, 1995] can be used to find such a

locally  optimal  solution.  There  are other  methods  that  can also be used,  such as  the

“bound and collapse” method [Ramoni and Sebastini, 1997] and gradient based methods

[Koller et al, 1997]. However, the EM algorithm is generally preferred over these because

of  its  simplicity  and  the  fact  that  it  deals  with  constraints  automatically.  The  EM
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algorithm  can  be  sped  up  by  combining  it  with  gradient  methods  [Jamshidian  and

Jennrich, 1993].

When the underlying structure of data D is not known, we must perform Structure

Learning.  The  Structure  Learning  task  can  be  informally  stated  as:  Given  a  training

dataset  D,  find  a  network B  that  best  matches  D,  where  D is  a  set  of  independent

instances. There are two different approaches to graphical probabilistic model learning

(structure  learning)  from  data  [Cheng  et  al,  1997]:  (1)  dependency-analysis-based

methods, and (2) search and score methods.

A  dependency-analysis-based  methods  depend  on  the  assumption  that  the

underlying  network  which  is  studied  has  many  dependencies  amongst  the  nodes.

Algorithms based on this approach try to discover the relevant set of these dependencies

and  independences  in  the  network  from the  training  data  and  use  them to  infer  the

structure  of  network.  Dependency  relationships  are  calculated  using  some  form  of

Conditional Independence (CI) tests. This is also called the constraint based approach. A

few  algorithms based on this approach are the Boundary DAG algorithm [Pearl, 1988],

the  Wermuth-Lauritzen  Algorithm  [Wermuth  and  Lauritzen,  1983],  the  Constructor

algorithm [Fung and Crawford, 1990], the SRA algorithm [Srinivas et al, 1990], and the

SGS algorithm [Sprites et al, 1990].

 

Although  the  dependency-based  method  has  advantages,  such  as  being  more

efficient for sparse networks and often finding the correct structure when the probability

distribution of data satisfies certain assumption, it can be unreliable when the CI tests

have  large  condition  sets  (number  of  different  conditions  in  data).  Moreover,  this

approach often requires an exponential number of CI tests.

The  more  popular  approach  is  the  search  and  score  method.  This  approach

attempts to find the structure that can fit the data best using a search process. All the

search and score methods attempt to search a graph that maximizes the selected scoring

function. Algorithms falling in this category generally start with a simple graph without
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any edges and then use some search method to add/delete edges recursively. The score

method  is  used  to  measure  the  goodness  of  each  explored  graph  from the  space  of

feasible solutions. This process continues until they do not get a candidate which defines

the  data  in  a  better  way.  Thus  each  algorithm  is  characterized  by  a  specific  search

procedure and scoring function. The scoring function is based on different criteria such as

the  Bayesian  scoring  method  [Cooper  and Herskovits,  1992;  Heckerman et  al,  1995;

Ramoni and Sebastini, 1997], the entropy based method [Herskovits and Cooper, 1990],

the  minimum  description  length  (MDL)  method  [Suzuki  1996;  Friedman  and

Goldszmidt, 1996; Lam and Bacchus, 1994] and the minimum message length method

[Wallace et al, 1996]. We discuss a few of these algorithms briefly below.

The Chow-Liu Tree Construction Algorithm [Chow and Liu, 1968] is used to do

structure learning and is a variant of the [Friedman and Goldszmidt,  1996] algorithm.

This algorithm uses two different kinds of scores to learn a Bayesian network. It used

both the minimum description length (MDL) score and the Bayesian score. It is effective

algorithm since it learns the Bayesian network and the local structure of the conditional

probability tables at the same time. When we add a new edge using this algorithm, it

chooses the direction which gives the better score as the direction for the edge. 

The K2 Algorithm [Cooper and Herskovits, 1992] was the first serious attempt at

learning  a  Bayesian  belief  network.  It  is  one  of  the  first  search  and  scoring  based

algorithms for learning a Bayesian belief network. The working of this algorithm is very

simple in that it takes as input a dataset and a node order, and constructs a belief network

structure as the output. This algorithm uses a Bayesian scoring method and computes the

conditional probabilities by the brute force method.

The  MDL length method  [Suzuki 1996] addressed the issue of learning Bayes

networks using the minimum description length (MDL) principle. The MDL principle

basically selects a rule that takes both simplicity and fit to the data into account and

achieves the best results. This algorithm uses a formula for description length and applies

a  branch  and bound technique  to  find  the  network  structure.  The branch and  bound
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technique thus developed determines whether a branch needs to be searched more by

calculating a lower bound after adding an arc to the structure. This algorithm is very

different from other search and score algorithms in that it does not use a heuristic and it

also guarantees that we find an optimal structure.

The  Construct-TAN  algorithm  [Friedman  et  al,  1997] that  we  use  to  do  our

structure  learning  is  a  variant  of  the  tree  augmented  naive  Bayes  [Friedman  and

Goldszmidt, 1996] algorithm. It uses both the minimum description length (MDL) score

and the Bayesian score to learn the network. It is also a good algorithm since it learns the

Bayesian network and the local structure of the conditional probability tables at the same

time [Friedman et al, 1997]. When we add a new edge using this algorithm, it chooses the

direction which gives the better score as the direction for the edge. The toolbox we have

implemented is based on this algorithm. The Construct-TAN algorithm is explained in

detail in Chapter 4.
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Chapter 3: The Bridge to Health Dataset

This chapter is organized as follows. Section 3.1 introduces the Bridge to Health

survey data, followed by Section 3.2 which explains in detail the method by which data

was collected. Section 3.3 describes the statistical weighting of data. The next subsection

describes the data, while the last section, 3.5, lists variables of interest, cardiovascular

disease risk factors and mental health status variables.

3.1 The Bridge to Health Survey Dataset

The Bridge to Health survey was a regional health status assessment carried out

between November 1999 and February 2000. This population-based survey was mainly

conducted  to  gather  information  on  health  indicators.  The  Bridge  to  Health  Survey

dataset is a local  (county level)  survey  data  of  more  than  6200  adult  residents  in a

sixteen-county  region  in   Northeastern  Minnesota  and  Northwestern  Wisconsin

[Block et al, 2000].

3.2 Data Collection

The Bridge to Health 2000 survey (BTH 2000) data was collected through 6251

computer-aided telephone interviews by the Survey Research Center of Division Health

Services Research and Policy located in the School of Public Health at the University of

Minnesota for Bridge to Health Collaborative. One adult (above the age of 18) from each

sampled  household  was  selected  to  participate  in  the  survey.  Out  of  8559  eligible

households  contacted  by  phone  between  November  1999  and  February  2000,  6251

interviews were completed with the response rate of over 74% [Block et al, 2000].

The BTH 2000 collected data on lifestyle behaviors, health care access, disease

prevalence,  preventive  health  practices,  injury  prevention  and  violence,  preventive

screening and tobacco-alcohol use. The BTH 2000 Questionnaire had 101 questions for

23



which the responses of the interviewees were recorded. The questions were designed to

gather information about the general health of an individual as perceived by himself and

as diagnosed by a doctor.

Most of the questions had a choice of response as YES/NO. An example question

is 

In the last year, have you had a flue shot?

- Yes

- No

But some questions were more descriptive, with the choices as in 

How much of the time during the past four weeks, have you felt downhearted and

blue? 

- All the time

- Most of the time

- A good bit of the time

- Some of the time

- A little of the time

- None of the time

- Refused

- Don't know

3.3 Statistical Weighting of Data

The BTH 2000 dataset was required to be weighted because of the differences in

household  size,  differences  in  the  size  of  the  population  in  each  of  the  18  strata

(counties),  and differences  in  response rates  between men and women and people  of

different ages [Block et al, 2000]. The statistical weighting was already done by [Block et

al, 2000] before we used the data for our research. However the process of weighting the
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data is crucial and so I would like to mention it here. The first step involved weighing the

data by the inverse of the selection probability within the household (that is, the number

of adults age 18 and older living in the household). The next step was to weigh the data

by the actual size of the adult population in each of the strata divided by the number of

respondents from each stratum. The third step was to post-stratify the data based on the

1998 U.S. Census estimates of the age and gender distributions for adults with each of the

strata. The last step was to divide the weights by a numeric constant, which forced the

weighted total sample size to be equal to the total number of respondents in the sample. 

3.4 Data Description

BTH  2000  has  6251  records,  each  one  representing  the  response  of  an

interviewee. Each record has 334 features.

These features are either the direct responses of the interviewees, new/recoded

variables or maintenance variables. The new or recoded variables were added to facilitate

research of the dataset. These variables are calculated from the direct responses either to

make them more specific or more general. Some of the continuous variables were made

discrete. The various features can be categorized as follows:

1. General information such as the sex, age, education, height, weight or marital status

of a person.

2. Physical health status variables such as chronic conditions, overweight issues and

person suffering from particular diseases.

3. Mental  health  status  variables  such  as  anxiety,  panic  attacks,  depression  and

accomplished less due to mental health.

4. Diagnosed  diseases  such  as  allergies,  asthma,  back  problems,  cancer,  diabetes,

digestive disorder, high blood pressure and high cholesterol.
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Table  3.1  Mental  health  status  variables  used  as  class  variables  to  create  tree

augmented networks using Construct-TAN algorithm. 

Variable name Description Response

Q15NEW2 Diagnosed depression 1: Yes

10: No

Q16NEW2 Diagnosed anxiety 2: Yes

20: No

DEPRANX2 Diagnosed depression and
anxiety

2: Yes

5: No

ALDPANX2 Accomplished less without
depression or anxiety

31: Yes

33: No

CWDPANX2 Careless work without
depression or anxiety

31: Yes

34; No

DBDPANX2 Feel downhearted or blue
without depression or
anxiety

31; Yes

35: No

5. Preventive care such as consumption of fruits and vegetables, avoidance of certain

food due to toothache and flu vaccination.

6. Preventive screening such as mammogram, pap-smear test,  prostate examination

and colon screening.

7. Injury prevention and violence such as seat-belt use, safety equipment in home and

victims of violence or crime against property.

8. Tobacco-Alcohol use such as cigarette smoking, smoking in the home, attitudes

towards smoking regulations and alcohol consumption patterns.

9. Health care access such as health insurance coverage and failure to receive medical

care.

10. Recoded variables such as combination/recalculation of direct responses.

11. Data maintenance variables.
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3.5 Class Variables: Features of Interest

In this research, we are interested in finding the correlations between the variables

given a particular (class) variable and analyzing the structure created by the Construct-

TAN algorithm (explained in Chapter 5). Table 3.1 lists all the cardiovascular disease

risk  factors  and  Table  3.2  lists  all  the  mental  health  status  variables  used  as  class

variables for structure learning. 

Table 3.2 Cardiovascular disease risk factors used as class variables to create tree

augmented networks using Construct-TAN algorithm.

Variable name Description Response

Q5_11 Diagnosed high blood
pressure 

1: Yes

2: No

Q5_12 Diagnosed elevated
cholesterol 

1: Yes

2: No

Q48REC Blood Pressure checked in
last 2 years

1: Within past 2 years

2: Not within past 2 years

Q49REC2 Cholesterol checked in last
2 years

1: Within past 2 years

2: Not within past 2 years

OVERWGT2 Overweight or not
overweight based on BMI

0: Not overweight

1: Overweight

BMICUTS Normal weight, overweight,
obese based on BMI

0: Not overweight

1: Overweight

2: Obese

EXCERREC Moderate or vigorous
exercise 3X per week

1: Exercise less than 3 times
per week

2:  Exercise  more  than  3
times per week

Q69A Current smoker 1: Yes

2: No
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Variable name Description Response

CHRONIC 60+ drinks per month 0:  Less  than  60  drinks  per
month

1:  60+  drinks  in  the  past
month

URRURNEW Urban or rural residence 1: Urban

2: Rural 
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Chapter 4: The Construct-TAN algorithm [Friedman et al,

1997]

In  this  chapter  we present  the  algorithm that  we used to  create  our  Bayesian

networks. The tool we describe in Chapter 5 is based on the Construct-TAN [Friedman et

al, 1997] algorithm.

4.1 Using Bayesian Networks for Classification

 As we have already seen in  the background section,  a naive Bayes  classifier

learns from training data D the conditional probability of each attribute Ai given the class

variable  C  (note  that  all  variables  in  training  data  D except  C are  called  attributes).

Classification is then done by applying Bayes rule to compute the probability of C given

the particular instance of A1...An and then predicting the class with the highest posterior

probability.

But in general, the strong assumption of conditional independence between the

attributes  given  the  class  variable  C is  not  realistic  for  real  world  datasets.  The

classification using naive Bayes could be skewed (and yet good)  because of the fact that

it neglects the correlation between attributes in highly interrelated network. 

In our classifier, we start with the connections from the class variable C to every

attribute Ai. This gives the class variable a special status in the network. The connection

from C to each Ai ensures that, in the learned network, the probability P(C/ A1...An) will 

take all attributes in account [Friedman et al, 1997]. Thus we start with a naive Bayes

network and change it by adding edges amongst the attributes maintaining the acyclic

nature of the graph. These additional edges signify a correlation amongst variables in the

structure. Thus the newly created classifier is called as augmented naive Bayes  classifier.

29



   

Figure 4.1 shows an augmented naive Bayesian classifier with class variable C and

three attributes  A1,  A2 and  A3.  C is  connected to all  the attributes (naive Bayes

connections). There are also additional edges from A1 to A3 and A2 to A3.

Such an augmented naive Bayesian classifier network is shown in Figure 4.1.  Observe

that the class variable C has an edge to all the attributes A1, A2 and A3. Also there are few

edges from one attribute to another depending on necessity. For example, there is an edge

from A1 to A3 and also from A2 to A3. The interpretation of these edges could be made as

follows. The influence of A3 for predicting the value of the class variable C also depends

on the value of A1. Similar logic extends to the edge from A2 to A3.

As one  observes  in  Figure  4.1,  construction  of  an  augmented  naive  Bayesian

classifier is equivalent to finding a good Bayesian network with the class variable C as

root. However finding the best Bayesian network from among in all the possible super

exponential  number of networks  is  a computationally  intensive problem. An efficient

solution of  finding  a  useful set of edges amongst variables can be learned in polynomial
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Figure  4.2  A  Tree  Augmented  Network  (TAN)  with  class  variable  C and  three

attributes nodes A1,  A2 and A3.  C is connected to all the attributes. There are also

directed edges from A1 to A2  and A2  to A3.  

 

time  by  imposing  restrictions  on  allowable  interactions  amongst  the  variables.  This

results in a new network called a Tree Augmented Network or TAN. 

          

In a TAN, the network is restricted in that the class variable has no parents and

each attribute has as parents the class variable C  and at most one other attribute. The

edges in a TAN are called augmented edges. One should notice that each attribute in

TAN can have one augmented edge pointing to it.

Figure 4.2 shows a tree augmented network where class variable C is connected to

all  the  attributes  A1,  A2  and A3. Also  there  are  edges  from one  attribute  to  another

depending on necessity. For example, there is an edge from A1 to A2 and also from A2 to

A3. Note that the TAN cannot have any attribute node with more that one attribute as its

parent.  In Figure 4.2, both  A1 and A2  have only one attribute as parent. However an

augmented naive Bayesian network can have nodes with more than one attribute as their
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parents. In Figure 4.1, A3 has two parents A1 and A2. This is where an augmented naive

Bayesian network differs from a TAN.

4.2 The Construct-TAN algorithm

Chow  and  Liu  [1968]  developed  a  procedure  (shown  in  Table  4.1)  for

constructing  of  TAN  (learning  the  appropriate  set  of  edges  in  the  network).  This

procedure reduces the problem of building a Bayesian network to  finding a  maximal

weighted spanning tree in a graph. This means the problem of finding such a tree is to

select a subset of arcs from a graph such that the selected arcs constitute a tree and the

sum of weights attached to the  selected  arcs is maximized [Friedman et al, 1997].

Table 4.1: The Construct-tree procedure of CL [Chow and Liu, 1968] 

1.  Compute IP (Xi ; Xj) between each pair of variables, i is not equal to j

2.  Build  a complete undirected graph in which the vertices are the variables in  X.

Annotate the weight of an edge connecting Xi  to Xj  by IP (Xi ; Xj)

3.  Build a maximum weighted spanning tree

4.  Transform the resulting undirected tree to a directed tree one by choosing a root

variable and setting the direction of all edges to be outward from it

  
I pX ;Y = ∑

x∈X , y∈Y

P x , y log
P x , y

P x P y  (4.1)

The function  IP (Xi ; Xj)  is called the  mutual information (MI) function and is

shown in equation (4.1). This function characterizes the mutual information between the
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two variables X and Y. The MI between two variables X and Y can tell us whether the two

variables are dependent or not and if they are, then how close the relationship is. If MI

has  a  smaller  value  than  a  particular  threshold  t,  then  the  two  variables  are  called

conditionally independent. The time complexity of this procedure is O  f 2∗n , where f is

the total number of variables in the data D.

The Construct-TAN [Friedman et al,  1997] algorithm, shown in Table 4.2, on

which   my   tool   is    designed,   is   based   on    the    procedure   Construct-tree

[Chow and Liu, 1968], with a slight modification. The Construct-TAN algorithm is a five

step procedure to build a tree augmented network for a given class node C. The first step

determines the weight of each edge between two nodes of the network. The weighting

function is called conditional mutual information function as shown in equation (4.2).

This function calculates the mutual information between two attributes given the value of

class variable C. The CMI between the two variables X and Y can tell us whether the two

variables are dependent or not, given the value of another variable C . The dependency of

the variables X and Y is determined with respect to the value of C. If CMI has a smaller

value than a particular threshold t,  then the two variables are conditionally independent

given C. The next step constructs a undirected graph with all attributes (all nodes other

than the class node) and the weights are assigned to all the edges. The next step builds a

maximum-weighted spanning tree. In the toolbox, we have implemented Prim's algorithm

[Tenenbaum et al, 1995] for building the spanning   tree.   The   fourth   step   converts

the  undirected  graph  to  directed one.

     
I P X ;Y /C = ∑

x∈X , y∈Y ,c∈C

P x , y , c log
P x , y /c

P x /cP y /c (4.2)
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Table 4.2: The Construct-TAN procedure explained from [Friedman et al, 1997] 

1. Compute IP (Ai ; Aj / C) between each pair of variables, where i is not equal to j

2.  Build a complete undirected graph in which the vertices are the attributes  A1 ,...,

An. Annotate the weight of an edge connecting Ai to Aj by IP (Ai ; Aj / C).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable

and setting the direction of all edges to be outward from it.

5.  Construct a TAN model by adding a vertex labeled by C and adding an arc from C

to each  Ai.

Our implementation of this step selects the variable next to class variable in the

comma separated data file as the root node. The last step adds the class node to the graph.

The time complexity of this procedure is also O  f 2∗n  where f is the total number of

variables in the data D.

The  two  methods,  Construct-tree  and  Construct-TAN,  although  they  appear

similar, have a few differences as follows. 

•  Construct-tree is a four step method to build a general tree of all the variables in the

data while Construct-TAN is a five step algorithm to build a specialized tree with a

class node as parent of all the remaining nodes.

• A tree built by the Construct-tree method has one node (root node) with no parents and

all the  other  nodes  with only one parent. On the other hand, the network built by
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Construct-TAN has one node with no parent (class node), one node with only one

parent ( root node with class node as parent) and all the other nodes with two parents

( class node and some other node in the tree).
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Chapter 5: Our Bayesian Toolbox

This chapter describes the toolbox that we developed using the Construct-TAN

algorithm. In this section, first we will discuss the motivation to create such a tool for our

survey data. Then we will discuss the representation used while creating this toolbox, the

interface design of the tool. In the next section, we will demonstrate the working of the

tool with an example TAN. Finally we enumerate the capabilities of the tool.

5.1 Motivation

There  are  various  machine  learning  techniques  that  can  be  used  to  discover

various  kinds  of  relationships  amongst  features  in  our  data.  However  we  wanted  a

technique that  would be:  (1)  accurate,  (2)  able  to  learn Bayesian network structures,

(3) efficient, and (4) effective for visualization.

We want to do structure learning using the Construct-TAN algorithm as it gives a

probable network by doing heuristic search over the space of network structures. The

structure that is created using our tool should describe the data very closely. There should

be a measure by which this structure can be validated. We use cross validation technique

to test the accuracy of the network created.

The  tool  thus  developed  should  not  only  learn  the  structure  of  data  but  also

displays as a network of nodes and edges efficiently thus making  speed an important

factor  in  the  design  of  the  tool.  The  algorithm used  to  develop  the  network  is  very

efficient  and  learns  the  data  fast.  Last  but  not  the  least,  the  tool  should  provide  an

effective way to visualize the network and. The tool thus incorporated what was desired.

36



5.2 Design of the Tool

This section discusses the design of the tool. It explains how the structure learning

and inference methods are implemented in the tool, the representation of the network

built by the tool and software issues related to the tool.

5.2.1 Representation of the Network

The  network  is  in  the  form  of  a  DAG,  more  specifically  a  tree  augmented

network. The structure created by the tool has a class node which is connected to all the

other nodes in the graph. However the number of attributes in our dataset is very large

(over 100) and to show the edges (directed from the class node to the attributes) would

make the network crowded and unreadable. Hence we do not show all of these edges in

the resulting network.

5.2.2 Structure Learning

The Construct-TAN algorithm constructs the network. As preprocessing of data

handles  the  elimination  of  missing  values  in  the  data  and  discretization  of  data,  the

structure learning algorithm is  implemented on data  which is  fully  observed with no

hidden, no missing value variables. The input to the tool is an ordinary database table in

the comma separated variable file format. The first field of the data is treated as a class

variable, the next as the root variable. Each record is a complete instantiation of all the

variables in the domain. The conditional mutual information of variables is computed

using  the  relative  frequencies  from  the  database.  The  Construct-TAN  algorithm,  as

described in Chapter 4, is applied to the data and its structure is determined. The resulting

network is then displayed in a JAVA applet. 
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5.2.3 Inference

Because all the variables in the dataset are discrete, inference is practically viable

for  implementation.  Because  of  the  simple  approach  of  the  algorithm,  an  inference

algorithm could be implemented in terms of a product of potentials. A potential is an

object variable which helps to execute the inference algorithm efficiently. In our case, the

potential is represented as the conditional probability table of a node, given all possible

states of its parents. The tree which is created by the tool is a spanning tree, and therefore

for each node the number of parents  is  at most  two. Inference in TAN can then  be

simplified as shown in equation (5.2). Equation (5.1) shows a generalized formula for

inference learning.

P C /X 1 ... X n=∏
i=1

n

P X i /Parents X i                        (5.1)

where Parents X i  are the parents of node Xi.  There are only two parents of node X in

TAN , the class node C and some other node Y.

P C /X 1 ... X n=∏
i=1

n

P X i /Y ,C  (5.2)

The  inference  algorithm  is  easy  to  implement  and  enables  optimization  at

implementation level. In the case of inference, the inputs to the tool are the training data

file which learns the structure of the data and the testing data file for inference. 

5.2.4 Software Issues

The tool has been implemented in JAVA because of the various functions JAVA

provides. JAVA has rich set of built-in data structures, facilities for drawing graphs and

use of applets  to display the network. The use of JAVA as a programming language

makes the tool runnable on any JAVA-enabled browser. 
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5.3 Working of the Tool with an Example

Consider  a  training  data  file  to  develop  a  network  for  the  class  variable

CHRONIC  using our tool.

CHRONIC,SEX,Q36,Q37,Q38,Q39,Q40,Q41,Q44,Q45,Q46,Q48,...
0,2,3,100,2,2,2,2,5,2,5,1,...
0,2,3,100,2,2,2,2,2,3,6,1,...
0,1,3,100,2,2,2,2,1,3,6,1,...
0,1,3,100,2,2,2,2,2,3,6,1,...
0,2,1,1,2,2,100,100,2,100,5,1,...
0,2,3,100,2,2,2,2,2,4,5,1,...
...

The  training  data  file  has  3115  records  and  54  variables  including  the  class

variable  CHRONIC.  The  training  data  file  and  the  testing  data  file  are  both  comma

separated files. The top row lists the variable names which are represented as  nodes  in

the TAN. The first variable (CHRONIC) is considered as the class variable for which the

structure is built. The next variable (SEX) is the root variable which has only one parent,

the class variable. All the other rows (except the first one) contain the values of all the

nodes. The network thus created by the tool is shown in Figure 5.1. It shows the tree

augmented network for the class variable CHRONIC. All the variables other than the

class variable are represented as nodes in the network. The edges are weighted by the

conditional mutual information value (see equation 4.2). Our tool searches the space of

all possible networks and builds a network which is a maximum-weighted spanning tree.

The algorithm we implemented for building the spanning tree is Prim's algorithm. It is

described below.

Table 5.1: Prims Algorithm

1. Create a tree T containing a single vertex v, chosen arbitrarily from the graph G. v is

known as the root node.

2. Create a set  S containing all the edges in G.
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3. Remove from S an edge e with maximum weight that connects a vertex in the T with

a vertex u  in G. Add edge e and vertex u to the tree.

4. Repeat step 3 until every edge in S connects two vertices in T .

Figure 5.1 Tree augmented network for class variable CHRONIC 
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5.4 Features

The toolbox has various features incorporated into it right now. The tool builds a

TAN with the following features: (1) it is web enabled, (2) time efficient, (3) the network

spaces itself in given area, (4) the network can be frozen for examination, (5) nodes are

distanced according to their association with each other, and (6) the user can choose a

percentage of edges.

5.5 Discussion

Although there are many Bayes Network tools which are freely available that can

provide some similar functionality to our tool, almost all of them had a restriction on the

size of the dataset that one can use. We wanted to create a tool which did not put any

restrictions on the dataset one can use.

Another drawback with many tools is that they use some kind of node ordering

requirement.  Node Ordering is  a  type of  domain knowledge used by many Bayesian

network learning algorithms that satisfies a causal or temporal order of the nodes of the

graph. Most algorithms either assume that there is a node ordering requirement or they

prefer  to  use  it.  We  wanted  to  make  a  tool  which  did  not  necessarily  have  this

requirement of node ordering. That is the reason we chose the Construct-TAN algorithm

described earlier; it does not require any node ordering.

Most of the visual tools that are available online have a constraint on the number

of nodes in the graph. We did not want any constraints on the number of nodes that are

present in the graph. We wanted to visualize all variables in the dataset and then analyze

from their structure using some measures. 

Finally, there is a dearth of publicly available learning tools for real world data

mining  datasets  and  applications.  Real  world  data  mining  datasets  have  hundreds  of
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variables and thousands to millions of records in them. Most of the tools we found had

restrictions on data size and hence were not really meant for any real world application.

They ran on at most 40 features and 5000 records. I had a dataset that consisted of over

300 features and hence we wanted to create a tool that would handle this size of data

efficiently.
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Chapter 6: Experiments and Analysis

In this chapter, we present the experiments to verify the usefulness of the tool we

constructed. In the first section, we describe how the data was preprocessed. The data

preprocessing technique was carried out in two phases: (1) feature elimination, and (2)

handling of missing values in the dataset. We  compare the effectiveness of the network

we create  using  the  tool  with  the  naive  Bayes  classifier  in  Section  6.2.  Section  6.3

describes the results obtained from our tool for class variable Q5_12: Diagnosed elevated

cholesterol in detail. Finally, in Section 6.4 we show several example TANs created by

our tool and provide some analysis.

6.1 Data Preprocessing

The  BTH 2000 dataset  (presented  in  Chapter  3)  is  a  large  dataset  with  6251

records and 334 variables. The focus of this thesis was to demonstrate that our tool could

find relationships between the cardiovascular disease risk factors and mental health status

variables and to analyze the kind of correlations that exist  between the variables (see

table 3.1 and 3.2) along with other variables. When the original dataset with 334 features

was assessed, it was observed that there were many features which were irrelevant to our

purpose. There are several variables like maintenance variables in the dataset  used as

sanity checks of data and to statistically weigh the data. For example variables like ID

(the  respondent's  ID  number),  SRVYMODE  (Mode  of  survey),  STATEWT  (sample

weights  for  state  level  analysis)  and  COUNTYWT (sample  weights  for  county  level

analysis) are maintenance variables. The original dataset also contained several recoded

variables. BMICUTS (body mass index cuts) is a recoded variable of BMI (body mass

index) with a new definition. There are several other variables which are recoded and

suffixed with “new”  or “rec”. For example variable Q48 (had blood pressure check?) is

recoded as Q48REC (has blood pressure checked in last 2 years) and Q48NEVER ( never

had  blood  pressure  checked).  There  were  also  some  other  variables  which  were
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categorized  variables  of  another  variable  and  thus  conveyed similar  information.  For

example  Q92A1 (drink  and  drive: car or truck),   Q92B1 (drink and drive:  boat)  ,

Q92C1  (drink  and  drive:  snowmobile)  and  Q92D1  (drink  and  drive:  other)  were

summarized by one variable Q96 (drink and drive). So there were several variables in

BTH 2000 which conveyed very little or no information of the variables of our interest.

Bayesian  structure  learning  with  all  entire  set  of  variables  would  have  been

computationally and memory-wise costly. Also the extracted structure would be overly

crowded and hard to decipher. Hence a preprocessing of BTH 2000 dataset was necessary

to make the Bayesian learning process efficient.

 

The data had to be converted from SPSS format to the format that we could be

easily manipulate. The  dataset was converted to a comma separated format as an input to

our tool while it was converted to C4.5 format to test it against a naive Bayes classifier.

6.1.1 Feature Elimination

The purpose of the feature elimination process was to select an appropriate set of

features that could predict the output variable (that is, either a cardiovascular disease risk

factor or mental health status variable, see Tables 3.1 and 3.2). The feature elimination

process tried to identify the contribution of each variable to predict the class variable and

identify its rank compared to others. It recursively discarded those features which even

when eliminated from the dataset would not affect the desired accuracy. We used C4.5 as

the classification mechanism to predict the class variable. Each variable from the dataset

was  categorized  as probably irrelevant or  very  likely  relevant  variable.  A  probably

irrelevant variable is a variable which conveys little or no information about the class

variable we are trying to predict. For example, YNGKIDS (number of young kids in the

household),  CRIMEREC (crime record of the interviewee) have no relevance to class

variable  Q5_11  (Diagnosed  Hypertension).  Also  any  variable  which  carry  no  extra

information about the class variable was considered as probably irrelevant. For example,

consider a class variable BMICUTS, variable BMI very much has the same information
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and so could be conveniently not considered. The inclusion of such variables might have

created a bias in the learning algorithm as they will show high correlation between the

class variable and hence overshadow the variables of interest. To classify the variables in

each of the above classes, all the variables were dropped one at a time and the change in

accuracy value of the classification of class variable was noted. 

  

Out of the 334 variables in the BTH 2000 dataset, 76 variables were determined to

have little  potential  bearing  with  class  variables  and  removed as  irrelevant,  86  were

removed  by  feature  elimination  process.  Sixty  more  variables  (considered  either

irrelevant or recoded) from the remaining 172 variables were with the help of an domain

expert, Dr. Timothy Van Wave [2004] who reviewed the dataset for us. 

6.1.2 Handling Missing Values in Dataset

After  the  feature  elimination  process  the  dataset  had  110  variables  and  6251

records.   61,196  data  points  out  of  total  687,610  data  points  had  missing  value

(represented as '$null$' in the dataset) meaning 8.9% of data was missing. While carrying

out experiments to do inference learning as well as structure learning of this dataset, all

the missing values were replaced with a unique value representing 'unknown'. Records

with a  missing value for the class variable however were removed from the data  set

before using the dataset. Thus the data after this process was cleaned for missing data

points by simple substitution for null values.

6.1.3 Handling Continuous Values in Dataset

The  initial  set  of  experiments  using  the  dataset  with  110  variables  made  the

learning process  very slow due to  the presence of a few continuous-valued variables

(variables with more than 10 values). A further assessment of the dataset was then done

to  handle  these  variables.  Four  variables  (Q7B,  HHSIZE,  PCS12  and MCS12)  were

discretized by range while three variables (DOLLARS, AGE, BMI) were dropped from
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the dataset. The complete  preprocessing  process  was examined by our domain expert,

Dr. Van Wave.    

 After the  data preprocessing phase, there are a further assumptions that we have

made about the data. They are: (1) all the variables of the dataset have discrete values, (2)

all missing values for all the variables are handled, (3) the records occur independently

given the underlying probabilistic distribution of the data, and (4) the volume of data is

large enough.  

6.2 Two-Fold Cross Validation Testing

N-fold cross validation is a well known technique for testing of dataset for a given

method.  In  our  experiments,  we verify  the  effectiveness  of  the  TAN created  by  the

Construct-TAN  algorithm  against  the  naive  Bayes  classifier.  The  two-fold  cross

validation divides the data in two folds. The instances are randomly divided amongst the

two folds. One of the two folds is then trained using the structure learning algorithm.

Then  the  learned  structure  is  then  tested  against  the  other  fold  and  accuracy  of  the

classifier is calculated using confusion matrix of the predicted values of the classifier

against the actual values of the classifier. The same procedure is repeated considering the

second fold to be the train data and the first fold to be the test data. Average accuracy is

thus calculated.  Table 6.3  and 6.4 show the two fold cross validation results for all the

class variables from Tables 3.1 and 3.2 for both TAN and naive Bayes classifier.

Tables 6.1 and 6.2 show two-fold cross validation results for  both mental health

status variables and cardiovascular risk factors using Construct-TAN networks and naive

Bayes networks. These results show that the Construct-TAN networks outperform the

naive  Bayes  networks  for  all  the  mental  health  status  variables,  in  some  cases

significantly, and for the cardiovascular risk factors the Construct-TAN networks either

perform similarly to the naive Bayes networks or in some cases significantly outperform

the naive Bayes networks. This is not entirely surprising as a Construct-TAN  network  is
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Table  6.1  Two-fold  cross-validation  results   for  both  TAN and  naive  Bayes  for
Mental Health Status variables.

Class Variable TAN naive Bayes

Q15NEW2 99.01% 96.65%

Q16NEW2 98.86% 92.92%

DEPRANX2 99.60% 96.52%

ALDPANX2 99.94% 97.21%

CWDPANX2 98.81% 97.04%

DBDPANX2 99.77% 99.47%

Table  6.2  Two fold  cross-validation  results   for  both  TAN and naive  Bayes  for
Cardiovascular Disease Risk factors.

Class Variable TAN naive Bayes

BMICUTS 92.81% 93.23%

EXCERREC 99.64% 99.93%

Q69A 93.13% 88.66%

CHRONIC 88.90% 81.68%

URRURNEW 99.77% 99.90%

Q5_11 86.85% 87.51%

Q5_12 86.77% 87.95%

Q48REC 97.76% 97.60%

Q49REC2 98.13% 98.65%

OVERWGT2 99.61% 97.86%

capable of taking into account the same probability estimates as a naive Bayes network,

but it also shows that in many cases, the learned connections in the resulting TAN can

significantly increase performance. 
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6.3 Bayesian Learning for Q5_12: Diagnosed elevated cholesterol

Q5_12, diagnosed elevated cholesterol, is a cardiovascular disease risk factor (see

Table 3.1). In this section, the Bayesian learning for Q5_12 using our tool is discussed in

detail. Bayesian learning for all the class variables from Tables 3.1 and 3.2 are discussed

in brief in the next section.

The main goal of all the experiments conducted is to find the interesting subset of

variables from the list of variables which have strong correlation amongst them as well as

with the class variable Q5_12. We also intend to find the meaningful links between the

variables of interest and analyze them.

6.3.1 Bayesian Network Structure

The tree augmented network created by the tool is shown in the Figure 6.1. The

TAN created  has  106  nodes  and  105  edges.  In  TAN,  the  class  variable  (Q5_12)  is

connected to all the other nodes in the network. These edges indicate that the class node

is a parent of all the nodes. But these edges are not weighted. Our TAN has more than

one hundred nodes in the graph and so if we would have shown edges from the class

node to all the nodes, it would have made the network crowded. Also it would have made

observing  meaningful links between the other nodes difficult, and so the network we

display does not show the class node. 

6.3.2 Top Ten Associations Amongst Variables

The TAN was also analyzed to find interesting links between the variables of our

interest. Using the slider in the toolbox, we varied the percentage of links we want to

concentrate  on.  Figure 6.2 shows the top 10% of the links.  The mental  health  status

variables  which  appeared  in  the  diagram  are  highlighted  with  red  color  while
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cardiovascular disease risk factors are highlighted using blue color. Various randomly

selected datasets with at least   3000 records were trained and the structures were studied

to find the top links amongst the variables. The top 20 associations between the variables

of all networks were compared and the common associations were ranked according to

their  occurrences  in  all  the  networks.  The  most  common  top  ten  associations  for

predicting the value of Q5_12 are listed in Table 6.3.

Table 6.3 List of top 10 associations to predict the class Q5_12. 

Parent Child

STATE Q5_5

Q56 OVERWGT2

Q56 BMICUTS

CHRONIC Q52REC

STATE Q5_6

CHRONIC Q51REC

STATE Q5_8

OVERWGT2 Q66A

OVERWGT2 Q65A

CHRONIC POVEREC
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Figure 6.1 TAN for structure learning of class variable Q5_12: Diagnosed
elevated Cholesterol.

6.3.3 Top Ten Parent Nodes

We use the same datasets to find the variables which are associated with a larger

number of other variables. If any node in the network has a parent node, it means that the

value of that child node used to predict the value of class variable is influenced by the

value of its parent node and taken into account while classifying the class variable. So we
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Figure 6.2 Top 10% links for the class variable Q5_12.

can intuitively think that if a node is a parent of many other nodes in the network, its

contribution  in  prediction  of  the  class  variable  is  significant.  If  we  are  interested  in

finding the links between two variables, the parents of both the variables also play a

crucial part. An example of this is Figure 6.1. Table 6.2 lists the top 10% of the nodes

which are parents  of  another  nodes  in  the  structure.  Another  use of  identifying  such

parent nodes is to find the nodes at the top of the spanning tree. The nodes from Table 6.2

are  highlighted  in  Figure  6.1.  Table  6.2  shows  that  many  nodes  of  interest  like

ALCWDBNO, CHRONIC and ALDPANX2 appear in the list of top parent nodes. 

6.3.4 Bayesian Multinets

The TAN shown in Figure 6.1 shows the relationship between all the nodes to be

the  same  for  all  the  different  values  of  the  class  variable  Q5_12.  The  two  values

(responses, see Table 3.1) of the class variable Q5_12 are 1 (yes) and 2 (no). Different
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Table 6.4 List of top 10 parents to predict Q5_12 

PARENT NODE NOTES

ALCWDBNO Accomplished  less  and  careless  work  without  depression  and

anxiety. (Mental health status recoded variable)

CHRONIC Chronic drinker. (Cardiovascular risk factor)

SEATBLT2 Seatbelt used

ALDPANX2 Accomplished less without depression and anxiety. (Mental health

status variable)

Q56 Have in home; smoke detector.

STATE Minnesota/Wisconsin

OVERWGT2 Overweight  according  to  new  BMI  definition.  (Cardiovascular

risk factor)

Q16NEW2 Diagnosed Anxiety (Mental health status variable)

Q5_8 Diagnosed heart trouble 

ALDBNODA Accomplished  less  without  downhearted  blues  and  without

depression and anxiety. (Mental health status variable)

values of a class variable could have a different structure and hence a different set of

augmenting  edges.  The collection  of  all  the  networks  with a  different  value of  class

variable is called a multinet. We created multinets by partitioning the data according to

the values of the class variable. 

Figure 6.3 shows a local network for Q5_12 having the value 1. The figure shows

cardiovascular  disease  risk  factors  like  OVERWGT2  and  BMICUTS.  Since  Q5_12

means  whether  a  patient  is  diagnosed  with  elevated  cholesterol,  we  can  see  in  the

network that general health variables like Q48NEVER (BP never checked) , GENHLTH

(general health of a person)  and Q4REC (general health compared  to  others)  appear  in

the top ten percent  of meaningful  edges.  Also we observe an interesting relationship

between Q41 (careless work due to emotional problems), Q46REC (felt downhearted and

blue – recoded) and Q5_17 (diagnosed with other mental problems). The top parent node
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for this network is Q35 ( moderate activity because of health). 

Figure 6.4 shows a local network for those values in which Q5_12:  diagnosed

elevated cholesterol has the value no. This network does not give us much information

about other interesting variables related to the class variable because not being diagnosed

with high cholesterol does not really tell us about other health problems that the person

may have. However, the network does confirm directed links between BMICUTS, Q56

and OVERWGT2 which appear in all the networks for Q5_12.

6.4 Bayesian Learning for other variables

There were many class variables that we experimented our tool with. We varied

the parameters like the value of class variable and percentage of edges. In this section we

present some of the interesting results that we got and their analysis.

Figure  6.3  shows  the  local  TAN network with  top  10% edges  of  Q5_12:

diagnosed elevated cholesterol being diagnosed with having elevated cholesterol.
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Figure  6.4  shows  the  local  TAN network with  top  10% edges  of  Q5_12:
diagnosed elevated cholesterol being diagnosed with not having elevated cholesterol.

6.4.1 Bayesian Learning for Q15NEW2: diagnosed depression

Figure 6.5 shows a part of the TAN created for class variable Q15NEW2 with

class  value  'yes'.  The  variable  OVERWGT2  is  connected  to  Q5_15  (Diagnosed

depression). Q5_15 is the parent of the maximum number of variables in this structure

and hence influences the classification of the class variable significantly. Q5_15 is shown

to be correlated to Q16NEW2 and OVERWGT2.  

Figure 6.5 shows a part of the structure for Q15NEW2 with class value 'yes' .
The nodes having interesting connections are circled with red and blue.

54



Figure 6.6 shows a part of the structure for Q15NEW2 with class 'yes'. The
nodes having interesting connections are circled with red and blue.

Figure  6.7  shows  a  part  of  the  structure  created  for  the  class  variable
DBDPANX2 with class value 'yes'. 

Figure 6.6 shows that BMITVW (obese or not) is highly correlated to many mental health

status variables like CWDPANX2, ALDPANX2 and DBDPANX2. The same variable is

also  connected  to  heart  disease  related  recoded  variable  Q48REC  (Blood  Pressure

checked in last two years).
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6.4.2 Bayesian Learning for DBDPANX2 with Class Value 'yes'

Figure 6.7 shows correlation amongst several mental health status variables and

cardiovascular risk factors. Both Q27NEW and Q5_15 are top ranking parent nodes and

are connected to various variables of interest. Q46REC (felt downhearted and blue) is a

self  assessed  mental  health  status  variables  and  variables  like  CWDPANX2,

ALDPANX2 are recoded using this variable. The link between Q46REC and Q49REC2

shows association between self assessed mental health status variable and risk factor for

heart diseases. 

6.4.3 Bayesian Learning for Q69A with class value 'yes'

Figure 6.9 shows the top 10% connections  in  the network build  for  the  class

variable having value 1. The variable SMOKECIG (Cigarette smoking status) show high

correlation with variables ALDBNODA and CWDBNODA (recoded mental health status

variables).  In a fully  connected network,  as shown in figure 6.8,  SMOKECIG shows

connections with CHRONIC and  EXCERREC as well.

Figure 6.8 shows a part of network build for Q69A (Current smoker) with
class value 'yes'.  The network shows variable SMOKECIG connected to various
other mental health status variables in the system
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Figure 6.9 shows a part of network build for Q69A (Current smoker) with
class value 'yes'. The network shows the top 10% connections amongst variables in
the network. 
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Chapter 7: Related Work

In this chapter, we discuss other research that is related to what we present in this

thesis  and discuss how our  research differs.  Section 7.1 discusses  a technique which

classifies survey data using Bayesian modeling. Section 7.2 presents an example of the

usage of the TAN algorithm for classification of gene expression data. Finally we discuss

a  similar  Bayesian  network  toolbox in  section  7.3.   The last  section  discusses  other

related work. 

7.1 Survey Data using Bayesian Modeling

Sebastiani  and Ramoni [2001] use Bayesian modeling techniques to  analyze a

data set extracted from a British General Household survey. They believe that instead of

presenting the statistical findings via contingency tables relating two or three variables at

a time, building a model to show association between large numbers of variables would

give a better picture of data. Their approach, the K2 algorithm as proposed by Cooper

and Herskovitz [1992], searches for a model within a subset of networks (rather than all

possible  networks)  in  which  there  would  be  significant  directed  associations.  The

modeling of the data was carried out with the program Bayesware Discoverer [BD, 2004]

which implements the model search approach described earlier. Bayesian modeling was

done  on  thirteen  variables  indicative  of  the  composition  of  British  households.  The

dataset used for Bayesian modeling was limited to only thirteen variables. In our analysis

of data, we have included all the features from the dataset (over a hundred) which could

be potentially useful.

7.2 TAN algorithm for Classification

Mittal et al, [2004] in their work use TANs as a classification method to classify a

protein into different  structural and fold classes. Their implementation framework  is
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called  BAYESPROT,  in  which  they  have  incorporated  two  methods,  feature

discretization and a Mean Probability  Voting (MPV) scheme, in addition to the TAN

classifier. The preprocessing of data is done by extracting attributes from the dataset and

converting them into features of six different categories, and then a feature discretization

method is used to discretize the values of features. Frequency discretization is applied to

two  significant  categories,  namely  Composition  and  Secondary  Structure,  separately

while all the other categories discretized together. The TAN Bayes classifier routine is

then applied to each set of features separately and then finally MVP scheme is used to

predict the Structure class and Fold class value individually. In their work, the TAN was

used mainly for  classification.  However  our  thesis  exploits  the structural  information

extracted from the TAN algorithm as well.

7.3 Bayes Net Toolbox

The  Bayes  net  toolbox  (BNT)  is  an  open  source  package  implemented  in

MATLAB for probabilistic models [Murphy 2003]. Major features of the BNT include

support  for  exact  and  approximate  inference,  support  for  both  dynamic  and  static

Bayesian networks, parameter learning and structure learning. It also supports various

types of conditional probability distributions. The visualization aspect of BNT is limited

to MATLAB graphs and some plotting routines. The support is too basic for the size of

data we are representing in our tool.

7.4 Other Related Work

Dr. Van Wave [2004] in his secondary analysis of the BTH 2000 dataset suggests

that significant associations exist between self-assessed and physician-diagnosed mental

health  status  variables  and  heart  disease  risk  factors.  In  his  research,  two-way

contingency table analysis was used to evaluate the statistical relationship between the

mental health status variables and cardiovascular risk factors. Pearson's Chi-Square and

Odds ratios  were  used  to  estimate  the  independence  between  the  above  mentioned
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variables. He suggests that early intervention addressing poor mental health status and

recognized heart disease risk factors may work together to reduce heart disease risk more

effectively. His work is significant to our thesis in many ways. His analysis of the BTH

2000 dataset with promising results inspired us to identify the association between the

above mentioned variables in broader perspective, considering all the other variables of

the dataset. In this work we focus on analyzing the BTH 2000 dataset using the Bayesian

methods. 

Takale  [2004]  in  his  thesis  has  developed  a  predictive  model  to  identify  the

predictors of mental health status (MHS) variables and cardiovascular disease risk factors

(CRF). In his thesis, he has built a genetic algorithm based system  employing decision

trees to identify good, small subsets of features having high classification accuracy. The

predictive model also establishes relationships within the data, especially between MHS

and CRF. The predictive model identifies a subset of the dataset with high accuracy to

classify the  class  variable  whereas  our  thesis  identifies  dependencies  between all  the

variables in the dataset.         
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Chapter 8: Future Work

In this chapter we discuss future enhancements that could be made to our current

work. In the first section we talk about the work that can be done with regards to the tool

that  we created.  We then talk  about  the changes that  can be  made to  the theoretical

aspects of the algorithm that we employ.

8.1 Practical Aspects

In  this  section  we talk  about  possible  enhancements  that  can  be  made to  the

toolbox that we created. The following are the suggested enhancements that can be made

to the tool: (1) support for various data formats, (2) support for continuous variables and

missing values, (3) make more interactive, (4) provide more visualization, (5) incorporate

various inference algorithms, and (6) make an API  available.

There are various different data formats available online. A few examples of data

formats are BIF,  BNET and HUGIN. We can add facilities  to  read the data in  these

formats. Another feature that can be added is to save the results that we get in a user

chosen format.

Currently we do not use continuous variables in our data. Future enhancements

can incorporate the use of such variables. Also, we could handle missing values better,

instead of just replacing them with a fixed value like we do now.

The  toolbox  could  be  made  more  interactive.  We  could  add  features  like

displaying the conditional probability tables related to each node when a user clicks on

the  node.  We can  also  provide  other  information  such  as  the  data  distribution  for  a

particular  node.  We  can  provide  the  option  of  zooming  on  a  particular  area  of  the

network.  These  enhancements  can  make the  tool  more  interactive  and produce  more
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effective visualization. 

Another aspect which we can improve is the way we do inference. We can let the

user choose which inference algorithm he/she wants to use to do inference. We would

need to implement more inference algorithms in our code to provide such a functionality. 

Finally we can make the API of our code available online so that other users that

are creating applications similar to ours can interface their code with ours. 

8.2 Theoretical Aspects

In this section we will talk about what changes could be made to the algorithm

that we used to create our tool. The following are the suggested enhancements that can be

made to the current system: incorporate other algorithms to do structure learning and

learn model with hidden variables.

One possible future enhancement to the current system could be to incorporate

other structure learning algorithms or even create some hybrid algorithm that uses both

our current algorithm and some other algorithm to learn the structure.

We assume that the survey dataset is fully observable, that is there are no hidden

variables in the system other than those in the dataset. So Bayesian learning is done to

find the structure of the data. However there could be some hidden variables which are

not represented in the structure. Sometimes it is convenient to introduce hidden variables

in the system. If these variables are identified, they could represent the structure of the

data  more  compactly,  improve structure  accuracies,  and  also  save  some computation

time.  Parameter  learning  methods  for  networks  with  hidden  variables  have  been

developed  [Russell et  al,  1995].  Any  future  work  can  involve  considering  hidden

variables while creating the network.
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We can embed an  algorithm for  estimating  statistical  confidence  like  the  one

suggested by Friedman [2000].  Currently, the tool has a choice of viewing the given

percentage of Markov related features. However, if we are able to determine the order of

confidence relations amongst the features, we can incorporate this structure into our tool. 
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Chapter 9: Conclusions

Bayesian learning is an effective method to learn the structure of data in a variety

of  applications.  We used  Bayesian  learning  to  learn  the  structure  of  the  BTH 2000

dataset, given a class variable from the features of interest, and to identify meaningful

links in the data. The same dataset was also used to find such links in the data using

statistical methods like Pearson's Chi Square and odds ratio by Dr. Van Wave [2004].

Our approach of using the Bayesian learning is  an extension to the simple statistical

methods.

We implemented  the  Construct-TAN algorithm in  our  tool  and  displayed  the

resulting  Bayesian  structure  and  added  simple  features  to  our  tool  to  visualize  the

structures effectively. We also implemented inference learning to verify the effectiveness

of our tool.

Experiments with our toolbox showed that the accuracy of the TAN built by our

tool was comparable to that of a naive Bayesian network created using the same dataset.

We observed that the accuracy of TAN is generally well above 80%. Various structures

with  different  parameters  were  studied  to  identify  links  in  the  dataset  between  the

features of interest, and the results were discussed with the domain expert, Dr. Tim Van

Wave, who found them to be meaningful. 

The tool seems to be a good direction to incorporate Bayesian theory to not only

learn the structure of data but also to visualize it effectively. Such tools find applications

to learn from large survey dataset available. This work can be considered as the starting

point for other works which can incorporate more features like visualization of a subset

of data,  facility  of changing (fixed value) the value of class variable and seeing the

structure formed at runtime. We also believe that this tool will help in understanding the

relationship  between  cardiovascular  and  mental  health  diseases.  It  will  help  the

concerned authorities to identify various risk factors related to both kinds of diseases and
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try and reduce such cases.
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