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Abstract

Inductive learning is a form of supervised learning in which a system tries to
build a model of a concept (e.g. what makes a container a cup) from descrip-
tions of things that are/are not examples of that concept. Numerous methods
have been defined to induce concepts such as decision trees learning, artificial
neural networks, etc. One especially powerful method is to use an ensemble of
classifiers (i.e., a collection of classifiers each trained on a subset of the original
training set). Bagging and Boosting are the two of the most popular meth-
ods for building ensembles. Boosting is often chosen as an ensemble building
technique because it can reduce both the bias and variance of the error. But
building a Boosting ensemble is a time consuming process as the process can-
not be executed in parallel and it tends to overfit the training examples as the
number of classifiers in the ensemble increases. In this work, I propose a new
ensemble building algorithm that works similar to Boosting. This new method
builds a piece-wise set of classifiers. Each classifier focusses on learning from a
subset of the problem space and is trained to perform well within that region of
the problem space. By combining all the classifiers, we are covering the entire
problem space and thereby building a global classifier. Experiments with the
new algorithm comparing it to Bagging and Boosting show a reduction in test
set error rates in some data sets and comparable performance on the remaining
data sets. The new method is also faster as compared to Boosting as it can be
parallelized.
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1 Introduction

In the current age of Internet and data warehouses, the fundamental paradigms of
classical data analysis are ripe for change. We are today awash with data, primar-
ily collected by government and business applications [Weiss and Indurkhya, 1997].
Automation produces an ever-increasing flood of data. Today the need to develop
an effective tool to gather knowledge from this data is more critical than ever before.
Organizations today have huge data “lakes” that range from data marts, data ware-
houses or unused data dumps. Some of these might be more useful than the rest.
These data sets were collected because of the underlying assumption that collected
data has value and might improve future decision making processes; but manual anal-
ysis of such huge data bodies is not feasible [Weiss and Indurkhya, 1997].

The branch of computer science which deals with analyzing huge data banks and
discovering implicit patterns in the data is called machine learning (ML). The field
of ML draws on ideas from various disciplines, including artificial intelligence, prob-
ability and statistics, computational complexity, information theory, psychology and
neurobiology, control theory, and philosophy. The field of ML is concerned with the
question of how to construct computer programs that automatically improve with
experience. Machine learning algorithms must automatically acquire and integrate
knowledge. This capacity to learn from experience, analytical observation, as well as
other means, results in a system that can continuously self-improve and thereby offer
increased efficiency and effectiveness.

One perspective offered by ML involves searching a very large space of possible
hypotheses to determine which best fits the observed data and any prior knowledge
held by the learner. This hypothesis space consists of all possible evaluation functions.
The learner’s task is to search through the vast space to locate the hypothesis that
is most consistent with the available training examples. There are various ML algo-
rithms that search a hypothesis space defined by some underlying representation (e.g.,
linear functions, logical descriptions, decision trees, artificial neural networks). The
underlying representation dictates which learning algorithm is to be used to search
through the hypothesis space. For example, if we want to approximate discrete-valued
target functions we would generally prefer decision tree learning.

Some of the most commonly used ML algorithms to analyze and discover implicit
patterns in the data are:

e Artificial Neural Networks (ANNs) Artificial Neural Networks
[Chauvin and Rumelhart, 1995] provide a general, practical method for learning
real-valued, discrete-valued, and vector-valued functions from examples. ANN



learning is robust to errors in the training data and has been successfully applied
to problems such as interpreting visual scenes, speech recognition, and learning
robot control strategies [Mitchell and Thrun, 1993]. ANNs are among the most
effective learning methods currently known.

e Decision Trees [Quinlan, 1990, Breiman et al., 1984] are one of the most
widely used and practical methods for inductive inference. Decision trees involve
approximating discrete-valued target functions in which the learned function is
represented by a decision tree. Learned trees can also be re-represented by
a set of if-then rules to improve human readability. There are a variety of
decision tree learning algorithms such as CART [Breiman et al., 1984], and
C4.5 [Quinlan, 1993]. These methods search a completely expressive hypothesis
space and thus avoid the difficulties of restricted hypothesis spaces.

e Instance-Based Learning methods [Aha et al., 1991] are sometimes referred
to as lazy learning methods because they delay processing until a new instance
must be classified. Instance-based learning methods simply store the training
examples. Each time a new query instance is encountered, its relationship to
the previously stored examples is examined in order to assign a target function
value for the new instance. Examples of instance-based learning methods are
nearest neighbors [Cover and Hart, 1967] and locally weighted regression meth-
ods [Atkeson et al., 1997] that assume instances can be represented as points in
a Euclidean space. A key advantage of this kind of delayed, or lazy learning is
that instead of estimating the target function once for the entire instance space,
these methods can estimate it locally and differently for each new instance to

be classified.

Machine learning algorithms have been successfully applied in a number of do-
mains including;:

e Learning to drive an autonomous vehicle: Machine learning methods
have been used to train computer-controlled vehicles [Pomerleau, 1989] to steer
correctly when driving on a variety of road types.

e Learning to classify new astronomical structures: Machine learning
methods have been applied to a variety of large databases to learn general
regularities implicit in the data. For example, decision tree learning algorithms
have been used by NASA [Fayyad et al., 1995] to learn how to classify celestial
objects.



e Learning to play world-class backgammon: The most successful computer
programs for playing games such as backgammon [Tesauro, 1995| are based on
ML algorithms.

1.1 Inductive Learning

Inductive learning is a kind of learning in which given a set of examples, the learner
tries to estimate an evaluation function. Most inductive learning approaches use a
supervised approach in which the training examples are marked with their respective
classifications. More formally, a training example is a pair <z,f(x)> where z is the
input and f(z) is the output of the function applied to z. The task of pure inductive
inference is, given a set of examples for f, to find a hypothesis h that approximates
f- The hypothesis h cannot guarantee results on unseen data examples. The funda-
mental assumption of inductive learning is that the best hypothesis regarding unseen
instances is the hypothesis that “best fits” the training data is the best hypothesis
for the unseen instances.

1.2 Motivation

Machine learning algorithms provide us with techniques that help us analyze huge
volumes of data and in order to induce implicit relationships among the data val-
ues. Many methods have been proposed to induce models, including decision trees
[Quinlan, 1993], Bayesian techniques [Jensen, 1996], neural networks with back prop-
agation [Chauvin and Rumelhart, 1995]. These methods have proven to be com-
putationally intensive when the volume of data is large. This issue has generated
lot of interests in the ML community. Today there is a need to scale up ML al-
gorithms to analyze very large data sets in order to discover implicit patterns and
outliers within the data set. A fast and accurate tool for data analysis will prove
to be extremely beneficial. We need the tool to be fast as the amount of data to
be analyzed is very large and at the same time we cannot overlook accuracy as the
analyzes carried out on the data will be used in future classifications. Researchers
[Bauer and Kohavi, 1999, Efron and Tibshirani, 1993, Maclin and Opitz, 1997] have
investigated the technique of combining multiple component classifiers to produce a
single classifier. The resulting classifier, (hereafter referred to as an ensemble) is gen-
erally more accurate than any of the individual classifiers making up the ensemble.
Bagging [Breiman, 1996a] and Boosting [Freund and Schapire, 1996] are currently
the two most popular methods for building ensembles. Building an ensemble clas-
sifier is a time consuming process and this does not agree with our requirement of



building a fast classifier. What we need is a a new method to build an ensemble that
is faster than the existing ensemble building methods and also does not compromise
the accuracy of the learned system.

1.3 Statement of Thesis

Of the two methods for ensemble building, Bagging and Boosting, Boosting is gener-
ally preferred because it often produces the lowest error rates. But Boosting suffers
from two drawbacks:

e The time taken to build the classifier is high as it cannot be built in parallel
e Overfitting occurs as the number of classifiers increases

The first drawback affects the speed of building the ensemble and the second affects
the accuracy. This thesis aims at studying a new method of building an ensemble that
performs similar to Boosting, but which can be executed in parallel. Its accuracy will
be compared with the two traditional approaches of building ensembles (i.e., Bagging
and Boosting). This new method will by sampling data points that are close to each
other in the problem space, build regional classifiers. These regional classifiers will
then be combined to produce a global classifier to cover the entire problem space.
We use decision trees to build our ensembles. This thesis will answer the following
questions:

e Question 1: How does the new ensemble building method compare to Bagging
and Boosting in terms of test set error rates?

e Question 2: What is the optimal size of the ensemble (i.e., the number of
classifiers making up the ensemble)?

o Question 3: Is the new method faster than the Boosting?

This thesis will help us determine whether this new method to build ensembles is as
accurate if not more as compared to Boosting.

1.4 OQOutline of Thesis

In the following chapters this thesis will cover the necessary background about decision
trees and ensemble learning, the new ensemble learning method that we developed,
the results of our experiments followed by concluding remarks and the questions this
thesis has answered. Below is a brief survey of the chapters.

4



Chapter 2 covers topics related to decision tree learning such as decision tree
representation, the C4.5 decision tree building algorithm, ensemble learning,
and the existing techniques for building ensembles.

Chapter 3 introduces the concepts required for the new ensemble building
method. It also examines the new algorithm and discusses how it differs from
the existing ensemble building techniques.

Chapter 4 examines the results of the new ensemble building technique and
does a comparative study with the two existing ensemble building methods.

Chapter 5 presents the conclusions for the thesis based on the results, answers
the questions posed in Chapter 1 and proposes directions for future research.



2 Background

Decision tree learning [Quinlan, 1993, Breiman et al., 1984] is one of the most widely
used and practical methods for inductive inference [Quinlan, 1990]. It is a method
for approximating discrete-valued functions that is robust to noisy data and capable
of learning disjunctive expressions. This chapter focuses on decision tree learning and
the various mechanisms for building an ensemble of classifiers.

2.1 Decision Tree Learning

Decision tree learning is a method for approximating discrete-valued target func-
tions. There are various decision tree building algorithms such as ID3 [Quinlan, 1990],
CART [Breiman et al., 1984], and C4.5 [Quinlan, 1993]. The inductive bias of these
methods is a preference for smaller trees over large trees; that is, its search through
the hypothesis space produces a tree only as large as needed in order to classify the
available training examples.

A decision tree is a model that is both predictive and descriptive. It is called a deci-
sion tree because the resulting model is presented in the form of a tree structure. The
visual presentation makes the decision tree easy to understand and assimilate. As a re-
sult, decision trees are a very popular data mining technique [Agarwal and Shim, 1996,
Provost and Kolluri, 1999]. Decision trees graphically display the relationships found
in data. The tree can also be translated into rules [Quinlan, 1990] such as

If Income = High and Years on job > 5 Then Credit risk = Good

to improve human readability.

2.2 Decision Tree Representation

Decision trees classify instances by sorting them down the tree [Mitchell, 1997,
Quinlan, 1993] from the root to some leaf node, which provides the classification
of the instance. Each node in the tree specifies a test of some attribute of the in-
stance, and each branch descending from that node corresponds to one of the possible
values for this attribute. An instance is classified by starting at the root node of the
tree, testing the attribute specified by this node, then moving down the tree branch
corresponding to the value of the attribute in the given example. This process is then
repeated for the subtree rooted at the new node.



Outlook

Sunny Overcast Rain

Humidity Yes Wind

High Normal Strong Weak

Figure 1: A decision Tree for the concept PlayTennis. An example is classified by sorting
it through the tree to the appropriate leaf node, then returning the classification associated
with this leaf (in this case, Yes or No). This tree classifies Saturday mornings according to
whether or not they are suitable for playing tennis.

Figure 1 shows a typical learned decision tree. This decision tree classifies Satur-
day mornings according to whether they are suitable for playing tennis. For example,
the instance

< Qutlook = Sunny, Temp = Hot, Humidity = High, Wind = Strong >

would be sorted down to the leftmost branch of this decision tree and would
therefore be classified as a negative instance (i.e., the tree predicts that PlayTennis
= No).

In general, decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances. Each path from the tree root to a leaf corre-
sponds to a conjunction of attribute tests, and the tree itself to a disjunction of these
conjunctions. For example, the decision tree shown in Figure 1 corresponds to the
expression



If (Outlook = Sunny A Humidity = Normal)
V (Outlook = Overcast)

V (Outlook = Rain AN Wind = Weak)

Then PlayTennis = Yes

2.3

Appropriate Problems For Decision Tree Learning

Although a variety of decision tree learning methods have been developed with some-
what differing capabilities and requirements, decision tree learning is generally suited
to problems with the following characteristics:

Instances are represented by attribute-value pairs. Instances are described by
a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The
easiest situation for decision tree learning is when each attribute takes on a
small number of disjoint possible values (e.g., Hot, Mild, Cold). However, ex-
tensions to the basic algorithm allow handling real-valued attributes as well
(e.g., representing Temp numerically).

The target function has discrete output values. The decision tree in Figure 1
assigns a Boolean classification (e.g., true or false) to each example. Decision
tree methods easily extend to learning functions with more than two possible
output values.

Disjunctive descriptions may be required. As noted above, decision trees natu-
rally represent disjunctive expressions.

The training data may contain errors. Decision tree learning methods are robust
to errors, both in classification of the training examples and in the attribute
values that describe these examples.

The training data may contain missing attribute values. Decision tree methods
can be used even when some training examples have unknown values.

Many practical problems have been found to fit these characteristics. Decision
tree learning has therefore been applied to problems such as learning to classify
medical patients by their disease [Kononenko et al., 1984] , equipment malfunctions
by their cause, and loan applications by their likelihood of defaulting on payments
[Stolfo et al., 1997]. Such problems, in which the task is to classify examples into one
of a discrete set of possible categories, are often referred to as classification problems.



2.4 The Basic Decision Tree Learning Algorithm

Most algorithms that have been developed for learning decision trees are variations on
a core algorithm that employs a top-down, greedy search through the space of possible
decision trees. This approach is exemplified by the CART and ID3 algorithms and
ID3’s successor C4.5. C4.5 is the approach that we will be following in this thesis.
The following subsections describe CART, ID3 and its successor C4.5.

2.4.1 CART

CART [Breiman et al., 1984] is an acronym for Classification and Regression Trees.
CART uses strictly binary, or two-way, splits that divide each parent node into exactly
two child nodes by posing questions with yes/no answers at each decision node. CART
searches for questions that split nodes into relatively homogeneous child nodes, such
as a group consisting largely of responders, or high credit risks, or people who bought
sport-utility vehicles.

As the tree evolves, the nodes become increasingly more homogeneous, identifying
important segments. CART’s binary decision trees detect more structure before too
little data is left for learning. Other decision-tree approaches use multi-way splits that
fragment the data rapidly, making it difficult to detect rules that require broad ranges
of data to discover. In the search for patterns in databases it is essential to avoid
the trap of overfitting, or finding patterns that apply only to the training data. The
testing and selection of the optimal tree are an integral part of the CART algorithm.
Testing in other decision-tree techniques is conducted after-the-fact and tree selection
is left up to the user. In addition, CART accommodates many different types of real-
world modeling problems by providing a unique combination of automated solutions:

e Surrogate splitters intelligently handle missing values,
e Adjustable misclassification penalties help avoid the most costly errors,

e Multiple-tree, committee-of-expert methods increase the precision of results,
and

e Alternative splitting criteria make progress when other criteria fail

2.4.2 C4.5

ID3 and C4.5 [Quinlan, 1993] form the primary focus of our discussion. As mentioned
above, C4.5 is the decision tree algorithm that we use to build our trees in this work.



2.4.3 Which attribute is the best classifier?

The central choice in the C4.5 algorithm is selecting which attribute to test at each
node in the tree. We would like to select the attribute that is most useful for classi-
fying examples. Information gain is a measure which helps us to determine the best
attribute. C4.5 uses the information gain measure to select among the candidate
attributes at each step while growing the tree. In order to define information gain
precisely, we begin by defining a measure commonly used in information theory, called
entropy, that characterizes the impurity of an arbitrary collection of examples. Given
a collection S, containing positive and negative examples of some target concept, the
entropy of S relative to this Boolean classification is

Entropy(S) = —pe log, pe — pe log, pe (1)

where p+ is the proportion of positive examples in S and p- is the proportion of
negative examples in S. In all calculations involving entropy we define 0l0og,0 to be 0.
To illustrate, suppose S is a collection of 14 examples of some Boolean concept, in-
cluding 9 positive and 5 negative examples. Then the entropy of S relative to this
Boolean classification is

Entropy([9+,5=]) = (—9/14)log,(9/14) — (5/14)log,(5/14)
— 0.940 2)

Note that the entropy is 0 if all members of S belong to the same class. For
example, if all members are positive, then p- is 0, and

Entropy(S) = —1.1log,(1) — 0.10g,(0) =0 (3)

Note the entropy is 1 when the collection contains an equal number of positive
and negative examples. If the collection contains unequal numbers of positive and
negative examples, the entropy is between 0 and 1. Figure 2 shows the form of the
entropy function relative to a Boolean classification as p+ varies between 0 and 1.

We have thus far discussed entropy in the special case where the target classifica-
tion is Boolean. More generally, if the target attribute can take on c different values,
then the entropy of S relative to this c-wise classification is defined as

[

Entropy(S) = Z —p; log, p; (4)
=1

10



Table 1: An algorithm for C4.5 decision tree learning

C4.5(Ezamples, Target_attribute, Attributes)

Ezxamples are the training examples. Target_attribute is the attribute whose value is
to be predicted by the tree. Attributes is a list of other attributes that may be tested
by the learned decision tree. Returns a decision tree that correctly classifies the given
Ezxamples.

e Create a Root node for the tree

o If all Examples are positive, Return the single-node tree Root, with label = +

If all Examples are negative, Return the single-node tree Root, with label = —

If Attributes is empty, Return the single-node tree Root, with label = most
common value of Target_attribute in Examples

Otherwise

* A < the attribute from Attributes that best* classifies Examples
* The decision attribute for Root + A
* For each possible value v; of A,

* Add a new tree branch below Root corresponding to the test A = v;
x Let Examples,; be the subset of Fxamples that have value v; for A
x if Fxamples,; is empty
- Then below this new branch add a new leaf node with label =
most common value of Target_attribute in Fxamples

- Else below this new branch add the subtree
C4.5(Examples,;, Target_attribute, Attributes - {A})

e Return Root

*The best attribute is the one with highest information gain, as defined in Equation

5.

where p; is the proportion of S belonging to class i. Note the logarithm is still

11
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Entropy(S)

00 05 10

Figure 2: The entropy function relative to a Boolean classification, as the proportion of
positive examples varies between 0 and 1. Note that entropy is highest when proportion of
positive examples is 0.5

base 2 because entropy is a measure of the expected encoding length measured in
bits. Note also that if the target attribute can take on ¢ possible values, the entropy
can be as large as logsc.

2.4.4 Information Gain Measures The Expected Reduction in Entropy

Given entropy as a measure of the impurity in a collection of training examples, we
can now define a measure of the effectiveness of an attribute in classifying the training
data. The measure we will use, called information gain, is simply the expected reduc-
tion in entropy caused by partitioning the examples according to this attribute. The
information gain, Gain(S,A) of an attribute A, relative to a collection of examples S,
is defined as

Gain(S, A) = Entropy(S) — > 15| Entropy(S,) (5)
vEValues(A) |S|

where Values(A) is the set of all possible values for attribute A, and S, is the subset
of S for which attribute A has value v (i.e.,, S, = s € S|A(s) = v ). Note the first
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term in Equation 5 is just the entropy of the original collection S, and the second
term is the expected value of the entropy after S is partitioned using attribute A.
The expected entropy described by this second term is simply the sum of the en-
tropies of each subset S,, weighted by the fraction of examples |S,|/|S| that belong
to S,. Gain(S,A) is therefore the expected reduction in entropy caused by knowing
the value of attribute A. Gain(S,A) is the information provided about the target
function value, given the value of some other attribute A. The value of Gain(S,A)
is the number of bits saved when encoding the target value of an arbitrary member
of S, by knowing the value of attribute A. For example, suppose S is a collection
of training-example days described by attributes including wind, which can have the
values Weak or Strong. Assume S is a collection containing 14 examples, [9+,5-].
Of these 14 examples, suppose 6 of the positive and 2 of the negative examples have
Wind = weak, and the remainder have Wind = Strong. The information gain due
to sorting the original 14 examples by the attribute Wind may then be calculated as

Values(Wind) = Weak, Strong

S = [9+,5—]
SWind=Weak < [6+,2—]
SWind:Strong — [3+7 3_]

Gain(S,Wind) = Entropy(S) — Z |Sv|Ent7"0Py(Sv)
ve{Weak,Strong} |S|

= Entropy(S) — (8/14) Entropy(Swind=weak)
—(6/14) Entropy(Swind=strong)

= 0.940 — (8/14)0.811 — (6/14)1.00

= 0.048

Information gain is used by C4.5 to select the best attribute at each step in
growing the tree. The use of information gain to evaluate the relevance of attributes
is summarized in Figure 3. In this Figure the information gain of two different
attributes, Humidity and Wind, is computed in order to determine which is the
better attribute for classifying the training examples.
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Which attribute s the best classifier ?

Humidity Wind
High Normal Week Sirong
[3+4] [6+,1] [6+,2- [3+,3]
E=0.985 E=0592  E=0811 E=1.00
gsz?Hum ity) Gain(SWind)
0- (7/14) 985 -(7/14).592 =0.940- (8/14).81L - (6/14)L.0
-0.151 = 0,048

Figure 3: Humidity provides greater information gain than Wind, relative to the target
classification. Here, E stands for entropy and S for the original collection of examples. Given
an initial collection S of 9 positive and 5 negative examples, [9+,5—], sorting these by their
Humidity produces collections of [3+,4—] (Humidity = High) and [6+, 1—| (Humidity =
Normal). The information gained by this partitioning is 0.151, compared to a gain of only
0.048 for the attribute Wind.

2.4.5 An Illustrative Example

To illustrate the operation of C4.5, consider the learning task represented by the
training examples [Mitchell, 1997] of Table 2. Here the target attribute PlayTennis,
which can have values yes or no for different Saturday mornings, is to be predicted
based on other attributes of the morning in question. Consider the first step, in which
the topmost node of the decision tree is created. Which attribute should be tested
first in the tree? C4.5 determines the information gain for each candidate attribute
(i.e., Outlook, Temperature, Humidity, and Wind), then selects the one with highest
information gain. The computation of information gain for two of these attributes is
shown in Figure 3. The information gain values for all four attributes are
According to the information gain measure, the Outlook attribute provides the best
prediction of the target attribute, PlayTennis, over the training examples. Therefore,
Outlook is selected as the decision attribute for the root node, and branches are
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Gain(S, Outlook) = 0.246
Gain(S, Humidity) = 0.151
Gain(S, Wind) = 0.048
Gain(S, Temperature) = 0.029

Table 2: The training examples for the target concept PlayTennis.

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11  Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal  Weak Yes
D14 Rain Mild High Strong No

created below the root for each of its possible values (i.e., Sunny, Overcast and Rain).
The resulting partial decision tree is shown in Figure 4, along with the training
examples sorted to each new descendent node. Note that every example for which
Outlook = Qwvercast is also a positive example of PlayTennis. Therefore, this node
of the tree becomes a leaf node with the classification PlayTennis = Yes. In contrast,
the descendents corresponding to Outlook = Sunny and Outlook = Rain still have
nonzero entropy, and the decision tree will be further elaborated below these nodes.
The process of selecting a new attribute and partitioning the training examples is
now repeated for each nonterminal descendent node, this time using only the training
examples associated with that node. Attributes that have been incorporated higher
in the tree are excluded, so that any given attribute can appear at most once along
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[D1,D2, ... D14]

[9+5]
Outlook
Sunny Overcast Rain
[D1,D2,D8,D9,D11] [D3,D7,D12,D13] [D4,D5,D06,010,D14]
[2+,3-] [4+,0-] [3+,2-]

Which attribute should be tested here ?

Ssunmy = D1, D2, D8, D9, D11

Gain(Ssunny, Humidity) = 0.970 — (3/5)0.0 — (2/5)0.0 = .970
Gain(Ssunny, Temperature) = 0.970 — (2/5)0.0 — (2/5)1.0 = .570
Gain(Ssunny, Wind) = 0.970 — (2/5)1.0 — (3/5).918 = .019

Figure 4: The partially learned decision tree resulting from the first step of C4.5. The
training examples are sorted to the corresponding descendant nodes. The Owvercast de-
scendent has only positive examples and therefor becomes a leaf node with classification
Yes. The other two nodes will be further expanded, by selecting the attribute with highest
information gain relative to the new subsets of examples.

any path through the tree. This process continues for each new leaf node until either
of the following two conditions are met: (1) every attribute has already been included
along this path through the tree or (2) the training examples associated with this leaf
node all have the same target attribute value (i.e., their entropy is zero). Figure
4 illustrates the computations of information gain for the next step in growing the
decision tree. The final decision tree learned by C4.5 from the 14 training examples
of Table 2 is shown in Figure 1.
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2.4.6 Hypothesis Space Search In Decision Tree Learning

(C4.5 searches a hypotheses space for one that fits the training examples. The hy-
pothesis space searched by C4.5 is the set of possible decision trees. C4.5 performs a
simple-to-complex, hill-climbing search through this hypothesis space, beginning with
the empty tree, then considering progressively more elaborate hypotheses in search
of a decision tree that correctly classifies the training data. The evaluation function
that guides this hill-climbing search is the information gain measure. By viewing
C4.5 in terms of its search space and search strategy, we can get some insight into its
capabilities and limitations.

(C4.5’s hypothesis space of all decision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-
valued function can be represented by some decision tree, C4.5 avoids one of the
major risks of methods that search incomplete hypothesis spaces. C4.5 maintains
only a single current hypothesis as it searches through the space of decision trees.
By determining only a single hypothesis, C4.5 loses the capabilities that follow from
explicitly representing all consistent hypotheses. C4.5 in its pure form performs no
backtracking in its search. Once it selects an attribute to test at a particular level in
the tree, it never backtracks to reconsider this choice and hence it is susceptible to the
usual risks of hill-climbing search without backtracking: converging to a local optima.
The disadvantage here is that we will not get to the best hypotheses. C4.5 uses all
training examples at each step in the search to make statistically based decisions
regarding how to refine its current hypothesis. An advantage of using this method
is that the resulting search is much less sensitive to errors in individual training
examples.

2.4.7 Inductive Bias in Decision Tree Learning

Given a collection of training examples, there are typically many decision trees consis-
tent with these examples. The inductive bias of C4.5 therefore consists of describing
the basis by which it chooses one of these consistent hypotheses over the others.
Which of these decision tree does C4.5 choose? It chooses the first acceptable tree it
encounters in its simple-to-complex, hill-climbing search through the space of possible
trees. The C4.5 search strategy (a) selects in favor of shorter trees over longer ones
and (b) selects trees that place the attributes with highest information gain closest to
the root. We can approximately characterize its bias as a preference for short decision
trees with high information gain over complex trees.
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2.4.8 Issues in Decision Tree Learning

Practical issues in learning decision trees include determining how deeply to grow
the decision tree, handling continuous-valued attributes, choosing an appropriate
attribute selection measure, handling training data with missing attribute values,
handling attributes with differing costs, and improving computational efficiency.

1. Avoiding Overfitting the Data

The algorithm described in Table 1 grows each branch of the tree just deeply
enough to perfectly classify the training examples. While this is sometimes
a reasonable strategy, in fact it can lead to difficulties when there is noise in
the data, or when the number of training examples is too small to produce a
representative sample of the true target function. In either cases, this simple
algorithm can produce trees that overfit the training examples. Definition:
Given a hypothesis space H, a hypothesis h € H is said to overfit the training
data if there exists some alternative hypothesis A’ € H, such that h has smaller
error than A’ over the training examples, but A’ has a smaller error than h over
the entire distribution of instances.

Figure 5 illustrates the effect of overfitting in a typical application of decision

0.9
0.8
>
8 07
=
s}
<€
0.5 Training Data ——
Test Data -~~~
0.5

0 10 20 30 40 50 60 70

Size of tree (number of nodes)

Figure 5: Overfitting in decision tree learning. As C4.5 adds new nodes to grow the decision
tree, the accuracy of the tree measured over the training examples increases monotonically.
However, when measured over a set of test examples independent of the training examples,
accuracy first increases, then decreases.
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learning. In this case, the C4.5 algorithm is applied to the task of learning
which medical patients have a form of diabetes. The horizontal axis of this plot
indicates the total number of nodes in the decision tree, as the tree is being
constructed. The vertical axis indicates the accuracy of predictions made by
the tree. The solid line shows accuracy measured over an independent set of
test examples (not included in the training set). Predictably, the accuracy of
the tree over the training examples increases monotonically [Mitchell, 1997] as
the tree grows. However, the accuracy measured over the independent test ex-
amples first increases, then decreases. As can be seen, once the tree size exceeds
approximately 25 nodes, further elaboration of the tree decreases its accuracy
over the test examples despite increasing its accuracy on the training examples.
Random noise in the training example can lead to overfitting. In fact, over-
fitting is possible even when the training data are noise-free, especially when
small numbers of examples are associated with leaf nodes. In this case, it is
quite possible for coincidental regularities to occur in which some attribute hap-
pens to partition the examples very well, despite being unrelated to the actual
target function. Whenever such coincidental regularities exist, there is a risk
of overfitting. Overfitting is a significant practical difficulty for decision trees
learning. Overfitting was found to decrease the accuracy of learned decision
tree by 10-25% on most problems.

. Incorporating Continuous-Valued Attributes

The initial definition of C4.5 is restricted to attributes that take on a discrete
set of values. First, the target attribute whose value is predicted by the learned
tree must be discrete valued. Second, the attributes tested in the decision nodes
of the tree must also be discrete-valued. This second restriction can be easily
be removed so that continuous-valued decision attributes can be incorporated
into the learned tree. This can be accomplished by dynamically defining new
discrete-valued attributes that partition the continuous-valued attribute into a
discrete set of intervals. In particular, for an attribute A that is continuous-
valued, the algorithm can dynamically create a new Boolean attribute A, that
is true if A < ¢ and false otherwise. The only question is how to select the
best value for the threshold ¢. As an example, suppose we wish to include the
continuous-valued attribute Temperature in describing the training example
days in the learning task of Table 3. Suppose further the training examples
associated with a particular node in a decision tree have the following values
for Temperature and the target attribute PlayTennis.

We need to a select a threshold, ¢, that produces the greatest information gain.
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Table 3: Continuous Valued Attributes. Temperature is the continuous-valued attribute.
For each temperature value, the corresponding classification for PlayTennis is shown.

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

By sorting the examples according to the continuous-valued attribute A, then
identifying adjacent examples that differ in their target classification, we can
generate a set of candidate thresholds midway between the corresponding values
of A. In the current example, there are two candidate thresholds, corresponding
to the values of Temperature at which the value of PlayTennis changes: (48
+ 60)/2, and (80 + 90)/2. The information gain can be computed for each
of the candidate attributes. This dynamically created Boolean attribute can
then compete with the other discrete-valued candidate attributes available for
growing the decision tree.

3. Alternative Measures for Selecting Attributes
There is a natural bias in the information gain measure that favors attributes
with many values over those with few values. Such attributes are bound to sep-
arate the training examples into very small subsets. Because of this, it will have
a very high information gain relative to the training examples, despite being a
poor predictor of the target function over unseen instances. This difficulty can
be avoided by selecting decision attributes based in some measure other than
information gain. One alternative measure that has been used successfully is
the gain ratio [Quinlan, 1990]. The gain ratio measure penalizes attributes
such as date by incorporating a term, called split information, that is sensitive
to how broadly and uniformly the attribute splits the data:

EIEA

SplitInformation(S, A) = = S| 082 S| ©
i=1

where S; through S, are the subsets of examples resulting from partitioning S
by the c-valued attribute A. Note that SplitiInformation is actually the entropy
of S with respect to the values of Attribute A. The GainRatio measure is de-
fined in terms of the earlier Gain measure, as well as this SplitInformation, as
follows
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GainRatio(S, A) = Gain(S, A)/SplitIn formation(S, A) (7)

The SplitInformation term discourages the selection of valued attributes with
many uniformly distributed values.

. Handling Training Examples with Missing Attribute Values

In certain cases, the available data may have missing values for some attributes.
For example, in medical domain in which we wish to predict patient outcome
based on various laboratory tests, it may be that the lab test Blood-Test-Result
is available only for a subset of patients. In such cases, it is common to estimate
the missing attribute value based on other examples for which this attribute has
a known value.

Consider the situation in which Gain(S, A) is to be calculated at node n in
the decision tree to evaluate whether the attribute A is the best attribute to
test at this decision node. Suppose that < z,c(x) > is one of the training
examples in S and that the value A(z) is unknown. One approach, that is used
in C4.5 is to assign a probability to each of the possible values of A rather than
simply assigning the most common value to A(z). These probabilities can be
estimated again based on the observed frequencies of the various values for A
among the examples at node n. For example, given a Boolean attribute A, if
node n contains six known examples with A = 1 and four with A = 0, then
we would say the probability that A(z) = 1 is 0.6 and the probability that
A(z) = 0is 0.4. A fractional 0.6 of instance z is now distributed down the
branch for A = 1, and a fractional 0.4 of x down the other tree branch. These
fractional examples are used for the purpose of computing Information gain
and can be further subdivided at subsequent branches of the tree if a second
missing attribute value must be tested. This same fractioning of examples can
also be applied after learning to classify new instances whose attribute values are
unknown. In this case, the classification of the new instance is simply the most
probable classification, computed by summing weights of the instance fragments
classified in different ways at the leaf nodes of the tree.

. Handling Attributes with Differing Costs

In some learning tasks the instances may have associated costs. For example,
in learning to classify medical diseases we might describe patients in terms
of attributes such as temperature, BiopsyResult, Pulse, BloodTestResults, etc.
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These attributes vary significantly in their costs, both in terms of monetary cost
and cost to patient comfort. In such tasks, we would prefer decision trees that
use low-cost attributes where possible, relying on high-cost attributes only when
needed to produce reliable classifications. C4.5 can be modified to take into
account attribute costs by introducing a cost term into the attribute selection
measure. For example, we might divide the gain by the cost of the attribute,
so that the lower cost attributes would be preferred. While such cost-sensitive
measures do not guarantee finding an optimal cost-sensitive decision tree, they
do bias the search in favor of low-cost attributes. One such approach defined
by Tan and Schlimmer(1990) is given by the formula

Gain2(S, A)/Cost(A) (8)
where Cost(A) denotes the cost of Attribute A.

2.5 Ensemble Learning

A
0
Ensemble Output
Combine classifier outputs
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Ensemble Input

Figure 6: A ensemble of classifiers. The output from each of the classifier is combined to
get the ensemble output.

An ensemble consists of a set of individually trained classifiers whose predictions
are combined when classifying novel instances. Previous research has shown that
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Table 4: Hypothetical runs of Bagging and Boosting. Assume there are eight training ex-
amples. Assume example 1 is an “outlier” and is hard for the component learning algorithm
to classify correctly. With Bagging, each training set is an independent sample of the data;
thus, some examples are missing and others occur multiple times. The Boosting training
sets are also samples of the original data set, but the “hard” example (example-1) occurs
more in later training sets since Boosting concentrates on correctly predicting it.

A sample of a single classifier on an imaginary set of data.
(Original) Training Set
Training-set-1: 1,2,3,4,5,6,7,8

A sample of Bagging on the same data.
(Resampled) Training Set

Training-set-1: 2,7, 8,3, 7,6, 3, 1
Training-set-2: 7, 8, 5,6,4,2, 7, 1
Training-set-3: 3, 6, 2, 7, 5, 6, 2, 2
Training-set-4: 4, 5, 1, 4, 6, 4, 3, 8

A sample of Boosting on the same data.
(Resampled) Training Set
Training-set-1: 2,7, 8, 3, 7, 6, 3,
Training-set-2: 1, 4, 5,4, 1, 5, 6,
Training-set-3: 7,1, 5,8, 1, 8, 1
Training-set-4: 1, 1,6, 1, 1, 3, 1

Y

1
4
4
3

I ) ) Y

an ensemble is often more accurate than any of the single classifiers in the ensem-
ble [Breiman, 1996a, Freund and Schapire, 1996] are two relatively new but popular
methods of producing ensembles. These methods rely on ”resampling” techniques to
obtain different training sets for each of the classifiers. Research has demonstrated
that a good ensemble is one where the individual classifiers in the ensemble are both
accurate and make their errors on different parts of the input space. This section
describes each of these techniques in greater detail.

2.6 Bagging Classifiers

Bagging is a “bootstrap” ensemble [Breiman, 1996a, Efron and Tibshirani, 1993]
method that creates individuals for its ensemble by training each classifier on a ran-
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dom redistribution of the training set. Each classifier’s training set is generated by
randomly drawing, with replacement, N examples, where N is the size of the original
training set. Many of the original examples may be repeated in the resulting training
set while others may be left out. Each individual classifier in the ensemble is gener-
ated with a different random sampling of the training set. Table 4 gives a sample of
how Bagging works on a imaginary set of data. Since Bagging resamples the training
set with replacement, some instances are represented multiple times while others are
left out. So Bagging’s training-set-1 might contain examples 3 and 7 twice, but does
not contain either example 4 or 5. As a result, the classifier trained on training-set-1
might obtain a higher test-set error than the classifier using all of the data. In fact
all four of Bagging’s component classifiers could result in higher test-set error; how-
ever when combined, these four classifiers can (and often do) produce test-set error
lower than that of the single classifier (the diversity among these classifiers generally
compensates for the increase in error rate of any individual classifier). A predicted
class corresponding to a new input is obtained by a plurality vote among the four
classifiers. Consequently, each new case must be classified by all the the classifiers,
(decision trees in our case) and a running tally kept of the results. Bagging is effective
on “unstable” learning algorithms where small changes in the training set result in
large changes in predictions. Decision trees are unstable learning algorithms.

2.7 Boosting Classifiers

Boosting [Freund and Schapire, 1996] encompasses a family of methods. The focus
of these methods is to produce a series of classifiers. The training set used for each
member of the series is chosen based on the performance of the earlier classifier(s) in
the series. In Boosting, examples that are incorrectly predicted by previous classifiers
in the series are chosen more often than examples that were correctly predicted. Thus
Boosting attempts to produce new classifiers that are better able to predict examples
for which the current ensemble’s performance is poor. There are two popular forms of
Boosting: Ada-Boosting [Freund and Schapire, 1996] and Arcing [Breiman, 1996b].
Like Bagging, Arcing chooses a training set of size NV for classifier K +1 by probabilis-
tically selecting (with replacement) examples from the original N training examples.
Unlike Bagging, however, the probability of selecting an example is not equal across
the training set. This probability depends on how often that example was misclassi-
fied by the previous K classifiers. Ada-Boosting can use the approach of (a) selecting
a set of examples based on the probabilities of the examples, or (b) use all the exam-
ples and weight each example (i.e., examples with higher weights have more effect on
the error).
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Both Arcing and Ada-Boosting initially set the probability of picking each example
to be 1/N. These methods then recalculate these probabilities after each trained
classifier is added to the ensemble. For Ada-Boosting, let Ej be the sum of the
probabilities of the misclassified instances for the currently trained classifier C. The
probabilities for the next trial are generated by multiplying the probabilities of Cjs
incorrectly classified instances by the factor By = (1-E})/E}, and then renormalizing
all probabilities so that their sum equals 1. Ada-Boosting combines the classifiers
C, ..., Cy using weighted voting - ¢ has weight log(By). These weights allow Ada-
Boosting to discount the predictions of classifiers that are not very accurate on the
overall problem.

In this work, I have used a revision described by Brieman (1996b) in which we
reset all the weights to be equal and restart if either Ej is not less than 0.5 or Ej
becomes 0. Table 4 shows a hypothetical run of Boosting. Note that the first training
set would be the same as Bagging; however, later training sets accentuate examples
that were misclassified by the earlier member of the ensembles. In Table 4, example-1
is a "example” that previous classifiers tend to misclassify. With the second training
set, example 1 occurs multiple times, as do examples 4 and 5 since they were left
out of the first training set and, in this case, misclassified by the first learner. For
the first training set, example 1 becomes the predominant example chosen; thus, the
overall test-set error for this classifier might become very high. Despite this, however,
Boosting will probably obtain a lower error rate when it combines the output of
these four classifiers since it focuses on correctly predicting previously misclassified
examples and weights the predictions of the different classifiers based on their accuracy
for the training set. But Boosting can also overfit in the presence of noise.

2.8 The Bias Plus Variance Decomposition

Classification error can be regarded as a combination of bias and variance. We can
determine the effectiveness of Bagging and Boosting by taking into account their clas-
sification errors. In this decomposition we can view the expected error of a learning
algorithm on a particular target function and training set as having three components:

e A bias term measuring how close the average classifier produced by the learning
algorithm will be to the target function;

e A variance term measuring how much each of the learning algorithm’s guesses
will vary with respect to each other (how often they disagree); and

e A term measuring the minimum classification error associated with the Bayes
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optimal classifier for the target function (this term is sometimes referred to as
the intrinsic target noise).

Using this framework it has been suggested [Breiman, 1996b] that both Bagging
and Boosting reduce error by reducing the variance term. Freund and Schapire (1996)
argue that Boosting also attempts to reduce the error in the bias term since it focuses
on misclassified examples. Such a focus may cause the learner to produce an ensemble
function that differs significantly from the single learning algorithm, In fact, Boost-
ing may construct a function that is not even producible by its component learning
algorithm (e.g., changing linear predictions into a classifier that contains non-linear
predictions). It is this capacity that makes Boosting an appropriate algorithm for
combining the predictions of ”weak” learning algorithms (i.e., algorithms that have
a simple learning bias).

The bias-variance decomposition cannot be applied to real world data sets as we
need to know the actual function being learned. This is unavailable for real-world
problems. To deal with this problem, Kohavi and Wolpert [Kohavi and Wolpert, 1996]
suggest holding out some of the data. The problem with this technique is that the
training set size is greatly reduced in order to get a good estimates of the bias and
variance terms.
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3 My Ensemble Method

In this thesis we are concerned with building a fast and an accurate inductive learner.
One popular method to build an accurate inductive learner is by building an ensemble
of classifiers. This section describes a new algorithm of building an ensemble of
classifiers. The technique described in this section deals with building an ensemble
of classifiers by partitioning the data.

3.1 A New Ensemble Building Method

My new method focuses on building a global classifier by building an ensemble of
piece-wise classifiers (i.e., each member of the ensemble focuses on prediction in a
portion of the input space).

Each classifier in this model is trained to perform well within a sub-region of the
problem space, and by combining all the classifiers, we are covering the entire problem
space and building a global classifier. My method for building an ensemble assumes
all instances correspond to points in the n-dimensional space R". The dimension
of the problem space is equal to the number of attributes in the data set. We are
interested in identifying all the data points that are close to each other in the problem
space. We randomly select one data point from the training set. This data point will
be referred to as the central data point. The data points that are close to this central
data point are known as its neighbors. The neighbors of an instance are defined in
terms of the standard Euclidean distance. The proximity of a data point to other
data points in the problem space is inversely proportional to the distance from those
data points. We are interested in identifying all the data points that are close to the
central data point.

More precisely, let an arbitrary instance = be described by the feature vector:

< a1(z),az(x),- - a,(x) >

where a,(z) denotes the value of the 7" attribute of instance x. Then the distance
between two instances z; and and z; is defined to be d(z;,z;), where

JZ— (2;))° 9)

By using the Euclidean distance as our metric, we are attempting to cluster all the
data points which are close to each other in the vector space. The data points

27



within each cluster then serves as an input training set on which individual classifiers
(Decision Trees in our case) are trained.

This method differs in the following ways from the earlier two approaches of
Bagging [Breiman, 1996a] and Boosting [Freund and Schapire, 1996] of building
ensembles, this method differs in the following ways:

e Each classifier’s training set contains data items that are close to each other
within the problem space. The closeness is defined by the distance metric. (i.e.,
Euclidean distance in our case). In the case of Bagging the training set contains
randomly selected data samples from the data set. And Boosting attempts to
select data samples that were incorrectly classified by the previous classifiers by
increasing the probability of the incorrectly classified samples.

e In our method, there is an attempt to build a set of regional classifiers, each
attempting to solve a sub-problem within the entire problem space. Neither
Bagging nor Boosting attempt to build regional classifiers. Bagging attempts
to reduce error by reducing the variance and Boosting reduces error by reducing
the variance and bias.

3.2 An Example

Consider a problem in which we are building a system which is capable of predicting
whether an individual is credit worthy or not based on his salary. Figure 7 shows
the training data points for this example in the two dimensional problem space. On
the X-axis we have the loan amount and on the Y-axis we have that individual’s
salary. The points within the circle are within one cluster. The function that has
to be learned by the system in this case is fairly simple; if the ratio of the salary
to the loan amount is less than some constant, then the person is credit worthy and
can be safely given the loan amount, otherwise the person is not credit-worthy. Our
method of building an ensemble attempts to identify the data points that are close to
each other in the problem space and then trains different classifiers on each of these
clusters. The resulting system will be a set of N-classifiers each trained on a local set
of data points. When these N-classifiers are combined we get a global system which is
capable of predicting the credit worthiness of any given individual with a particular
salary and requested loan amount.
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Figure 7: Loan Example: Clusters of closely located data samples. On the X-axis, we have
the loan amount and on the Y-axis we have that individual’s salary. ‘4’ represents the good
data points (i.e, individuals who are credit worthy).‘-’ represents the bad data points (i.e.,
individuals who are not credit worthy). The points within the circle represents a cluster

“*? represents the central data point of the cluster. The “*’

of closely located data points.
could either be a good or a bad data point. The central data point is randomly selected.

All the training examples within the cluster are used to build a regional classifier.

3.3 Computing Distance

This section describes how we compute the distance between two data points. We
need to take into account the following considerations, when computing the distance
between two two data points:

e Distance between two continuous-valued attributes

e Distance between two continuous-valued attributes and when one of the at-
tribute value is unknown

e Distance between two continuous-valued attributes and when both the attribute
values are unknown

e Distance between two discrete-valued attributes

e Distance between two discrete-valued attributes and when one of the attribute
value is unknown

29



e Distance between two discrete-valued attributes and when both the attribute
values are unknown

Let an arbitrary instance x be described by the feature vector with 6-attributes,
< 0,1(.%'), 0,2(.%'), a3(17), a4(x), a5($)7 aﬁ(w) >

For this example we will assume that the attributes aq, as, as have continuous values
and ay4, as, ag have discrete values.

We now randomly select one data point, which will be a central data point. Let
that central data point be characterized by the following attribute values

A=<?5,3,a,7,b>

Attributes which have 7 as values imply that the value is unknown.We need to com-
pute the distance of all other data points from the central data point. In this sample
run we will compute the distance of the central data point with respect to another
data point described by the vector

B=<7,7,10,7,%,a >

Since we are using the Euclidean distance metric to compute the distance between
two data points, we will be using the formula

d(ai,z;) = J >-(or(a:) — an(a)? (10)
In our case since the number of attributes is 6, the value of n = 6.

For continuous valued attributes we need to compute the maximum and minimum
values present within the data set. For our sample run, we will assume that the
maximum and minimum values for the three continuous valued attributes are as as
shown in Table 5.

Table 6 displays the distribution of discrete-valued attributes. In our example,
we have assumed that the data set contains 10 data points. All the three attributes
a4, a5, ag have 2 possible values. Column-3 for attribute a4 has 3 values which implies
that it has 5 data points with the first value, 3 data points with the second value and
2 data points with unknown values.

When the attribute values are known, irrespective of whether they are continuous-
valued or discrete-valued we obtain the distance between them by subtracting the two
values. For discrete-valued attributes the distance between two known discrete values
is either a 1 if they have different values or a 0 if they are have the same value.

When the attribute values are unknown then we use the following rules:
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Table 5: The minimum, maximum and range for continuous-valued attributes. The first
column shows the attribute name, the second column shows the minimum value for the
attribute, the third column shows the maximum value and the range is displayed in the
fourth column.

Attribute Minimum Maximum Range
aq 0 10 10
as 10 100 90
as 0 10 10

Table 6: The total values and distribution for discrete-valued attributes. The first column
shows the attribute name, the second column shows the number of values the attribute can
take, the third column shows the distribution of attribute values.

Attribute Possible values distribution
ay 2 [5,3,2]
as 2 [5,5,0]
ag 2 [5,5.0]

e For continuous valued attributes if either of the attribute values is unknown,
then the distance between the two attribute values is taken as half of the range

e For discrete valued attributes if only one of the values is unknown, then we
compute the distance between the two attribute value pairs by getting the
distribution of the attribute values over the entire training set

Distance = \/(al () —a1(y)? + (a2(z) — az2(y))? + - - + (as(z) — as(y))?

=,/(7=7)2+ (5-7)2+ (3 = 10) + (1-2)> + (?=7) + (b — a)?

= \/(5)2 +(55)2 4 (7/10)2 4+ ((5% 1)/104+ (3% 0)/10)2 + 1 — ((3/4)% + (1/4)?) + (1)?
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Table 7: New method for building ensembles

Training Algorithm:
e For each Classifier
— Select a random central data point
— For all data points

x compute the distance of the data point from the central data point

— Stochastically select points for the classifier using distance as the proba-
bility measure.

— Build the Classifier
Classification Algorithm:
e Given a query instance x, to be classified.

— Pass the data to all the classifiers.

— Take a vote of all these classifiers to classify the query instance.

3.4 Algorithm

Table 7 shows the algorithm for building an ensemble of classifiers with my new
method. From now on this method will be referred to as the distance-weighted method
for building ensembles since we are using distance as a metric for sampling data points
to build the ensemble.

3.5 Notes

The distance-weighted method for sampling data points for building an ensemble of
classifiers is a new method. Its effectiveness will be compared with the two well
established techniques for building ensembles. Note that by taking the average of all
the attribute values for a data instance when computing the distance, we are reducing
the impact of noise on the classifier that is being built. If we have prior knowledge
about the attributes, then we can assign weights to each attribute and compute the
weighted average. For example, if we have a two dimensional problem space defined
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by attributes a and b and if attribute z is more important than attribute y, then we
assign more weight to attribute a than attribute b when we compute the distance. In
this case we can assign a weight of 2 to attribute a and a weight of 1 to attribute b
and use this weighted average for computing the distance between two data points.
Generalizing the above equation to a n-dimension problem space we get the following
equation

d(z;, z;) = \l Zl(Wr * ((ar(2:0) — ar(27))?) (11)
If we do not have any prior knowledge, we can assign random weights to each attribute
and then take out the weighted averages. The task of selecting a central data point
and computing the distance from all other training instances can be carried out in
parallel. The number of classifiers in the ensemble will control the speed at which
the ensemble is built. But since each classifier and the data set on which it is built
is not dependent on other factors, the entire process of sampling data and building
an ensemble can be executed in parallel. The classification of an instance z, should
ideally be most similar to the classification of other instances that are nearby in
the Euclidean distance. In this aspect the ensemble classifier that we are building
mimics instance based learning methods such as the Nearest Neighbor Algorithm

[Cover and Hart, 1967].
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4 Results

To evaluate the performance of our new method, a number of experiments were carried
out. The results were then compared to results using standard Bagging and Boosting.

4.1 Data Sets

The data sets [Murphy and Aha, 1994] for evaluating the performance were drawn
from the UCI data set repository. The error rates for each of the three methods
of building ensembles is reported along with the standard error rates. These data
sets have the following underlying properties: they varied in characteristics and were
deemed useful by previous researchers. Table 8 gives the characteristics of the data
sets. The data sets that were selected vary in the number of examples, the number of
output classes, the number of attribute features, and the type of features in the data
set (i.e., continuous, discrete, mix).

Table 8: Summary of the data sets used in this paper. Shown are the number of examples
in the data set, the number of output classes, and the number of continuous and discrete
input features.

Features

Data set Cases Class | Continuous Discrete
breast-cancer-w | 699 2 9 -
credit-a 690 2 6 9
credit-g 1000 2 7 13
glass 214 6 9 -
heart-cleveland 303 2 8 )
hypo 3772 5 7 22
ionosphere 351 2 34 -
iris 159 3 4 -
kr-vs-kp 3196 2 - 36
labor 57 2 8 8
sick 3772 2 7 22
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4.2 Methodology

Results were accumulated on the various data sets using the 10-fold cross validation
approach and are averaged over five runs. For each 10-fold cross validation, the data
set is first partitioned into 10 equal-sized sets, then each set is in turn used as the
test set while the classifier trains on the other nine sets. For each fold an ensemble
of 30 classifiers is built. The results are accumulated for each of the three ensemble
building methods.

4.3 Result Error Rates

Table 9 shows test-set error rates for the data sets described in Table 8. Four decision
tree methods are being compared in Table 9. The four methods are: a standard
decision tree method (without ensembles), a Bagging ensemble, a Boosting ensemble
and the method introduced here called the distance-weighted method. The above
results were accumulated with 30 classifiers for each ensemble type. One obvious

Table 9: Summary of the results. Shown are the error rates on the test set for single decision
tree classifier, a Bagging ensemble of decision trees, a Boosting ensemble of decision trees,
and distance-weighted ensemble of decision trees. ‘*’ in the Ensemble column indicates the
method producing the lowest error rate for that data set.

Ensemble Methods

Data set Single DT | Bagging Boosting Distance-Weighted
breast-cancer-w 5.3 4.2 3.8 3.5%
credit-a 22.3 18.3* 18.6 18.4
credit-g 35.29 27.3 26.1* 26.3
glass 35.05 34.3 33.7 33.2%
cleveland-heart 31.3 21.8% 244 24.4
hypo 2.5 0.4* 0.6 0.9
ionosphere 13.8 9.1 8.5%* 9.7
iris 5.8 5.1%* 5.4 5.3
kr-vs-kp 2.5 0.6 0.6 0.5%*
labor 22.64 13.2* 14.7 15.1
sick 1.7 1.4%* 1.4%* 1.6
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conclusion drawn from these results is that each ensemble method appears to reduce
the error rate for almost all of the data sets., and in many cases the reduction is
large. One thing that is very clear from the results is that the new method to build
ensembles is better than the single decision tree classifier. Out of the eleven data
sets the new method performs better than Bagging on four data sets and it performs
better than Boosting on five data sets. From the results we can conclude that the
performance of the new ensemble method is comparable to Bagging and Boosting.
Although the results are varied, this new technique produces comparable results with
the other two approaches. This new method is also potentially faster than Boosting
as we can execute the process of building ensembles in parallel and we do not appear
to give away on accuracy.

4.4 Results By the Number of Classifiers in the Ensemble

The Figures 8-18 plot the error rates on the test set for the three ensemble building
methods on various data sets and gives a comparison of the three methods. These
results display the number of classifiers on the X-axis and the error rate on the y-axis.

Breast Cancer

6

5 1 TTIm=s .-

4 - “~~____:;>,E‘\1k _________________________
% e R S s B Bagging
x 5 | —--—--Boosting
S - --- Distance-Weighted
L > Single Decision Tree

1 -

o ‘ ‘ ‘ ‘ ‘

5 10 15 20 25 30
Number of Classifiers

Figure 8: Bagging, Boosting, Distance-Weighted test set error rates for the breast-cancer
data set as the number of classifiers in the ensemble increases.The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 9: Bagging, Boosting, and Distance-Weighted test set error rates for the credit - a
data set as the number of classifiers in the ensemble increases. The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 10: Bagging, Boosting, and Distance-Weighted test set error rates for the credit - g
data set as the number of classifiers in the ensemble increases. The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 11: Bagging, Boosting, and Distance-Weighted test set error rates for the glass data
set as the number of classifiers in the ensemble increases. The test set error rate for a single
decision tree classifier is shown as a straight line across the x-axis for comparison purposes.
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Figure 12: Bagging, Boosting, and Distance-Weighted test set error rates for the cleveland-
heart data set as the number of classifiers in the ensemble increases. The test set error rate
for a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 13: Bagging, Boosting, and Distance-Weighted test set error rates for the hypo data
set as the number of classifiers in the ensemble increases. The test set error rate for a single
decision tree classifier is shown as a straight line across the x-axis for comparison purposes.
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Figure 14: Bagging, Boosting, and Distance-Weighted test set error rates for the ionosphere
data set as the number of classifiers in the ensemble increases. The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 15: Bagging, Boosting, and Distance-Weighted test set error rates for the iris data
set as the number of classifiers in the ensemble increases. The test set error rate for a single
decision tree classifier is shown as a straight line across the x-axis for comparison purposes.
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Figure 16: Bagging, Boosting, and Distance-Weighted test set error rates for the kr-vs-kp
data set as the number of classifiers in the ensemble increases. The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison
purposes.
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Figure 17: Bagging, Boosting, and Distance-Weighted test set error rates for the labor
data set as the number of classifiers in the ensemble increases. The test set error rate for
a single decision tree classifier is shown as a straight line across the x-axis for comparison

purposes.
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Figure 18: Bagging, Boosting, and Distance-Weighted test set error rates for the sick data
set as the number of classifiers in the ensemble increases. The test set error rate for a single
decision tree classifier is shown as a straight line across the x-axis for comparison purposes.
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4.5 Discussion

The graphs in Figures 8-18 suggest that each of the three ensemble building mech-
anism outperforms the single decision tree classifier. Much of the reduction in error
for the three ensemble building mechanisms appears to have occurred after adding
15 classifiers to the ensemble. For each of the three ensemble building technique we
nearly get a straight line after adding 20 classifiers. The graphs also indicate that
after about 25 classifiers in the ensemble there is no significant reduction in the test
set error rate. This proves that we get fairly accurate learners with 25 classifiers
in each of the three ensemble building methods. All the three methods for building
ensembles produces similar shaped curves after adding 15 classifiers to the ensemble.
The new distance-weighted method for building ensembles outperforms the Boosting
method on 5 of the 11 data sets. It performs better than Bagging on 4 data sets. On
the remaining data sets the results of the new method is comparable to Bagging and
Boosting.
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5 Conclusions

In this thesis I have implemented a new ensemble building technique, which I call
the distance-weighted method and compared it with the two popular techniques of
building ensembles (i.e., Bagging and Boosting). I compare the performance of the
three ensemble building techniques and the single decision tree classifier. The new
technique uses C4.5 decision trees as component classifiers. In the preliminary tests,
I first determined the baseline results with which to compare the new technique
for building ensembles. The baseline results included tests from Bagging, Boosting
and the standard method for building single decision trees from the data set. All
the decision trees were built using the 10-fold cross validation approach and the
results were averaged over 5 execution cycles. The new method for building ensembles
outperforms Bagging on four data sets and is better than Boosting on five data sets,
and the results over the other data sets are comparable.

Based on the experiments that we performed on our implementations, we can answer
the questions posed in Chapter 1.

e (Juestion 1: How does the new ensemble building method compare to Bagging
and Boosting in terms of test set error rates?
From the results we can conclude that the new distance-weighted ensemble
building technique is generally as good as Boosting. This technique for building
ensembles gives us better results than Bagging on four data sets and proves to
be better than Boosting on five data sets. The results over the other data sets
are comparable to the results produced by Boosting and Bagging.

e Question 2: What is the optimal size of the ensemble (i.e., the number of
classifiers making up the ensemble)?
For each of the three ensemble building mechanisms, most of the reduction
in error appears to have occurred after adding 15 classifiers to the ensemble.
For each of the three ensemble building technique we nearly get a straight line
after adding 20 classifiers. The results indicate that after about 25-classifiers
in the ensemble there is no significant reduction in the test set error rate. This
proves that we get fairly accurate learners with 25 classifiers in each of the three
ensemble building methods.

e (Juestion 3: Is the new method faster than the Boosting?
Boosting ensembles cannot be built in parallel as we need to take into account
the error from the previous classifier in order to sample data for the next clas-
sifier. The distance-weighted method for building ensembles does not take into
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account the errors from the previous classifier. Instead it randomly selects data
points that act as central data points and stochastically selects points which
are closer to the central data point to train the individual classifiers that make
up the ensemble. The process of selecting data points for each ensemble and
building the ensemble can be carried out in parallel and hence the new distance-
weighted method is potentially faster than the Boosting method.

The distance-weighted method for building ensembles is unique as compared to the
earlier approaches for building ensembles. The data sampling procedure for the
distance-weighted method makes “intelligent” choices for which data points for build-
ing the individual classifiers by considering only data points that are near by in the
Euclidean distance. Hence the distance-weighting method can be considered as an
intelligent Bagging technique. Using this method we are building piece-wise classifiers
to approximate the global target function. Ideally the classification of an instance
will be most similar to the classification of other instances that are close to it in the
problem space. In this aspect the ensemble classifier that we are building mimics the
K-Nearest Neighbor algorithm.

5.1 Future Work

Our results suggest that the new distance-weighted method of building ensembles is
almost equivalent to the Boosting technique. However much works needs to be done
in the following areas before we can be sure whether this new method is better than
Boosting;:

e Noise: The impact of noisy data points (in the training set) on the ensemble
needs to be studied. The extent to which the ensemble overfits the training set
as the number of classifiers increases needs a more thorough investigation.

e Other distance computing metrics: In this thesis work we have built clas-
sifiers by using the Euclidean distance as our metric. There are other distance
computing functions such as Mahalanobis distance, Kullback-Leibler distance,
etc. The performance of the system with other distance computing functions
needs to be studied.

e Incorporating attribute priority: Not all the attributes in the data set
have the same priority. Some of the attributes will be more important to the
target concept than the rest. Hence we need to assign more weights to such
attributes when we compute the distance between two data points. If we have
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prior knowledge of the importance of certain attribute features, we can weigh
them accordingly.

Using feature selection: In many applications, the size of a dataset is
so large that learning might not work as well before removing the unwanted
features. Reducing the number of irrelevant features before we sample data
drastically reduces the running time of a learning algorithm and yields a more
general concept. This helps in getting better insight into the underlying concept.
Feature selection methods try to pick a subset of features that are relevant to
the target concept.

Weighing of individual classifiers: Since the classification of an instance
will ideally be most similar to the classification of other instances that are close
to it, we need to assign more weight to those classifiers whose central data
points are close to the query instance. We need to come up with a effective
weighing scheme so that classifiers whose central data point is closer to the
query instance are assigned more weight than classifiers whose central data
point is further away from the query instance.

Picking region centers in poorly performing areas of problem space:
Sometimes it might happen that the distance-weighted ensemble building tech-
nique does not perform well on certain regions in the problem space. In such
situations we would like to pick out those regions and build local classifiers and
add them to the ensemble to improve the overall accuracy of the system.

45



References

[Agarwal and Shim, 1996] Agarwal, R. A. and Shim, K. (1996). Developing tightly-
coupled data mining applications on a relational database system. In Proceed-

ings of the Second International Conference on Knowledge Discovery and Data
Mining(KDD-96), pages 287-290, Menlo Park, CA.

[Aha et al., 1991] Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning
algorithms. Machine Learning, 6, pages 37-66.

[Atkeson et al., 1997] Atkeson, C., Moore, A., and Schaal, A. (1997). Locally
weighted training. Artificial Intelligence Review.

[Bauer and Kohavi, 1999] Bauer, E. and Kohavi, R. (1999). An empirical compari-
sion of voting classification algorithms: Bagging, Boosting a and variants. pages
36, 105-139.

[Breiman, 1996a] Breiman, L. (1996a). Bagging predictors. Machine Learning, pages
123-140.

[Breiman, 1996b] Breiman, L. (1996b). Bias, variance and arcing classifiers. UC-
Berkeley, Berkeley, CA.

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, P. J.
(1984). Classification and Regression Trees. Wadsworth International Group, CA.

[Chauvin and Rumelhart, 1995] Chauvin, Y. and Rumelhart, D. (1995). Backpropa-
gation: Theory, architectures, and applications. Lawrence Erlbaum Assoc., Hills-
dale NJ.

[Cover and Hart, 1967] Cover, T. and Hart, P. (1967). Nearest neighbor pattern
classification. IEEE Transactions on Information Theory, pages 21-27.

[Efron and Tibshirani, 1993] Efron, B. and Tibshirani, R. (1993). An Introduction to
Bootstrap. Chapman and Hall, New York.

[Fayyad et al., 1995] Fayyad, U., Smyth, P., Weir, N., and Djorgovski, S. (1995).
Automated analysis and exploration of image databases: Results,progress, and
challenges. Journal of Intelligent Information Systems, pages 1-19.

46



[Freund and Schapire, 1996] Freund, Y. and Schapire, R. (1996). Experiments with a
new boosting algorithm. In Proceedings of the Thirteenth International Conference
on Machine Learning, pages 148-156, Bari, Italy.

[Jensen, 1996] Jensen, F. (1996). An Introduction to Bayesian Networks. New York:
Springer Verlag.

[Kohavi and Wolpert, 1996] Kohavi, R. and Wolpert, D. (1996). Bias plus variance
decomposition for zero-one loss functions. Proceedings of the Thirteenth Interna-
tional Conference on Machine Learning, pages 275-283.

[Kononenko et al., 1984] Kononenko, I., Bratko, I., and Roskar, E. (1984). Experi-
ments in automatic learning of medical diagnostic rules. (Technical Report), Jozef
Stefan Institute, Ljubjjana. Yugoslavia.

[Maclin and Opitz, 1997] Maclin, R. and Opitz, D. (1997). An emprical evaluation
of Bagging and Boosting. Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 546-551.

[Mitchell and Thrun, 1993] Mitchell, T. and Thrun, S. (1993). Explanation-based
neural network learning for robot control. Advances in neural information process-
1ng systems, pages 287-294.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning, chapter Decision Tree
Learning. WCB/McGraw-Hill.

[Murphy and Aha, 1994] Murphy, P. and Aha, D. (1994). UCI repository of machine
learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html.

[Pomerleau, 1989] Pomerleau, D. (1989). Alvinn: An autonomous land vehicle in a
neural network. In Tech. rep. CMU-CS-89-107. Pittsburg, PA: Carnegie Mellon
University.

[Provost and Kolluri, 1999] Provost, F. and Kolluri, V. (1999). A Survey of Methods
for Scaling Up Inductive Algorithms. Knowledge Discovery and Data Mining(1999).

[Quinlan, 1990] Quinlan, J. R. (1990). Induction of Decision Trees. In Readings in
Machine Learning. Morgan Kaufmann. Originally published in Machine Learning
1:81-106, 1986.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Mo-
gran Kaufmann.

47



[Stolfo et al., 1997] Stolfo, S., W.Fan, D., Lee, W., Prodromidis, A., and Chan, P.
(1997). Credit Card Fraud Detection Using Meta Learning: Issues and Initial Re-
sults. Issues and initial results. Working notes of AAAI Workshop on AT Approaches
to Fraud Detection and Risk Management 1997.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learning and td-gammon.
Communications of the ACM, pages 58—68.

[Weiss and Indurkhya, 1997] Weiss, S. and Indurkhya, N. (1997). Predictive Data
Mining: A Practical Guide. Morgan Kaufmann.

48



