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1 Introduction

Computational Biology covers a broad spectrum of diverse fields ranging from

techniques for determining molecular crystal structure based on X-ray crystallography

data (Bruenger 1991; Nilges et al. 1991), to methods for simulating molecular interaction

at various levels (Socci et.al., 1996; Warshel et.al., 1991), to the maintenance of

Biological databases such as the Human GENOME project (Watson 1990) or the

Ribosomal Database Project (Maidak et al. 1996), and the recognition of molecular

features such as protein secondary structure (Holley et.al., 1989; Qian et.al., 1988; Rost

et.al., 1993). Though these approaches vary significantly in the computational approaches

used, they do share a strong focus on the molecular level of Biology. This focus is not

surprising in that there is a strong computational aspect to much of the reasoning done at

the molecular level and certain types of problems could not be approached without

modern computational techniques. This tight focus has left relatively unexplored other

aspects of biology such as cell biology that might benefit from computational techniques.

This thesis makes an attempt to examine the use of computational techniques in the field

of cell biology. One area of cell biology that provides such an opportunity is the

systematic examination of the process of cell division known as Meiosis and related

mutations that occur in plant and animal cells during sexual reproduction. The process is

characterized by a series of cellular events that take a single cell through a sequence of

structural changes to form four new cells. The events in question are the eight phases of

Meiosis process, namely prophase I, metaphase I, anaphase I, telophase I, prophase II,

metaphase II, anaphase II and telophase II; and meiotic events such as po and ms6

mutations, which decide the phenotype of the resulting cells. Cells undergoing Meiosis

experience these events through a series of morphological changes unique to the events.

These morphological changes can be quantitatively captured using computational

techniques and be used to develop models characterizing these events. This thesis

develops a system based on computer vision and machine learning techniques to

characterize the cellular events governing the Meiosis process. The subject cells used for
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this work are from the maize plant, obtained from the Department of Biology at the

University of Minnesota, Duluth. The approach taken is to analyze digital images of cells

undergoing Meiosis to obtain measurable, quantifiable features to be used to generate

cellular maps characterizing the events governing the process.

Techniques for digital image analysis have a long history (Ballard et.al., 1982). They

have played a part in a number of approaches to feature extraction for cells (Dawe et al.

1994; Wied et al. 1989; Wittekind et.al., 1987), but often these approaches have focused

either on performing image transformation to make the image more clear for a human

analyzer or have been used to make simple measurements with a human user performing

analysis of resulting data.

More recently, researchers have begun to use image analysis and machine learning

techniques to assist in the recognition of features associated with cells (Turner et al.

1993; Wohlberg et.al, 1993a; 1995). In these approaches, digital images of cells are

analyzed using computer vision techniques and descriptive features are extracted that

characterize aspects of the cells. Machine learning techniques are then used to determine

a map to characterize the differences between a set of examples of cells that are

exhibiting a certain property and cells that do not exhibit the property. One advantage of

such a quantitative map is that human viewers often introduce biases in their analysis of

images or may miss properties of images that require transformation of the image. A

computer map allows for a recognition method that avoids such biases and is the focus of

this work. Humans are often subjective in their observations. A cell biologist may

misclassify a cell image based on some preconceived notions on cell types. Furthermore,

he may tend to overlook certain critical and subtle aspects of the image that would play

an important role in deciding the type of the cell image. A computer map would allow

cell biologists to reinforce their observations through its results and in certain cases make

decisions on their behalf when the level of observation required goes beyond human

comprehension.
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For this research, digital image analysis is used to produce quantitative models of cells in

different states of the cell division process. For example, several digital images of cells in

different states, (e.g., prophase I and metaphase I) are analyzed to produce cellular maps

that characterize precisely the differences that indicate which cells are in prophase I and

which are in metaphase I. To produce such an appropriate cellular map of the different

cell types, the creation of these maps is treated as an inductive learning problem. The

goal of inductive learning is to determine a map that allows to differentiate between

examples of objects that are part of a class (e.g., cells exhibiting prophase I properties)

from objects in other classes (e.g., cells of type metaphase I). To do this, the inductive

learner1 is presented with examples to determine combinations of the features that allow

it to distinguish between the different classes of the examples. The resulting map is used

to classify new examples that were not part of the set of training examples. To produce

appropriate maps, this research focuses on two aspects of the problem: (1) creating

appropriate features to describe the different cells that are useful in characterizing the

differences between cells; and (2) selecting from amongst the set of possible features the

ones that best characterize the cells.

The crux of this thesis is then to characterize the meiotic and post-meiotic cellular events

occurring in reproduction cells, and towards this end develop a system based on

Computer Vision and Machine Learning techniques to classify cell images that exhibit

these events.

The following chapter presents background material relevant to this work. This includes a

discussion of Meiosis, along with the concepts of image analysis that form the basis of

this research. Chapter 3 presents the features examined and extracted from cell images,

the methodology used to extract the features, the final set of features used to generate

maps of cellular events, and the results obtained by application of the cellular maps to

cell images not part of the training data set.  The last two chapters discuss future research

and conclusions that arise from this work.

                                                          
1 A system that learns from a set of labeled examples (Quinlan, 1986).
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2 Background

This chapter presents background material relevant to this thesis. The first section

discusses the process of cell division Meiosis, the area of cell biology on which this

research is focused. The second section presents concepts from image analysis used in

this work.

2.1  Meiosis

Living organisms do not survive forever (Albert et.al., 1983). In order for the species to

survive, they need to reproduce. Reproduction in an organism, as in evolution, begins at

the cellular level. Cells exhibit two forms of reproduction; the first form of reproduction,

known as asexual reproduction, contributes to the growth of an individual; the second

form of reproduction, known as sexual reproduction, can help bring a new organism into

existence. The asexual form of reproduction involves a process of cell division known as

Mitosis. This process involves a single division of a cell into two cells that are genetically

identical to the parent cell. It is experienced by both germ and somatic cells that make up

the body of an organism; the former specialized in sexual reproduction and the later in

other cellular functions. Mitosis causes cells to proliferate in the body and maintain the

growth of an organism. It replaces worn-out cells with healthy cells to maintain the

vitality of adult tissues. A single fertilized egg grows into an multicellular adult by

repeatedly undergoing Mitosis. The other form of reproduction, known as sexual

reproduction, involves the cell division process of Meiosis. Meiosis occurs only in germ

cells and not in somatic cells. The Meiosis process involves the cell division of a germ

cell into four gametes. Gametes are cells specialized in sexual fusion.  Each gamete

contains half the genetic complement of the germ cell. The type of gamete formed (sperm

or egg) depends on the sex of the organism.

The reproductive cycle in an organism starts with the germ cell undergoing meiotic

division to form four gamete cells.  A germ cell contains two sets of chromosomes, one
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from each parent, and hence has a diploid (2n, where n=number of distinct chromosomes)

amount of DNA. The gametes formed get half the genetic complement of the germ cell

with a single set of chromosomes, which give them a haploid (n) amount of DNA. Their

chromosomes carry a mix of genes from the parents. The reproduction cycle culminates

with the fusion of gametes, the sperm cells with the egg cell, to form a zygote, the first

cell of a new individual. This process is known as fertilization. The zygote then replicates

itself through Mitosis to form a multicellular organism. The schematic diagram in Figure

2.1 depicts this reproduction process in a multicellular organism.

When a cell is ready to undergo a cell division, the DNA found in its nucleus manifests

itself in the form of chromosomes. As mentioned earlier, germ cells contain a diploid

amount of DNA and hence have two sets of chromosomes, each coming from a different

parent. These chromosomes occur in pairs, where one chromosome in the pair comes

from the male parent and the other from the female parent. These pairs are called

homologous chromosome pairs and the two chromosomes involved in it are called

homologs. Chromosomes are highly coiled molecules of DNA containing single strands

of nucleic acid known as chromatids. At the beginning of Meiosis, this single strand of

chromatid in a chromosome duplicates itself to form a sister chromatid. The two

chromatids are held together at a spot called the centromere where they join. The

homologous pairs of chromosomes and the centromere play an important role in the

Meiosis process. Figure 2.2 shows the appearance of homologous pair of chromosomes

before Meiosis.



6

Figure 2.1: Schematic drawing (Albert et.al., 1983) showing the reproduction

process in multicellular organisms.

Figure 2.2: Appearance of homologous pair of chromosomes at the beginning of

Meiosis.
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2.1.1 Phases of Meiosis

The process of Meiosis is spread over eight different phases. Over these eight phases, the

cell undergoes two cell divisions. The first cell division occurs through the first four

phases of the process and ends with the formation of two diploid cells. The second

division occurs during the last four phases where the diploid cells undergo division to

form four haploid cells. Following are the eight phases of the process of Meiosis:

Prophase I

Prophase I is the longest phase of Meiosis and takes about ninety percent of its total time.

Elaborate morphological changes occur to the chromosomes of the cell during this phase.

The beginning of the phase is marked by the disintegration of the nuclear envelope,

which encloses the DNA. Chromosomes, which are otherwise invisible, start to shorten

and thicken in size and become discernible. As time elapses, the nuclear envelope

disappears and the chromosomes spread out through the cell. Homologous chromosomes

seek out their counterparts and start pairing. When the pairing is complete, the paired

homologs get connected between non-sister chromatids at points called chaisma. These

are the points where the transfer of genetic information takes place. Towards the end of

the phase, spindle fibres begin to form, connecting the homologous chromosome pair to

the opposite poles of the cell. This part of prophase is called prometaphase and marks the

end of this phase. Figure 2.3 (a) shows a stylized picture of a prophase I cell with its

shortening chromosomes and a disintegrating nucleus. The image in 2.3 (b) shows a

Maize cell exhibiting the phase. Figure 2.4 (a) shows the stylized picture of a cell in

prometaphase. The homologous chromosomes are paired together and spindle fibres

connecting them to the cell poles are visible. The image in 2.4 (b) shows the

corresponding Maize cell in prometaphase. The chromosome fragments in the cell

represent the homologous chromosome pairs. The spindle fibres are not visible in the cell

image.
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Figure 2.3: (a) A stylized picture of a cell exhibiting prophase I and (b) An image of
a maize cell in prophase I.

(a)

(b)
Prophase I

Disintegrating cell nucleus

Chromosome



9

Figure 2.4: (a) A stylized picture of a cell exhibiting prometaphase  and (b) An
image of a maize cell in prometaphase .

Prometaphase

(a)

(b)

Homologous pair of chromosomes

Spindle fibre

Pole of the cell



10

Metaphase I

In this phase, the homologous chromosome pairs line up across the equatorial plane of

the cell with the spindle fibres connecting them to the opposite poles of the cell. Figure

2.5 (a) shows a stylized picture of a cell exhibiting metaphase I. From the picture, it can

be seen that the homologous chromosome pairs are lined up on the equatorial plane and

the spindle fibres connect them to the opposite poles. Figure 2.5 (b) image shows a Maize

cell in metaphase I.  The cell exhibits homologous pairs of chromosomes aligned on the

equatorial plane.

Anaphase I

Homologous chromosome pairs, held together by chaisma, are separated from each other

towards the poles by shrinking spindle fibres. The pairs break up at chaisma points and

genetic information is transferred between the homologs. The genetic makeup of the

homologs now comprises of a combination of genetic information from the parents.

Figure 2.6 (a) shows a stylized picture of an anaphase I cell. The picture shows the

shrinking spindle fibres separating homologous chromosome pairs away from eachother.

Figure 2.6 (b) shows the corresponding anaphase I Maize cell. Each chromosome from

the pair is seen moving away from its counterpart.

Telophase I

The movement of chromosomes to the poles of the cell is complete. The spindle fibres

begin to disappear and a cell plate, dividing the cell across the equatorial plane, starts to

form. Figure 2.7 (a) shows the stylized picture of a cell in telophase II. The chromosomes

are now at the poles of the cell. The cell plate can be seen at the top and bottom sides of

the cell. The image in (b) shows the corresponding Maize cell in telophase I. The two

chromosomes at the poles of the cell can be seen. The cell plate is barely visible.



11

Figure 2.5: (a) A stylized picture of a cell exhibiting metaphase I and (b) An image
of a maize cell in metaphase I.

(a)

(b)

Metaphase I

Spindle fibres

Cell poles
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Figure 2.6: (a) A stylized picture of a cell exhibiting anaphase I and (b) An image of
a maize cell in anaphase I.

(a)

(b)

Anaphase I

Shrinking spindle
fibres

Separating pairs of homologous chromosomes
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Figure 2.7: (a) A stylized picture of a cell exhibiting telophase I and (b) An image of
a maize cell in telophase I.

(a)

(b)

Telophase I

Cell plate
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This marks the end of the first cell division, resulting in the formation of two new cells.

Each cell contains a single set of chromosomes containing genetic information from the

two parents. The chromosomes each have two chromatids which makes the cells diploid.

The cells continue with the second cell division to go from diploidy to haploidy.

Prophase II

This phase marks the beginning of the second cell division. The chromosomes in each of

the two cells formed of the first division become visible again. Spindle fibres are

reformed that connect the centromere in the chromosome, holding the sister chromatids

together, to the opposite poles of the cell. Figure 2.8 (a) shows the stylized picture of a

prophase II cell. Chromosomes shorten and thicken.  Figure 2.8 (b) shows the

corresponding Maize cell in prophase II.

Metaphase II

Chromosomes become aligned on the equatorial plane of the cells. The stylized image of

a Metaphase II cell in Figure 2.9 (a) shows the chromosomes in the two cells aligned

again on the equatorial plane. The Metaphase II cell of Maize in Figure 2.9 (b) is in a

later state of metaphase II where the chromosomes start moving away from eachother.

Anaphase II

Spindle fibres shrink, dividing the centromeres and separating the chromatids as

chromosomes, towards the opposite poles of the cell. Figure 2.10(a) shows the stylized

image of anaphase II cell. The centromeres of the chromosomes are pulled towards the

cell poles by shrinking fibres. Figure 2.10 (b) shows the image of a Maize cell in

anaphase II.
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Figure 2.8: (a) A stylized picture of a cell exhibiting prophase II and (b) An image of
a maize cell in prophase II.

(a)
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Cell plate
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Figure 2.9: (a) A stylized picture of a cell exhibiting metaphase II and (b) An image
of a maize cell in metaphase II.

(b)

Metaphase II

(a)

Pole of the cell

Equator of the cell

Spindle fibre
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Figure 2.10: (a) A stylized picture of a cell exhibiting anaphase II and (b) An image
of a maize cell in anaphase II.

(b)

Anaphase II

(a)

Split chromatids of
one chromosome at
the centromeres
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Telophase II

Movement of chromosomes to the poles is complete and spindles disappear. Cell plates

are formed across the equatorial plane, dividing the cells into two and forming four

haploid cells. These cells contain a single set of chromosomes having a mix of paternal

and maternal genetic information. The formation of these cells marks the end of Meiosis.

Figure 2.11 (a) shows the stylized picture of telophase II cell. The chromosomes are at

the poles of the cell and the second cell plate dividing the two cells into four begins to

form. Figure 2.11 (b) shows the corresponding telophase II maize cell. The cell plate in

one of the cells has divided it into two cells.   The cell plate in the other cell is in a early

stage.

2.1.2 Wild-type and Mutant cell types

Meiotic cells sometimes deviate from the normal sequence of events dictating the cell

division process and end up producing mutant cells. These mutations are of different type

and are classified according to morphological deviations responsible for the mutations.

The mutations that are of interest to this research are polymitotic (po) and ms6 mutations.

These mutations are caused by a meiotic cell experiencing multiple cell divisions, in

addition to the two prescribed by the process.

Cells that are produced through normal meiotic cell divisions are called wild-type cells.

Figure 2.12 shows a (a) wild-type cell image as well as those exhibiting the (b) po and (c)

ms6 mutations.
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Figure 2.11: (a) A stylized picture of a cell exhibiting telophase II and (b) An image
of a maize cell in telophase II.

(b)

Telophase II

(a)

Cell plate



20

Figure 2.12: Example of cells during a particular stage of Meiosis exhibiting the (a)

wild-type, (b) ms6 mutation, and (c) po mutation.

Figure 2.13: (a) An example of a cell in telophase I (b) with its corresponding

intensity histogram.

(b)(a) (c)

(b)(a)
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2.2  Image Analysis

Image analysis forms a foundation of this work. Techniques in digital image analysis

have often found their use in dealing with cell images. Most of these applications are

focused on performing image transformations to make an image clearer to a human

analyzer (Dawe et al. 1994; Wied, Bartels, & et al. 1989; Wittekind & Schulte 1987).

Seldom have they been used to extract features from cell images except in a few

applications (Wohlberg et. al., 1995). In this work, image analysis is used specifically to

extract features descriptive of cells undergoing Meiosis. Following is a discussion on the

image analysis techniques and the corresponding analysis tools developed for this

research.

2.2.1 Image Preparation

The first step towards performing image analysis is to obtain images of the subject cells.

This is done using a camera/microscope assembly, with a color camera fitted on top of a

microscope and the entire unit connected to a computer. The camera takes pictures of

cells on the observation slide below and stores them on the attached computer in some

image file format, TIFF format in this case. The pictures taken are in color and are

converted to grayscale for the sake of analysis.

2.2.2 Image Histograming and Segmentation

A grayscale image is a collection of data points known as pixels, exhibiting different

levels of intensity, ranging from 0 to 255. In order to analyze an image properly, it is very

important to understand the distribution of the image pixels over the grayscale intensities.

This is done through a process known as histograming. A histogram of a grayscale image

is a plot of the frequency of occurrence of image pixels at different gray levels (Ballard

et. al., 1982). At any particular level in the grayscale, the plot gives the number of image



22

pixels exhibiting that grayscale intensity. Figure 2.13 shows a grayscale image of a

meiotic cell and its corresponding histogram plot.

A histogram plot helps in identifying the gray-level intensities in the image that are of

most relevance to the analysis at hand.  For example, the plot in Figure 2.13 shows that

pixels in range 7 to 81 are part of the cell while pixels in the range 60 to 81 form the

chromosomes in the cell and makeup for 7 percent of the cell space. Using this form of

analysis, an image can be segmented into different parts, identifying portions that are of

importance for further analysis and the ones that can be discarded.

2.2.3 Image Normalization

Images of cells obtained by the image preparation process described before exhibit

different levels of brightness. These differences are in part due to variations in the

staining process used in the slide preparation procedure, and the settings of the equipment

used to capture the images. They prevent the application of a uniform approach of

analysis to all images. In order to analyze the images at a constant brightness level, these

differences have to be removed. This is done by a process known as normalization.

Normalization moves the mean grayscale intensity of an image to a specific value and

rearranges the image pixel intensities to differ from the mean value by a constant

standard deviation. All images to be analyzed are normalized to the same mean grayscale

value and standard deviation. This removes the brightness discrepancies between images

and renders them useful for uniform analysis. The normalization process is performed by

a tool that takes as input the image to be normalized and the values for the new mean

gray intensity and the standard deviation for the normalized image. One drawback of this

process is that the smoothness of the histogram curve is not maintained after the image is

normalized. The reason for this behavior is that, normalization tries to rearrange the

image pixels to exhibit a new intensity distribution pattern based on a new standard

deviation. If the new standard deviation value is higher than the one exhibited by the

image, the pixels are moved away from each other in their intensities causing the
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histogram plot to display a jagged contour. If the value is lower, pixels with different

intensities are moved to occupy the same intensities thus shrinking the plot. This effect

causes the normalized image to lose some of its gradual intensity variations, which might

affect the results of image analysis techniques like region extraction applied to the image

further.

Figure 2.14 shows two images (a) and (b) with different brightness levels. As seen from

the accompanying histograms in (e) and (f), Image 1 has a mean grayscale intensity of

32.7 and standard deviation of 11.32, and Image 2 a mean intensity of 57.6 and standard

deviation 13.27. The two images are normalized to a mean grayscale value of 70 and a

standard deviation of 15.0. The images after normalization and the corresponding

histograms are also shown (c), (d), (e) and (f) respectively. The drawbacks of

normalization are evident from the histogram plots of the two normalized images. The

normalized histogram plots exhibit jagged contours since the images are normalized to a

standard deviation values greater than the original values.

2.2.4 Region Isolation

Cells normally occur in groups and tend to overlap each other on the slide. Images

capture cells as they occur and sometimes have more than one cell represented in them.

This behavior makes analysis difficult, since only one cell can be analyzed at a time.

Hence the cell to be analyzed needs to be isolated from the rest of the group before any

further analysis can be carried out. This is achieved by a technique known as region

isolation. In this technique, the user first interactively selects from the image a region

containing the cell of interest.  The selection is in the form of a closed curve along the

cell edges. A region isolation tool then separates the region of selection from the rest of

the image and creates a new image containing only the selected part. The isolation tool

uses a variation of the flood-fill algorithm where it starts for a point inside the selected

region and spreads outwards till it finds the user selected boundary enclosing the region.



Figure 2.14: Images of two cells
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histogram plots before and after

Normalization
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Mean gray value: 32.07
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Mean gray value: 57.60
Standard deviation: 11.32
New standard deviation: 15.00
Standard deviation: 13.27
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 (a) and (b) in prophase I, exhibiting different levels

 cells after normalization, (c) and (d), and their

 the normalization process, (e) and (f).

(f)
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It retains the part lying inside the boundary and fills the rest of the image with a user

supplied background intensity value. The drawback of this method is that it relies heavily

on the user to mark the region of interest around the cell. Techniques such as snakes

(Witkin et. al., 1988) exist that automate much of the selection process and produce

accurate regions of interest. Figure 2.15(a), shows an image containing a group of cells,

with the cell of interest selected by the user. Figure 2.15(b), shows the image produced by

the region isolation tool containing only the cell selected by the user.

2.2.5 Region Identification

The final step in the analysis of the cell images is the identification of the objects within

the cells, the measurable properties of which can be used to distinguish cells of one type

from the other. The objects that are of utmost importance for this sort of analysis are the

cell nuclei and the chromosome fragments. These cellular entities undergo severe

changes in shape, size and number during Meiosis. These changes can be measured

quantitatively, and be used to characterize the events occurring during Meiosis.

The first step towards this is to analyze the histograms and intensity distribution plots of

different cell type images to identify the grayscale ranges the defining objects fall in.

Once the ranges are identified, the objects can be extracted from a cell image using a

region extraction technique. A region extraction tool identifies regions of image pixels

that share a common property. The common property in this case is the grayscale range

occupied by the cell defining objects. The tool uses a blob growing2 algorithm to extract

regions of pixels from the image. Two types of regions are extracted: main regions that

form groups of connected pixels exhibiting a common property; and internal regions that

lie inside the main regions but do not exhibit the property. For every region extracted, the

                                                          
2 A blob is a group of connected pixels exhibiting a common property in an image. The pixels in the group
can be  4-connected or 8-connected. A blob growing algorithm finds all member pixels of the group
starting with one pixel exhibiting the group property.
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Figure 2.15: (a) An example of an image showing a group of cells with the cell of

interest selected by a closed curve. (b) The resulting image generated by the region

isolation technique containing only the selected cell.

Figure 2.16: (a) An image of a cell in prometaphase with its chromosome fragments

visible. (b) The resulting image generated by the region extraction tool. The regions

extracted are highlighted, with the outer region being the main region and internal

regions approximating the chromosome fragments in the cell.

(b)(a)

(b)(a)
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tool calculates a set of features that give an approximation of the shape and size of the

region. These features are discussed in Chapter 3. Figure 2.16(a), shows an image of a

cell in prophase 1. Figure 2.16(b), shows the regions identified by the extraction tool in

the range 123 to 131 with their boundaries marked.

To summarize the entire analysis process and to give the order, in which the different

techniques are applied, we reiterate the events again. The cells to be analyzed are first

captured on digital images. Individual cells in an image are isolated from the rest of the

group using region isolation tools. The images are normalized to a specific grayscale and

standard deviation value to eliminate brightness discrepancies. Image histograms are

studied to identify the grayscale ranges occupied by the cell defining objects like the

chromosomes and the cell nucleus. These objects are then extracted from the images and

their features measured to get an approximation of their shape, size and number.

Most of the image analysis process explained above is automated except for the image

preparation and cell isolation parts that need human intervention. The image

normalization and region extraction tool are part of a single system that takes as input the

image of the isolated cell and analyzes it to generate descriptive features of regions

extracted from the cell. These features are then fed to a cell classifier that classifies the

cell according to its feature values. The details of the classifier are discussed in chapter 3.

  

2.3 Machine Learning

The cell classifier is based on the concepts of machine learning. The form of learning

used in its construction is that of inductive learning.



28

2.3.1 Inductive Learning

Inductive learning is one of the basic mechanisms of machine learning (Quinlan, 1986).

In this method, the learner is presented with examples of different types so that it

generates a concept description for each type involved. These concept descriptions are

then used to predict the types of examples that are not part of the training set. To illustrate

this idea, consider the problem: Suppose a teacher wants the student to understand the

concept of prime numbers. Instead of giving them the definition of a prime number, the

teacher shows a list of numbers: 2, 3, 5, 7, 11, 13 etc. After seeing a large enough set, the

students finally are able to conclude that a prime number is an integer greater than 1 that

can only be divided by one and itself. This form of learning is known as inductive

learning. In our case, the classifier is the learner. It is presented with example images of

different cell types till a model characterizing each cell type is generated. The classifier

then distinguishes between the cell images based on this model.
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3 Characterizing Cells during Meiosis

This section discusses the methods used in building the classifier for the cell images. In

doing so, it first presents the cellular features that were examined in the cell images and

the results of these features observed in initial images. Based on these results, the features

that were found useful are discussed and the resulting classifiers based on these features

are presented. Finally, the results obtained from applying the classifiers to new images

are discussed.

3.1 Features Examined

A classifier's ability to separate out objects of different classes is solely dependent on the

distinguishing characteristics of its features. In order to produce an accurate classifier, it

is necessary to identify good features in cell images. To give an example of this, consider

the cell images shown in Figure 3.1 and 3.2. The cells shown in Figure 3.1 are of wild

type, ms6 mutation and po mutation respectively. Those in Figure 3.2 are of four phases

of Meiosis: prophase 1, prometaphase, telophase I and telophase II respectively. From a

human observer's point of view, the cells exhibiting the mutations show two features

characteristic of these mutations: (1) condensation of chromatin (po and ms6) and (2)

large number of chromosome fragments (ms6). In the case of cells exhibiting meiotic

phases, prophase I, telophase I and telophase II cells have one, two and four chromosome

bodies respectively while prometaphase cells exhibit large number of chromosome

fragments. The task then is to identify these features in a measurable way and use them

for constructing the classifier.

The image analysis techniques discussed in Chapter 2 provide a framework for measuring

these features. The histogramming tool identifies the grayscale range occupied by the cell

nuclei and chromosome in a cell image, while the region extraction tool extracts these

cellular objects by looking for pixel regions that fall in the specified grayscale range. The

extracted objects are further analyzed to get an approximation of their shape, size and
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Figure 3.1: Images of cells exhibiting (a) wild-type, (b) ms6 mutation and (c) po

mutation.

Figure 3.2: Images of cells exhibiting (a) prophase I, (b) prometaphase mutation, (c)

telophase I, and (d) telophase II phases of Meiosis.

(b)(a) (c)

(a) (b) (c)

(d)
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number. This is done by measuring the features of the extracted regions discussed below.

These features are derived from earlier work on a system built to distinguish malignant

cells from benign cells in breast tumor diagnosis (Wolberg et.al., 1993b). In that system,

the features were mainly used to approximate the shape and size of the tumor cells. In our

system, these features are used to measure the shape and size of the defining cellular

entities (chromosomes and cell nucleus) of a cell.

The features are measured in both main and internal regions unless specified in their

descriptions.

3.1.1 Feature: Number of Internal Regions

This feature counts the number of regions enclosed within the main region. As discussed

in chapter 2, the region extraction tool finds two types of regions. The first type is the

main region, which falls in the specified grayscale range. The second type is the internal

region, which does not occupy the grayscale range but falls inside the main region.

3.1.2 Feature: Main Region Occupancy by Internal Regions

This feature measures the average percentage of main region area occupied by the

internal regions.  It gives an approximation of the average size of the internal regions

with respect to the main regions.

3.1.3 Feature: Area

The area of a region is the pixel population of the region. In case of main regions, the

region area is the number of pixels that fall within the region but lie outside the any

internal regions contained in the main region. For internal regions, the feature is just their

pixel population.
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3.1.4 Feature: Perimeter

The number of pixels that fall on the periphery of the region. The perimeter pixels are

those that form the boundaries of the region but are not a part of the region. The region

boundary thickness is that of one pixel.

3.1.5 Feature: Radius

The radius of the region is measured by averaging the length of the radial line segments

defined by the center of the region and the perimeter points.

3.1.6 Feature: Compactness

Perimeter and area are combined (Ballard et.al., 1982) to give a measure of the

compactness of the region using the formula perimeter2/area. This dimensionless number

is minimum for a circular disk and increases with irregularity of the region.

3.1.7 Feature: Smoothness

The smoothness of a region contour is quantified by measuring the difference between

the length of a radial line and the mean length of the lines surrounding it. Figure 3.3

shows the radial lines in the region used  to compute smoothness.

3.1.8 Feature: Texture

The texture of the region is measured by finding the variance of the grayscale intensities

in the component pixels.
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Figure 3.3: Radial lines of the region used for smoothness computation

Figure 3.4: Region chords to compute concavity
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3.1.9 Feature: Concavity

In a further attempt to capture the shape information, the number and severity of

concavities or indentations in a region are measured. Chords are drawn between non-

adjacent perimeter points and the extend to which the actual boundary of the region lies

on the inside of the polygon formed by the chords is measured. Figure 3.4 shows the

chords in the region used to calculate concavity.

3.1.10 Feature: Concave points

This feature is similar to Concavity but measures only the number rather than the

magnitude of contour concavity.

3.2 Initial Results

The features described above were observed in a initial image data set comprised of

fifteen images each of wild-type, ms6 mutation and po mutation cells and cells in

prophase I, prometaphase, telophase I and telophase II stages of Meisois. All images were

normalized to remove brightness discrepancies, to a grayscale value of 127 and a

standard deviation of 5.00. Histogram analysis revealed the cells to occupy a grayscale

range of 123 to 255. Parts of the cells, excluding the chromosomes and cell nuclei, fell in

the range of 123 to 131, while the chromosomes and the nuclei themselves occupied a

range of 132 to 255. Regions of image pixels lying within the range 123 to 131 with their

corresponding interior regions in the range 132 to 255 were extracted using the region

extraction tool. The internal regions approximated the pixels occupied by the

chromosomes and the cell nuclei in the images. Following are the results of the features

observed on the internal regions extracted.
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3.2.1 Result: Number of Internal Regions

The plot in Figure 3.5(a), shows that the number of internal regions in a wild-type cell is

always one. This is due to the fact that wild-type cells have fully developed cell nuclei

that do not exhibit fragmentation. Cells with po mutations have one or more internal

regions. The number is one when the nucleus is condensed and greater when it is

fragmented. Ms6 mutations exhibit many chromosome fragments and hence have a large

number of internal regions.

In case of the four phases of Meiosis observed for results, this feature brings out the

defining aspects in each phase. The plot in Figure 3.5(b) shows the number of internal

regions in prophase I cells is constantly one. Prophase I is characterized by the

manifestation and condensation of chromosomes in the cell nucleus which are otherwise

imperceptible. The one internal region found within the cell is the condensed chromatin.

The cells in prophase I then move to prometaphase which is characterized by

disintegration of the condensed chromatin into chromosome fragments. These

chromosome fragments spread throughout the cell space and make up for the internal

regions found in the cell. The number of internal regions varies from two to ten in the

prometaphase cells observed. Telophase 1 is marked by the culmination of the first cell

division of the Meiosis process. The cells have two condensed chromosome bodies that

are held at the opposite poles of the cell. These two chromosome bodies are the internal

regions found in the cell. Finally, telophase II marks the end of the second cell division

with four well formed chromosome bodies stationed at the four ends of the cell. These

cell bodies from the four internal regions in telophase II cells.

3.2.2 Result: Main Region Occupancy by Internal Regions

The plot in Figure 3.6(a), shows wild-type cells to have maximum main region

occupancy values of the three cell types. This is because the nuclei in wild-type cells are

well formed and make up for much of the cell space. In the case of po mutations, the
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Figure 3.5: Plot of number of internal regions vs main region in (a) wild-type, ms6

and po mutation cells; (b) prophase I, prometaphase, telophase I and telophase II

cells.

(a)

(b)
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Figure 3.6: Plot of main region space occupancy by internal regions in (a) wild-type,

ms6 and po mutation cells and (b) prophase I, prometaphase, telophase I and

telophase II cells.

(a)

(b)
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values are lower, because the chromosomes are condensed and often fragmented. The

ms6 mutations have the minimum occupancy values of the three cell types due to the

presence of large numbers of chromosome fragments, which is typical of ms6 mutations.

The average main region occupancy in case of the four meiotic phases studied is shown

in Figure 3.6(b).  Prophase I cells have maximum occupancy values. The one internal

region found in a prophase I cell occupies much of the cell space. The main regions are

smaller in comparison to the ones found in cells in other phases. This can be attributed to

smaller size of cells in prophase I. Prometaphase cells have a large number of small

chromosome fragments which give them lower occupancy values. Telophase I cells have

two internal regions which are much larger than those found in prometaphase. This gives

them occupancy values higher than those in prometaphase. Telophase II cells have four

internal regions with sizes on par with those found in prophase I. However, the main

region sizes are greater, since they include all four cells formed in the phase. This leads to

lower occupancy values as compared to those in prophase I.

3.2.3 Result: Area

The results for this feature are consistent to the observations made in the preceding

section. Figure 3.7(a) shows internal regions of wild-type cells have larger region areas

than ms6 and po mutation cell types. In the case of cells in the different phases of

Meiosis, prophase I cells have internal regions with areas larger than prometaphase and

telophase II, while telophase II internal regions have areas similar to prophase I cells. A

few telophase II cells observed have areas way out of range which can be attributed to the

differences in the magnification levels of the system used to capture the images.

3.2.4 Result: Perimeter

The results in Figure 3.8(a) and (b) can be attributed to the area difference of the internal

regions in the three cell types.
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Figure 3.7: Plot of area of internal regions in (a) wild-type, ms6 and po mutation

cells; and (b) prophase I, prometaphase, telophase I and telophase II cells.

(a)

(b)
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Figure 3.8: Plot of perimeter of internal regions in (a) wild-type, ms6 and po

mutation cells; and (b) prophase I, prometaphase, telophase I and telophase II cells.

(a)

(b)
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3.2.5 Result: Radius

The values for region radius closely follow the values of area as is seen from the plot in

Figure 3.9(a). The radius of internal regions in wild-type cells are relatively higher than

those found in ms6 and po mutant cells.

In the case of cells in the meiotic phases, radius values of internal regions in prophase I

and telophase II cells are similar because of the similarity in the shapes and sizes of the

nuclei found in these cell types. The values are greater than those found in prometaphase

and telophase I cells. Telophase I cells have values higher than prometaphase cells

because the two chromosome bodies found in telophase I cells are larger than the

chromosome fragments in prometaphase.

As with region area, region radius values are subject to discrepancies introduced by the

images taken at different magnification levels.

3.2.6 Result: Compactness

From Figure 3.10(a) and (b), it is evident that the compactness values of the internal

regions do not exhibit any properties characteristic of the different cell types. This can be

attributed to the irregularities in the shapes of the cell entities involved and the fact that

the feature can only identify circular shaped regions.

3.2.7 Result: Smoothness

Region smoothness values from Figure 3.11(a) and (b) do not bring out any

distinguishing feature in the cell types observed. The values are erratic which can be

attributed to the roughness in the region boundaries and the unevenness in their shapes.



42

Figure 3.9: Plot of radius of internal regions in (a) wild-type, ms6 and po mutation

cells; and (b) prophase I, prometaphase, telophase I and telophase II cells.

(a)

(b)
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Figure 3.10: Plot of compactness of internal regions in (a) wild-type, ms6 and po

mutation cells; and (b) prophase, prometaphase, telophase I and telophase II cells.

(a)

(b)
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Figure 3.11: Plot of smoothness of internal regions in (a) wild-type, ms6 and po

mutation cells; and (b) in prophase I, prometaphase, telophase I and telophase II

cells.

(a)

(b)
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3.2.8 Result: Texture

The plot in Figure 3.12(a) shows the texture values for the wild-type and mutant cells.

From the plot, it can be seen that interior regions in wild-type cells have lower texture

values than the two mutant cell types. This is because the pixels forming the cell nucleus

in wild-type cells have low intensity variance than those forming the chromosome in po

and ms6 mutant cells. This feature can be used as a distinguishing characteristic of wild-

type cells from po and ms6 mutant cells.

In case of meiotic cells in different phases, the values are not very distinctive of the

phases as is evident from the plot in Figure 3.12(b).

3.2.9 Result: Concavity

The concavity values from Figure 3.13 (a) and (b) do not seem to be very useful in terms

of classifying the cells into the different cell types. The boundaries of the regions

extracted show extreme roughness to produce any meaningful values for this feature.

This can be attributed to the problem associated with the normalization process as

discussed in Chapter 2.  Normalization causes some of the pixels that lie on the

boundaries of the region and would otherwise be part of the region to fall outside it

giving the region a coarse exterior.

3.2.10 Result: Concave points

This feature, Figure 3.14 (a) and (b), measures the number of the contour concavities in a

region. As with the concavity feature, this feature is vulnerable to the problems

introduced by the coarseness of the boundaries of the extracted regions.
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Figure 3.12: Plot of texture of internal regions in (a) wild-type, ms6 and po mutation

cells; and (b) in prophase I, prometaphase, telophase I and telophase II cells.

(a)

(b)



47

Figure 3.13: Plot of concavity of internal regions in (a) wild-type, ms6 and po

mutation cells; and (b) in prophase I, prometaphase, telophase I and telophase II

cells.

(a)

(b)
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Figure 3.14: Plot of the number of concave points in (a) wild-type, ms6 and po

mutation cells; and (b) in the internal regions in prophase I, prometaphase,

telophase I and telophase II cells.

(a)

(b)
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3.3 A Cell Classifier

From the above results, it can be seen that not all features examined are useful to the

classifier construction process. Features like region compactness, smoothness, concavity

and concave points do not seem to have any distinguishing characteristics for the

different cell types and can be discarded. Of the remaining features examined, region

area, radius and perimeter are seemingly useful, but are dependent on the cell size in the

image. Images of cells are often taken at different magnification levels, which lead to

proportional differences in the size of cells captured. These differences render features

that depend on region size and pixel population useless for classification purposes and

hence have to be discarded. The proportional differences in cell sizes can be removed by

an image normalization technique, where all images are normalized to display their

contents at one particular size and at the same level of detail. Features like area, perimeter

and radius, which depend on image and cell size, can then be used as classification

features. Unfortunately, the present working system does not incorporate this form of

image normalization but can be extended to support it. Therefore, from the remaining

features, the only ones that are independent of size discrepancies and bring out good

distinguishing characteristics in cells are the region texture, number of internal regions

and main region occupancy. Figures 3.15 and 3.16 show two classifiers based on the

features found useful in the above analysis. The one in Figure 3.15, distinguishes between

wild-type cells, po mutations and ms6 mutations while the other in Figure 3.16

distinguishes between cells in prophase I, prometaphase, telophase I and telophase II. It

would be desirable to combine the two classifiers into a single classifier that distinguishes

all the cell types involved. However, the current feature set is not sufficient to realize this

goal.
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Figure 3.15: Classifier for wild-type, ms6 and po mutation cells.



51

Figure 3.16: Classifier for cells in prophase I, prometaphase, telophase I and

telophase II.
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3.4 Test Results

The classifiers were tested on a test data set comprising of ten cell images each of wild-

type, ms6 mutation and po mutation cells; and prophase I, prometaphase, telophase I and

telophase II cells. The images were not a part of the data set used to build the classifier.

Tables 1 and 2 show the results for the two classifiers respectively.

The classifier for wild-type and mutant cells could classify all the cell images tested

correctly into their respective types as seen in Table 1.

Cell type Proper classifications Misclassifications

Wild-type (n = 10) 10 0

Po (n = 10) 10 0

Ms6 (n = 10) 10 0

Table 3.1: Test results of classifier for wild-type cells, ms6 and po mutation cells

Figures 3.17, 3.18 and 3.19 show the values seen in the cell images for the three features

on which the classifier is built.
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Figure 3.17: Plot of the number of internal regions in the test cell images of wild-

type, po mutation, ms6 mutation cells.

Figure 3.18: Plot of main region space occupancy by internal regions in test cell

images of type wild-type, po and ms6 mutations.
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Figure 3.19: Plot of texture of internal regions in test cell images of type wild-type,

po and ms6 mutations.
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Table 2 shows the result of the classifier for prophase I, prometaphase, telophase I, and

telophase II. The classifier was able to correctly distinguish all cell images of prophase I,

telophase I and telophase II, except for two cell images of type prometaphase. Figures

3.20 and 3.21 shows the value plots of these images for the two classifier features.

Cell type Proper Classifications Misclassifications

Prophase I (n = 10) 10 0

Prometaphase (n = 10) 8 2

Telophase I (n = 10) 10 0

Telophase II (n = 10) 10 0

Table 3.2: Test results of classifier for prophase I, prometaphase, telophase I and

telophase II cells.
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Figure 3.20: Plot of the number of internal regions in  test cell images of prophase I,

prometaphase, telophase I and telophase II cells.

Figure 3.21: Plot of main region space occupancy by internal regions in test cell

images of prophase I, prometaphase, telophase I and telophase II cells.
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The two prometaphase images were classified as prophase I and telophase II respectively.

The first image exhibited only one internal region with an average main region

occupancy of 16.63 which is way into the range occupied by prophase I cells. The reason

for this being that the chromosome fragments in the cell were clustered tightly together,

which caused them to be extracted as a single region. The cell exhibited early stages of

prometaphase where condensed chromosomes break into pairs and start spreading into

the cell space away the cell center. The second image classified as telophase I, exhibited

two internal regions which is characteristic of telophase I cells. The average main region

occupancy was 5.80, which falls into the range occupied by telophase I cells. One cell

feature that is unique to telophase I cells is the two chromosome regions are stationed at

opposite ends of the cell. This feature is not seen in prometaphase cells with two

chromosome fragments. Thus if the distances between the two regions can be measured,

relative to their positions in the cell, this sort of misclassification can be avoided.
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4 Future Work

This research focused on developing a system based on image processing and machine

learning techniques to classify cells exhibiting different meiotic and post meiotic events.

The system, though partially realized, is far from complete. The eventual goal of the

system is to be able to completely characterize all the phases and events occurring during

Meiosis and to automate the process of detection of the events in the cell images. Future

work undertaken on the system will move in three different directions: event

classification, image processing and machine learning.

4.1 Event Classification

Of the many cellular events occurring during Meiosis, the system is currently able to

characterize only a handful, namely wild-type cells, po mutation and ms6 mutation of the

post meiotic events; and prophase, prometaphase, telophase I and telophase II of the

meiotic events. This can be attributed to lack of images exhibiting the different cellular

events. The Meiosis process comprises of five more events, namely metaphase I,

anaphase I, prophase II, metaphase II and anaphase II, which the system does not

currently recognize and a plethora of meiotic mutations, some of which are yet to be

discovered by cell biologists. So, as long as there are events to be discovered and

classified, work on system will continue to persist. As mentioned before, the eventual

goal for the system is to be able to automatically detect all the phases of Meiosis in cell

images. In the case of cell mutations, the system may be able recognize them before they

occur. A cell undergoes mutations as it deviates from the normal sequence of events

governing the cell division process. The system should be able to detect these deviations

early in a cell image and forecast the mutative path the cell would take.
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4.2 Image Processing

In the area of image processing, future work will focus mainly on improving the system

to incorporate better image analysis techniques and identifying new features in images to

get a better approximation of the characteristics in different cellular events.

The first step towards improving the system is to replace the existing region isolation

technique with one that is less dependent on user defined boundaries and more suggestive

of the actual cell boundary. One such method is that of a snake (Witkin et.al.,1988),

where a user defined curve around the cell converges to the actual boundary of the cell. A

snake is a deformable spline, which seeks to minimize an energy function defined over

the arclength of a closed curve. The energy function is defined in such a way that the

minimum value occurs when the curve accurately corresponds to the boundary of the cell.

The second improvement is to add another layer of image normalization to the system

where images of cells taken at different magnification levels are normalized to display

their contents at the same level of detail. This would allow features that are dependent on

the cell size to be useful for classification purposes.

The feature set on which the system is currently based is certainly not comprehensive and

can be extended to include additional features that reveal finer characteristics of the

different cellular events. One example of this is the inability of the system to distinguish

prometaphase cells, exhibiting only two chromosome fragments from telophase I cells.

Telophase I cells have a distinctive characteristic of two condensed chromosomes placed

at the opposite poles of the cell. If the distance between the chromosomes can be used as

a feature, this form of misclassification can be avoided, since chromosome fragments in

prometaphase cells are separated from each other by a shorter distance than the

chromosome bodies found in telophase I.
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4.3 Machine Learning

The machine learning part used in the current system can be said to be trivial to non-

existent. The reason for this is the feature set used to build the classifier mainly

comprised of a small number of features that captured good distinguishing characteristics

in the cellular events. This fact obviated the need to extensively train the system to

characterize the cellular events. However, in future, as the system is extended to cover

more features and handle new cellular events, this observation will no longer be true, as

the system would have to be trained to find the right combination of features that

uniquely identify each cell type. Machine learning techniques will then play an important

role in the system construction.
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5 Conclusions

This thesis presents a system based on image processing and machine learning techniques

to characterize cellular events occurring during the process of cell division Meiosis and to

classify images of cells exhibiting these events. The events in question are the eight

phases of Meiosis process: prophase I, metaphase I, anaphase I, telophase I, prophase II,

metaphase II, anaphase II and telophase II; and post meiotic events such as ms6 and po

mutations that decide the phenotype of the resulting cells.

The system is based on extraction of features from cell images and construction of a

classifier that distinguishes cell images of one type from another. The features are

selected such that they are descriptive of the cells and give a good approximation of the

shape, size and number of the cellular features such as chromosomes and nucleus found

in cells. They are extracted using image analysis techniques including image histogram

analysis, image normalization, region isolation and region extraction techniques. The

construction of the classifier is treated as an inductive learning problem. Example images

of different cell types are presented to the learner to determine a combination of features

that distinguish examples of one cell type from another. The resulting classifier is then

tested on cell images that were not part of the data set used to train the learner.

Two classifiers were developed as a result of this research. The first one characterized

cells of wild-type, po and ms6 mutations. The second classifier characterized cells of

prophase I, prometaphase, telophase I and telophase II phases of Meiosis. The features

constituting the classifiers revealed properties in cell images, a cell biologist would use

for classification purposes. For example, the number of internal regions feature brought

out the chromosome fragmentation characteristic in po and ms6 mutations, which

distinguishes them from the wild-type cells. Similarly, the average main region

occupancy by internal regions feature separated the prometaphase cells from cells of

other phases. The classifiers were tested on a data set consisting of ten images each of the

different cell types involved. The results for the first classifier were quite impressive in
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the way of being able to correctly classify all the images of the data set. The second

classifier misclassified a couple of cell images of type prometaphase to prophase I and

telophase I. These misclassifications can be attributed to the need of identifying more

features to distinguish the cell types.

The system needs improvements and extensions in the form of employing better image

analysis techniques and covering additional cellular events in its classification network.

The system in its present state handles only a handful of cellular events occurring during

Meiosis. The meiotic cell division process comprises of four additional phases and a large

number of mutations. The eventual goal of this research is for the system to be able to

automatically detect all the phases of the process and recognize cell mutations before

they occur. In terms of this final goal, the thesis lays the foundations to such a

comprehensive system.



63

References

[Albert et.al.,1983]  Albert, B.; Bray, D.; Lewis, J; Raff, M; Roberts, K; and Watson, J.
D. 1983. Molecular Biology of the Cell. Madison Avenue, NY: Garland
Publishing.

[Ballard et.al.,1982] Ballard, D., and Brown, C. 1982. Computer Vision. Englewood
Cliffs, NJ: Prentice Hall.

[Bruenger, 1991] Bruenger, A. T. 1991. Simulated annealing in crystallography. Annu.
Rev. of Phys. Chem. 42:197-223.

[Dawe et. al., 1994] Dawe, R. K.; Sedat, J. W.; Agard, D. A.; and Cande, W. Z. 1994.
Meiotic chromosome pairing in maize is associated with a novel chromatin
organization. Cell 76:901-902.

[Holley et.al., 1989] Holley, L., and Karplus, M. 1989. Protein structure prediction with a
neural network. Proceedings of the National Academy of Sciences (USA) 86:152-
156.

 [Maidak et.al., 1996] Maidak, B.; Olsen, G. J.; Larsen, N.; Overbeek, R.; McCaughey,
M. J.; and Woese, C. R. 1996. The ribosomal database project (RDP). Nucleic
Acids Research 24:82-85

[Nilges et.al, 1991] Nilges, M.; Habezettl, J.; Bruenger, A. T.; and Holak, T. A. 1991.
Relaxation matrix refinement of the solution structure of squash trypsin inhibitor.
Journal of Molecular Biology 219:499-510.

[Qian et.al., 1988]  Qian, N., and Sejnowski, T. 1988. Predicting the secondary structure
of globular proteins using neural network models. Journal of Molecular Biology
202:865-884.

[Quinlan, 1986] Quinlan, J. 1986. Induction of decision trees. Machine Learning 1:81-
106.

[Rost et.al., 1993] Rost, B. and Sander, C. 1993. Prediction of protein secondary structure
at better than 70% accuracy. Journal of Molecular Biology 232:584-599.

[Rumelhart et.al., 1986] Rumelhart, D.; Hinton, G.; and Williams, R. 1986. Learning
internal representations by error propagation. In Rumelhart, D., and McClelland,
J., eds., Parallel Distributed Processing: Explorations in the microstructure of
cognition. Volume 1: Foundations. Cambridge, MA: MIT Press. 318-363.



64

[Socci et.al., 1996]  Socci, N. D.; Onuchic, J. N.; and Wolynes, P. G. 1996. Diffusive
dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys.

[Turner et.al., 1993] Turner, M.; Austin, J.; Allinson, N.; and Thompson, P. 1993.
Chromosome location and feature extraction using neural networks. Image and
Vision Computing 11:235-239.

[Warshal et.al., 1991] Warshel, A., and Aqvist, J. 1991. Electrostatic energy and
macromolecular function. Annu. Rev. Biophys. Chem 20:267-298.

[Watson, 1990] Watson, J. 1990. The Human Genome Project: Past, present, and future.
Science 248:44-48.

[Wied et.al., 1989] Wied, G.; Bartels, P; and et al., M. B. 1989. Image analysis in
quantitative cytopathology and histopathology. Human Pathology 20:549-571.

[Witkin et.al., 1988] Witkin, A., Kass, M., and Terzopoulos, D. 1988. Snakes: Active
contour models. International Journal of Computer Vision. 1(4):321-331.

[Wittekind et.al., 1987] Wittekind, C., and Schulte, E. 1987. Computerized morphometic
image analysis of cytologic nuclear parameters in breast cancer. Anal. Quant.
Cytol. And Hist. 9:480-484.

[Wohlberg et.al., 1993a] Wohlberg, W. H.; Street, W. N.; Mangasarian, O. L. 1993.
Breast cytology diagnosis via digital image analysis. Analy. Quant. Cytol. And
Hist. 15:396-404.

[Wohlberg et.al., 1993b] Wohlberg, W. H.; Street, W. N.; Mangasarian, O. L. 1993.
Nuclear feature extraction for breast tumor diagnosis. International Symposium on
Electronic Imaging: Science and Technology. 1905:861-870.

[Wohlberg et.al., 1995] Wohlberg, W. H.; Street, W. N.; Mangasarian, O. L. 1995. Image
analysis and machine learning applied to breast cancer diagnosis and prognosis.
Analy. Quant. Cytol. And Hist. 17:77-87.


	References

