UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of master’s thesis by

Shardul Vikram

and have have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Dr. Rich Maclin

Name of Faculty Adviser

Signature of Faculty Advisor

Date

GRADUATE SCHOOL

Acknowledgments

I am grateful to my advisor Dr. Richard Maclin for giving me an opportunity
to work under him. I am indebted to him for helping me and for pushing me when
I needed it the most. I would also like to thank Dr. Hudson Turner and Dr. Taek

Kwon for their cooperation.

ii

Abstract

Numerous methods have been proposed for automatically creating intelli-
gent agents. One promising approach is to create agents that are able to learn
based on feedback from their environment. One such technique is reinforce-
ment learning. In reinforcement learning, an agent exists in an environment
described by the current state. For example, a robot would operate in an envi-
ronment where the state is based on the robot’s sensors. The agent is then able
to choose from amongst a set of actions (e.g., a robot might be able to turn,
move forward, extend an arm to grasp an object, etc.) and receives feedback in
the form of a reinforcement. A large positive reinforcement would be viewed as
a reward for achieving a goal while a negative reinforcement is a punishment.
In reinforcement learning, it is often the case that rewards and punishments
are sparse (i.e., they are only received when a goal is achieved or a particular
bad situation occurs like running into a wall). Thus, an agent cannot learn
to simply maximize the reward for its next action. Instead it needs to try to
maximize its reward for the sequence of future actions it takes. Reinforcement
learning provides a mechanism to address this problem.

In this thesis, we investigate a popular form of reinforcement learning called
Q-learning. Q-learning has been shown to be effective, but often requires sig-
nificant training time before achieving good results, thus it may not be suitable
for real-world tasks such as robot learning, where training time is expensive.
In this work, we investigate a simple learning task involving robotic naviga-
tion using Q-learning and demonstrate that the resulting learning is very slow.
We will then show that this problem can be somewhat mitigated by using a
teacher to bias the robot towards making good decisions during learning. Our
tests suggest that while Q-learning will indeed converge towards a solution, it
is likely to be too slow for learning environments where training is expensive or

slow.

iii

Contents

1 Introduction 1
1.1 Agent Learning 1
1.2 Difficulties in Robot Programming 3
1.3 Difficulties with Robotic Learning 4
1.4 Thesis Statemento
1.5 Layout of Thesis 6

2 Background 8
2.1 Description of the Robot 8
2.2 Mobility Robot Integration Software 11
2.3 Mobility Robot Object Model (Language Independent) 12
2.4 Mobility Object Manager: An Overview 12
2.5 Basic Robot Components and Interfaces 15
2.6 Robot Abstractions, Objects and Interfaces 17

2.6.1 Sensor Systemso o o 17
2.6.2 How the Sonar Sensors Work 18
2.6.3 Odometry and Position Control 19
2.7 Reinforcement Learning 0oL 22
2.7.1 Some Examples of Reinforcement Learning 24
2.7.2 Reinforcement Learning Environment 25
2.8 Reinforcement Learning and Dynamic Programming 28
2.8.1 Policy Evaluation 29
2.8.2 Policy Improvement 29
2.8.3 Policy Iteration oo 29

iv

2.8.4 Value Iteration,
2.9 QULearning
2.9.1 Q-Function
2.9.2 An Algorithm for Q-learning
2.10 Reinforcement Learning with a Teacher

2.10.1 Experience Replay and Teaching

Robot’s Sensors Phrased as a Reinforcement Learning Problem

The Task

4.1 Basic Robot Program to Solve the Problem

Experiments

5.1 Effectiveness of RuleNavigation
5.2 Reinforcement Learning Results
5.3 RL With RuleNavigation as a Teacher

5.4 Evaluation of the Results Obtained

Conclusions
6.1 Thesis e e e e
6.2 Results. e e

6.3 Future Work e

39

46
46

50
50
52
54
58

List of Figures

© o0 N O ot s W

11
12
13
14
15
16
17
18

The Magellan Pro from RWIT 8
The 3 different types of sensors in Magellan 9
Top schematic view of Magellan 10
A mobility software setup example 13
Mobility Object Manager 14
Sonars causing range errors o4o. e e e e 20
Sonars causing angular errors 21
The agent-environment interaction 26
A maze world, a simple example of Reinforcement Learning. 33
The sensor readings when an object is near the robot. 40
The distance discretized by dividing it into ranges. 41
The state represented by nine sensors. 43
Navigation, a basic task in robotics. 47
Rule Navigation approach. 51
RL applied toarobot. 53
Graph of percentage of time goal found o7
Graph showing steps before collision 59
Graph showing steps taken to reach the goal 60

vi

List of Tables

1 General Reinforcement Learning. 28
2 The Q-learning algorithm. 35
3 Results for RL 55
4 Results for teacher oL 56

vii

1 Introduction

The idea of creating intelligent machines has intrigued us for a long time. An
understanding of how a machine can be made to learn would open new areas where
learning can be applied and provide insight to our own learning abilities. Automatic
methods have a long way to go in real situations. They take a long time to learn
the task. The learning can however be hastened by using an external teacher. In
this thesis, I investigate Reinforcement Learning [Sutton and Barto, 1998] using a

real world robot and the method of using a teacher.

1.1 Agent Learning

Learning for an agent is improving performance at some task through experience.
Agents can be computer programs or robots that improve from experience. Some

of the basic design issues of a learning agent according to [Mitchell, 1997] are:

e Choosing the training experience - We can train an agent using different learn-
ing methods. The method used affects the learning of the agent. An agent
can have examples to learn from. This is direct learning. Each example has
an input and an output. Another method is indirect learning where the agent
learns from outcomes of the episodes of performing a task. For a robot, input
is the current state of the world and the output is the move it should make.
The degree to which the agent controls the learning is another aspect. The
agent can rely on a teacher for advice [Lin, 1993, Maclin and Shavlik, I 94], it
can learn by making random moves and exploring the environment itself, and

it can repeatedly exploit moves it made earlier.

e Choosing the target function - In an agent, the target function V is used to
choose the best move from the available ones [Watkins and Dayan, 1992]. For
an agent playing chess it chooses a move leading towards a win from among
the legal moves. For a robot it is choosing an action from the available ones
that moves it towards its goal. In learning problems, an agent is expected to

choose an approximation to the target function.

e Choosing a representation for the target function - After choosing an approxi-
mation to the target function, we need to represent it. There are many options
such as a table with states and actions, a collection of rules, a polynomial func-
tion or a neural network. In this work, we have represented a problem in the
form of a function V. Any example can be represented as a tuple < p, V(p) >,

where p is the current state and V(p) the value of the best move.

e Choosing a function approzimation algorithm - After the representation of the
target function we have to choose an algorithm to find a good function. The
algorithm computes the value of the function over a finite number of learning

iterations.

For example, a robot uses its sonars to know its state. The sonar returns a vector
of continuous values. These values represent the state of the robot. The state is
represented by a vector of numbers. We are restricted in using all of the available
features of the agent, (e.g., in a robot, the state description is dependent on the
values of chosen sensors). In robot navigation, the training experience is a vector
of sensor values describing the world, which are used to select a move. The target
function is a function that represents the best move from a state. For example, when

faced with an obstacle, the best move is to move in a direction around the obstacle.

The target function could be represented as a table of values for states and actions.

1.2 Difficulties in Robot Programming

The learning task I implement is navigating a robot between points in its environ-
ment. The robot relies only on the sensor readings to move around by executing a
series of actions. The aim is to find the best path to the goal.

One of the difficulties in robot programming is representing the target function
and implementing it. The computation needed for calculating the target function
should be possible to accomplish within realistic time bounds.

Another difficulty in programming is using the agent’s features to interact with
the environment. Some properties of a robot’s sensors to be taken into consideration

while programming a robot are:
e Sensors readings may be uncertain, even in a stable environment.

e The data obtained from the readings is not always an accurate or complete

description of the environment.

e Actuators in a robot are prone to errors, and may not produce the desired

action.

One example of a possible inaccuracy is that in a dynamically changing environ-
ment, sensors can receive signals reflected from other objects in the environment.
Sensors often measure aspects of the world indirectly. Some things that sensors may

not do are:
e They may not identify objects.

e They do not necessarily give any information about the shape of an object.

e They often do not differentiate between moving and static objects.

e They may be incapable of integrating information obtained from other devices

about the environment into one single description.

Even in the case of motor actions, the achieved and desired results differ. Smooth
floors, carpets or obstacles in contact with the robot cause odometric errors. Sensing
and action rely on the robot’s interaction with the environment. To program a robot,

its functions and limitations should be known.

1.3 Difficulties with Robotic Learning
Some problems for designing robotic agents that learn include:
e Which algorithm for learning is likely to perform the best?

e How much training is necessary? We have to end the training of the agent
after we have a fairly accurate estimation of the target function. However the

number of training episodes to get there is unknown.

e When can prior knowledge be used for learning? This could be important if

training data is scarce or expensive to obtain.

e What is the best way to reduce the learning task? One way to reduce learning
is teaching. If a teacher guides the agent, it need not waste time on random

moves for learning a target function.

e How do we represent the environment? We must capture important values

about the environment using only sensor readings.

e How can continuous values (sensor readings) be used to represent a state?
Continuous values result in a large number of possible states (in theory, an
infinite number). A way out of this problem is discretization of the continuous

values to reduce the number of states.

Different algorithms have been applied to robot navigation, one of them is
Q-learning [Watkins and Dayan, 1992]. In Q-learning, the robot executes a series of
random actions to change its state and receives a reward for each action executed.
The reward function might give a zero reward if the new state is not the goal state
and a large positive reward if the new state is the goal state. During learning,
actions are taken in a stochastic manner, the robot may take quite some time to
reach its goal. Since there is no external teacher to judge the actions of the robot,
it will often make exploratory moves, some of which may be bad, like bumping into
objects. In contrast, in direct learning, the agent receives feedback about the best
action for each state or the value of each action, which allows the agent to converge

more quickly.

1.4 Thesis Statement

The purpose of my thesis is to evaluate Reinforcement Learning using a simple real
life robot navigation task and determine whether replay (defined below) is effective
in learning such a task. In Reinforcement Learning (RL), an agent learns by explor-
ing the environment. In replay we repeat a teacher’s solution to a task a number of
times to make the agent learn it [Lin, 1993]. One question we consider is: in a simple
task of teaching a robot to find its way to a position in its environment would RL
be efficient in making the robot learn the task within a given time bound? Or is a

teacher necessary for learning? To answer this question I first apply Reinforcement

Learning and allow the robot to make random moves to reach the goal. I also use
RuleNavigation, a simple navigation program we developed to determine a reason-
able number of moves the robot would need to make to reach the goal. Then I used
the combined approach of RL using the output of RuleNavigation as a teacher to

guide the robot to the goal and find answers to the questions above.

1.5 Layout of Thesis

The next chapter is the background for my thesis. In the background, I describe
MagellanPro, the mobile robot used in this thesis. I also describe the Magellan’s
architecture and the software it runs. There is a brief introduction to sensors and
odometry of Magellan, and the problems faced when using them. This is followed
by an introduction to Reinforcement Learning. In this I describe the Q-learning
algorithm, which is applied to our robot. Reinforcement Learning with a teacher
is discussed next. This is followed by a discussion of how to represent the robot’s
sensors as a Reinforcement Learning problem, in which I describe the representation
of the environment using sensor readings.

The third chapter is a description of RuleNavigation, which is our simple method
for programming MagellanPro. The chapter explains how an environment descrip-
tion is captured and used later. The problem of obstacle avoidance and reaching
a goal is described next. The fourth chapter presents experiments I conducted
and results obtained. It looks at the effectiveness of the Reinforcement Learning
observing the RuleNavigation. Finally it discusses whether the results of using the
RuleNavigation with Reinforcement Learning were any better than that of just using
Reinforcement Learning.

The fifth chapter contains conclusions and discusses the thesis, the results and

future work.

2 Background

In this chapter I describe the mobile robot MagellanPro that I used for learning,
and the software it uses. I describe Reinforcement Learning and then Q-Learning,
a form of Reinforcement Learning (RL), which I applied to programming Magellan.
I also present RL with a teacher and how Magellan’s sensors are phrased as an RL
problem. Figure 1 shows the MagellanPro mobile robot used for learning with a

mounted camera and radio antennas.

2.1 Description of the Robot

The MagellanPro mobile robot, from Real World Interface, is 16 inches in diameter

and 10 inches in height, and weighs 15.9 kilograms. MagellanPro has the following

8

Figure 1: The MagellanPro from Real World Interfaces Inc. (RWII), with a mounted

camera, radio antennas and an on-board PC.

OJO|O|O |0 >

— — — — — § Infrared

1 1

Figure 2: The 3 different types of sensors around MagellanPro (side view). The top

Bump

sensor is sonar, the middle is infra-red, and the bottom are bump sensors. There

are 16 sensors of each kind, with a spacing of around 2 inches

types of sensors: (1) sonar; (2) infrared; and (3) tactile (bump).

The sensors are arrayed around the robot body. There are 16 of each type
equally spaced. The sonar sensors are placed around the upper part of the robot,
the infrared sensors around the middle part and the tactile sensors around the lower
part of the body. Figure 2 is a schematic diagram of the 3 types of sensors of
MagellanPro.

MagellanPro has an on-board Pentium based-EBX (Embedded Board eXchange)
system [Group, 1997], and communicates with a desktop PC using wireless radio
ethernet. An EBX is a single-board computer for embedded applications. The
EBX-compliant single-board computer offers functionality equivalent to a complete
laptop or desktop PC system. The MagellanPro is assigned an IP address and can
be contacted via telnet. It has 2 lead acid batteries which can supply power for
2 to 3 hours. Its turn radius is zero and its drive is 2-wheel differential. It has a

maximum translational speed of 1m/second and a rotational speed of 120°/second.

Mounting Board

for camera
Radio Antenna
Charger
port
Joystick Emergency stop
port button
rFlex Screen (LCD of onboard PC)

Figure 3: Top view schematic of MagellanPro, showing the rFlex Screen, the two
antennas, a stop button to stop the robot in emergency, a joystick and a charger

port.

The batteries are replenished using a charger which is connected to the robot for a
maximum of four hours with the on-board PC off. If the PC is on, the charger can
be connected to the robot for an indefinite period.

The robot can also be driven with a joystick. It has optional accessories which
can be mounted on it such as a camera and laser sensors. The MagellanPro we used
has a camera mounted on it, but does not have laser sensors. Figure 3 shows the
schematic top view of MagellanPro with position of the camera, on-board PC and

radio antennas.

10

2.2 Mobility Robot Integration Software

The MagellanPro uses a software package called Mobility [RWII, 1998b]. It is soft-
ware from RWI introduced in October 1998 for robot development. This software
is a distributed, object-oriented toolkit for building control software for single and
multiple robots.

Mobility defines the Mobility Robot Object Model (MROM) [RWII, 1998b] using
the Common Object Request Broker Architecture (CORBA) 2.X standard Interface
Definition Language (IDL) [Michi and Vinoski, 1999]. The MROM defines the robot
system as a distributed, hierarchically organized set of objects. Each object is a
separate unit of software with an identity, interface and state. Objects represent
abstractions of whole robots, sensors, actuators, behaviors, perceptual processes
and data storage. Objects provide a flexible model of the robot system that can
be reconfigured as new hardware, new algorithms, and new applications are added.

Some of the advantages of the Mobility Robot Integration software are:

e Extensibility over time - the existing software can be extended by adding new

modules for new hardware components.
e Multiple robot systems - multiple robots can be programmed using Mobility.

e Integration among researchers - a common platform ensures that different

researchers can integrate their modules without worrying about portability.

The on-board computer has an LCD screen which is known as the rFLEX
screen [RWII, 1998a]. When the computer is powered up a menu appears on the
screen, including a user interface to the robot’s system such as the sensors, motors

and joystick. Text from a remote Linux serial console can be directed to the rFLEX

11

screen. Mobility addresses a critical issue in robotics research, system integration,
where different parts of the robot are accessible through one interface and act as

parts of one whole system.

2.3 Mobility Robot Object Model (Language Independent)

The Mobility Robot Object Model (MROM), defines the interfaces and objects
needed to represent and manage robot software as a set of concurrently executing,
distributed software components. These components represent software abstractions
of the robot hardware and behavior. MROM describes a robot as “a hierarchical
collection of object instances that provide interfaces to each component of the robot
system” [RWII, 1998a].

At the top of the MROM hierarchy is a standard CORBA naming service. This
naming service allows the software to access many elements of a multi-robot soft-
ware system. The top level name server contains a directory of robot objects and
shared support objects, such as maps shared by a robot team. A robot may include
an odometer, tactile sensors, sonar sensors and actuators. All these components are
available to the user through a software interface unit called SystemModule Compo-
nents [RWII, 1998b]. Figure 4 shows the MROM hierarchy with the naming service

at the top and the robot with its subsystems.

2.4 Mobility Object Manager: An Overview

The Mobility Object Manager (MOM) is a graphical user interface that lets users
observe, tune, configure, and debug the components of Mobility robot control pro-
grams as they are running. Figure 5 shows the MagellanPro’s sonar and drive view in

the MOM. The Mobility Object Manager is the primary tool for interfacing with the

12

Naming
Service
Robot 'B’
Robot ' A’ _‘ Team Data _‘
Robot Behavior
Percentual Robot Behavior Map Map Perceptual Hardware
cep! Hardware (Laser) (Sonar) Processes Controller
Processes Controller : | |
| | Local - Pose
Local Drive Pose Mapper Drive Control
Mapper Control
: Odo Gmove
Odo Gmove| :
— Sonar
— Sonar
—1 /O Port
—1 1/O Port

Figure 4: An example of the MROM Setup.

Each box represents a mobility compo-

nent. The MROM is defined using the CORBA Interface Definition Language (IDL)

and is based on CORBA object model. Shown here is an example of programming

two robots ‘A’ and ‘B’ using mobility components. The robots share some common

data like maps and use basic mobility components like sonar and drive, to interact

and move in an environment.

13

Mobility Object Manager
| File Browse
New Owner Hierarchy

1 Aspect: Owner Drive /MagellanPro
¢ ==» MagellanPro
O— === Drive
© w=e SoOnar

w=n POINt
~w=v Range
e Segment
O— w=e Odometer Translate: 0.72 Rotate: 0.90
(— w=w Hardware b
(b)
@ Sonar/MagellanPro

(€)
(a) Example of System Module Component is MagellanPro.
(b) Examples of Composite System Component are Drive, Sonar
as shown above in figure (b) and (c).
(c) Examples of State Components are Point, Range which come
under Sonar and are shown in figure(a).

Figure 5: The Mobility Object Manager is a GUI for programming MagellanPro and
the various components in Mobility Robot Object Module. Using the MOM, Mag-
ellanPro can be driven by dragging the mouse, its sensor readings can be seen and
the refresh rates of the sensors can be changed. The Drive shows the translational
and rotational velocity of Magellan. The Sonar shows a range view of some of the

sensors of Magellan. 14

robot programs. It is written in Java and communicates with Mobility components
through CORBA. It depends on a few background programs running on computers
that participate in the Mobility system. A Mobility system is represented by objects
that are accessible from a top-level naming service. Because the Mobility Object
Manager and Mobility objects controlling the robot are truly distributed object sys-
tem, there are many ways to arrange a program. The mobility base server must run
on the computer physically connected to the robot hardware. Mobility objects may
run on the same or other computers. The Mobility Object Manager achieves best

performance running directly on the desktop using the X windows protocol.
2.5 Basic Robot Components and Interfaces
Some components in Mobility are:
o SystemComponent objects - represent robot hardware and software modules.

o CompositeSystemComponent - used to aggregate related state and computa-
tional objects and treat them as a group. Examples of this are the Actuator

system and the Sensor system.

— SystemModule Component - is a special CompositeSystemComponent which

becomes the ‘root’ of a collection of objects within a single process.

o StateComponents - represent the lowest level of the robot hardware and are

updated dynamically and asynchronously. Some basic StateComponents are:

— PointState - is a set of 3D points in space (like sonar target points).

— ActuatorState - represents the actuator status or actuator command value.

For example the two velocities of the robot (translational and rotational),

15

are stored in an actuator state.

— ImageState - contains integer image data from the camera.

Mobility’s basic robot components provide low-level abstractions of robot-sensors,
actuators and physical properties in the form of Mobility System Components. In
Mobility, a robot is a hierarchically-arranged collection of elements. The top level
of any robot is the SystemModuleComponent, a Mobility SystemComponent that
contains the separate subsystems of an individual robot. Each of these subsystems
is itself a CompositeSystemComponent. The subsystems contain dynamic State Ob-
jects, updated based on the state of the robot sensors and actuators, and properties
that allow client programs to discover and adapt to the properties and resources of
an individual robot at runtime.

Through the interfaces of these objects, client programs can obtain:

e State information about the robot, where the current position of the robot is
relative to its starting position. The starting position of the robot is always

taken as the origin.

e The location of robot sensors, the physical location of a sensor on the robot’s

body. The sensors are numbered zero to fifteen, counter-clockwise.
e Properties of the robot sensor, such as the refresh rate.
e The general shape of the robot body.
e Other basic geometric information determined by the robot hardware.

Clients can also command the robot to move by updating the state of objects

contained in the drive object. The basic robot objects, especially sensors, provide

16

different views of the state information, raw sensor numbers and geometric informa-

tion like robot-relative target points or contact points.

2.6 Robot Abstractions, Objects and Interfaces

The MROM defines some common abstractions that are useful for building robot
control software. These abstractions include representations for: (1) the sensor
state; (2) the actuator state; and (3) the physical robot shape.

A sensor is a device which responds to an input quantity by generating a related
output, usually in the form of an electrical or optical signal. In Magellan, sonar
sensors give the position of an object taking the echo returned from it as input.
An actuator is a device that measures a physical quantity and returns its electrical
equivalent. The odometer is an example of an actuator, which measures the distance
traveled from the rate of revolution of the wheels of the robot. In addition to
these fundamental abstractions, there are some basic interfaces for building robot
behaviors or control layers for the robot control system.

The concept of state is captured by StateComponents. These objects provide
simple state buffers that are accessible from anywhere in the Mobility system. This
allows StateComponents to communicate state changes, and provide access points
where the internal operation of the software can be viewed remotely for debugging

of algorithms.

2.6.1 Sensor Systems

The sensor systems of the robot are each represented as a CompositeState Component
whose properties describe relevant features of a sensor system. A set of StateCom-

ponents are included as child objects underneath the sensor system components

17

representing various views of the sensor state. These views include: (1) raw range
data positions of obstacles in meters; and (2) point positions of obstacles in X,Y

coordinates.

2.6.2 How the Sonar Sensors Work

SONAR, an acronym for SOund Navigation And Ranging, models the contours
of an environment based on how it reflects sound waves. The sender generates a
sonic wave that travels outwards in an expanding cone, and listens for an echo.
The characteristics of that echo can help the listener locate objects. MagellanPro
reads its sensors three times a second. For each reading, the total time between the
generation of the ping and the receipt of the echo, coupled with the speed of sound
in the robot’s environment, generates an estimate of the distance to the object that
bounced back the echo.

As the robot’s sonar sensors fire off pings and receive echoes, they continuously
update a data structure. Each sonar sensor detects obstacles in a cone-shaped range
that covers a half-angle of about 15 degrees and spreads outwards. An obstacle’s
surface characteristics (smooth or textured), as well as the angle at which an obstacle
is placed relative to the robot, significantly affect how and even whether that obstacle

will be detected. The sonar sensors can be fooled for number of reasons:

e The sonar sensor has no way of knowing exactly where an obstacle is in its

fifteen-degree (and wider) cone of attention.

e The sonar sensor has no way of knowing the relative angle of an obstacle.
Obstacles at steep angles might bounce their echoes off in a completely differ-

ent direction, leaving the sonar sensor ignorant of their existence, as it never

18

receives the echo.

e The sonar sensor can be fooled if its ping bounces off an obliquely-angled
object onto another object in the environment, which then, in turn returns an
echo to the sonar sensor, but at a seemingly further distance. Figure 6 shows

how edges of a sonar beam cause error when reflected off a surface.

e Extremely smooth walls presented at steep angles, and glass walls, can se-
riously mislead the sonar sensors, because of their ability to reflect sound.
Figure 7 shows that a sonar beam can be reflected off a surface in such a way

that it does not return to the sensor.

To combat the problem, the robot has multiple sonar sensors, providing redun-
dancy and enabling cross checking. Sonar sensors almost never underestimate the
distance to an obstacle. The reason for this is that an edge of the cone may be
reflected off the object back to the sensor. As a result the distance measured would
be less than in the case where the object was lying in the cone of reflection. Figure
6 illustrates this point. Thus it is a good idea to examine the distances returned by

a group of sensors and use the lowest value.

2.6.3 Odometry and Position Control

The robot’s mobile base is equipped with wheel encoders that keep track of the
revolutions of the wheel as the robot travels about its environment. The robot’s
motion controller integrates these measurements to estimate the robot’s current
position at any time with respect to its original position; that is, where it was when
it started rolling. While this measurement is highly accurate for short distances,

errors can and do accumulate as the robot travels further afield. By itself, the

19

Actual Range
(along center line)

Apparent Range

Figure 6: Range error caused by an edge of beam reflection. In the figure it is shown
that one edge, the left one, of the cone is reflected back from the wall while the
other (right one) is not. The actual distance is the measured by the reflection of the
waves along the centerline of the cone. Because of the way the waves are reflected

back a range error occurs.

20

Cone of Reflection

,k”—l—__

No echo from this position
Strong echo

|
|
|
|
|
|
|
|
|
|
from this poin ‘,
|
|
|
|
|
|
|
|
|
|
|

Figure 7: How sonar can be fooled: angular errors. The cone hits the wall at an
angle. Following the laws of reflection it is reflected away from the robot sensor. A
strong echo occurs when an object is perpendicular to the cone of reflection, which
is not the case here because the cone has bounced off the object. In such cases
the robot sensor may receive an echo that has been reflected many times or it may

receive no echo at all. In each case the actual distance of the object cannot be
determined.

21

robot’s motion controller hardware has no way to detect wheel skid or errors in
wheel tracking, routine hazards in real-world research and operational environments
plagued with slippery floors, carpeting and doorjambs.

Mobility provides odometry information computed from robot wheel rotation.
The robot position and velocity can be determined in X, Y distances relative to the
start-up location. The odometry output is in meters and radians and the velocity

output is meters/second and radians/second.

2.7 Reinforcement Learning

In Reinforcement Learning (RL) [Sutton and Barto, 1998|, an autonomous agent
senses and acts in an environment and learns to choose actions to achieve its goals.

For example, a robot is given a task of moving from one end of the room to the
other. For simplicity we assume that the room is divided to form a grid. The robot
moves from one cell of the grid to the other. The chairs and tables in the room
are obstacles in the robot’s path and they occupy a number of cells in the grid. A
robot can move from one empty cell to another but not into one which is already
occupied by objects. The robot moves around these obstacles into empty cells and
should eventually reach the goal. Since there can be more than one way to move to
the other end of the room, one question is which path should the robot take? The
answer is the best path out of the available ones to reach the goal avoiding obstacles
in the way. Therefore the task of the robot is to learn to make its way to the goal
following a good path. A control policy, which the robot learns, determines the path
to the goal. A policy 7 is a function 7(s) — a that maps states to actions, that is
for each state it indicates the action the agent should take. An action is a move

which changes the agent’s present state and results in a new state. How does the

22

robot follow the control policy? The robot observes its sensor readings to select an
action. In each state the control policy, learned by the robot, indicates the action
to take (e.g., to move to the left, to the right, forward or backward). The action
taken in a state results in a new state. For each action the robot takes it receives
a reward. For example, the reward for reaching the goal could be a large positive
value, for running into an obstacle a large negative value, and for other moves a zero.
Following the control policy, the robot attempts to choose actions which maximize
the accumulated reward in each state.

The policy evaluation in RL differs from other function approrimation problems

because it takes the following into consideration:

e Delayed Rewards - In each state the robot performs an action and receives a
reward. We might think that we have a fixed table of <s,a,r>, where for an
action a in state s the robot receives a reward r. This is however not the case.
Assignment of reward r for an action a in state s may be delayed until a far

distant goal is achieved.

e Exploration/Exploitation tradeoff - In RL, the agent makes moves probabilis-
tically during learning. By making moves it has not tried before it explores
yet unknown state-action combinations. It can also repeat the set of moves
which maximized its rewards earlier, this is exploitation. The agent faces a
tradeoff in choosing exploration, finding new states to maximize rewards, or

exploitation, following the policy which has yielded high rewards in the past.

e Partially Observable States - For a robot moving forward, the description of
the environment is given by the sensors in the front. This may provide only

partial information about the environment because only a subset of the total

23

set of sensors are read.

e Multitask Learning - Robots usually do not learn a single task. The actual
task may contain subtasks which should be learned first. The robot learns
one subtask and then moves on to learn the next. For example, navigating
through a corridor while picking up a tennis ball from the floor. This consists
of two subtasks: navigating and picking up a tennis ball. The robot should
be able to use knowledge of previous moves in learning a new task so that the

time to learn a new task is reduced.

2.7.1 Some Examples of Reinforcement Learning

RL examples are common in our life, from learning to drive a car to baking a cake.
Consider driving a car, which is initially difficult. We need to keep the car steady
by turning the steering to the left or the right. If the car moves more towards the
left, we steer it right, if it moves towards the right we steer it left. As time passes
we improve and are able to keep the car steady without moving the steering too
much.

Following are some more examples of RL:

e In chess a move is determined by the state of the board. If the next state is
a winning state, a high positive reward is given. If it is a losing state a high

negative is given. For other states the reward is zero.

e Pole balancing on a cart [Chambers and Michie, 1968], is a classic planning
problem. To balance the pole, force is applied in the direction opposite to
which it is falling. The force depends on the position of the falling pole. The

force is small if the pole is almost straight and large if it is far from the center.

24

The reward is a high negative if the pole falls and zero if it does not.

e A robotic arm learns to pick up a can of juice. It searches the space for the
can. For picking up the can it receives a large positive reward. For knocking
the can down it receives a large negative reward. For moves resulting in
neither of the two it receives a zero reward. The robot can be given small
rewards for completing subtasks. For example, moving near the can results
in a small positive reinforcement. For aimlessly searching in space a small

negative reinforcement might be given.

2.7.2 Reinforcement Learning Environment

A state is said to have the Markov Property if we are able to determine the next
state by considering only the current state and the action taken from the state. An
RL task that satisfies the Markov property can be modeled as a Markov Decision
Process or MDP [Mitchell, 1997, Sutton and Barto, 1998].

In RL, an agent has a set of states S and a set of actions A it can perform. At
any given time ¢, the agent can be in any one of the states. From that state it can
execute one action out of the available set of actions A. For performing an action it
gets a reinforcement (a reward) r that represents feedback about taking that action
in that state. This interaction between the agent and its environment is shown in
Figure 8. The action puts the agent into a successive state where it selects a new
action. The task of the agent is to learn a policy which can help it select the best
action in each state. The cumulative reward is calculated by adding the rewards
that would be received in the future, by following the policy, discounted by some
factor. If we follow the policy 7 from some state s;, the cumulative reward we would

get is:

25

Agent

State / Actior\ \Reward

Environment

Figure 8: The agent-environment interaction. The agent perceives its position in
the environment, the state, executes an action, and receives a reward in return for
the action. For example, a state could be the position of the robot with respect to
an obstacle and the set of possible actions would be moving left, right or back. The

reward would be -10 if it hits the obstacle and +1 for avoiding it.

VT(st) = re+arga+7 e+ (1)
0 .
= Y ' (2)
1=0

where r4; is the reward received by taking an action when in state s;;;. From
state s¢, the agent moves to state s;11 and receives reward r;. From state s;i1
it moves to s;+2 and receives a reward ry;+1 discounted by a factor . All of this
while the agent follows the policy w. The constant v, 0 < v < 1, determines the
relative value of delayed versus immediate rewards. Rewards received 7 time steps
into the future are discounted by a factor of ¥¢. If ¥ = 0, only the immediate rewards
are considered. As 7y is set closer to 1, future rewards are given greater emphasis
relative to immediate rewards. We do not use v = 1 because in most cases we prefer

to obtain the reward sooner rather than later. The quantity V™ (s) is the discounted

26

future reward achieved by following the policy 7 from the initial state s.

*

™ = argmazV"(s),Vs (3)

The states, actions and reinforcements in a problem can be illustrated by taking the
robot MagellanPro as an example. Assume the task for the robot is reaching a goal
state which lies at coordinates (X,Y) relative to its present position. The values of
the sensors in Magellan represent a state. The actions possible are turning to the
left, turning to the right and moving forward. Choosing actions is not a simple task
because of the range of available angles in which the robot can turn. For example,
turning to the left can be turning by anywhere from say 37° to 58°. We therefore
allow only a small finite set of discrete actions. For instance turning to left could
be our action number 1, and the robot will turn by a fixed angle 30°. Each act
of turning to the left or the right is followed by moving a small distance in that
direction. Each action executed by Magellan brings it into a new state. It receives
a reward of -1 for entering a state which is not the goal. For bumping into objects
it receives a high negative reinforcement, say -100, and for reaching the goal a high
positive reinforcement, say +100. The rewards for each action are decided by the
trainer.

An RL agent follows the general plan shown in Table 1. It maintains a table of
all possible states and its current estimate of V™ (s;) values. This value is the amount
of reward the agent would recieve if it starts from state s and follows the policy .
There are several actions possible from a state. Each time an action is taken in a

state the agent attempts to update the V™ (s;) value. The policy of the agent would

27

Table 1: Following is the general plan followed by an agent. The discount factor ~y

is a constant € [0, 1).

General Reinforcement Learning
e For each s; initialize the table entry V7 (s;) to a small random value.
e Observe the state s.
e Do forever:

— Select an action a and execute it
— Receive immediate reward r
— Observe new state s¢41

— Update table entry for V™ (s;) using the equation:
V7 (s1) 7+ AV (s041)

be to take an action to maximize the V™ (s;) of a state s or the cumulative reward it
receives when starting from state s. If a new policy gives higher cumulative rewards
than the present one then the agent follows the new one. This is policy improvement
and with improvement the agent moves towards learning the best policy, one which

will give the highest possible cumulative reward V" (s;) for a state s.

2.8 Reinforcement Learning and Dynamic Programming

Dynamic Programming (DP) solves a problem by finding solutions to sub-problems
and combining them to get a final solution. DP is often applied to optimization

problems, where many solutions are possible for the same problem.

28

DP takes the following into consideration when finding the best policy: (1) policy

evaluation; (2) policy improvement; (3) policy iteration; and (4) value iteration.

2.8.1 Policy Evaluation

Policy evaluation for a problem is computation of the cumulative rewards obtained
by an agent over a period of time by following a policy . It is likely that this is

difficult or intractable to directly calculate for any real world problem.

2.8.2 Policy Improvement

The value function is used to find a good solution to the problem. There may
be a policy that is better than our current one. If there is such a policy then we
should follow that one instead of our current one. How do we know that a policy is
better? The answer is by comparing the cumulative rewards obtained by following
both policies we can decide whether we need to change to a different one or not.
Therefore if by following a policy n’ we get a higher cumulative reward V™ than by
following 7, we should follow /. This helps in finding the best policy which is the

one that gives the highest cumulative rewards.

2.8.3 Policy Iteration

A Dbetter policy is found by policy evaluation followed by policy improvement. A
policy is first evaluated, its value function is calculated, then a better policy is found
if it exists. If an improved policy exists we follow the new policy. Thus the best
policy can be found by repeatedly doing policy evaluation and policy improvement
until no further improvements can be made. This way of finding the best policy is

known as policy iteration.

29

2.8.4 Value Iteration

Policy evaluation may involve heavy computation, a drawback to the policy iteration
method to find a better policy. Another method used to find the better policy or
a better value function is value iteration. Value iteration finds the best policy in
a number of iterations. The terminating condition of the value iteration algorithm
is when there is very little change in the value function (V™) in two successive
iterations. For each state we have an estimate of V™, the total cumulative amount
received if starting from that state. Each action taken stochastically changes the
policy being followed and changes the cumulative reward received in that state. By
doing exploration and exploitation we improve the policy.

All RL algorithms try to achieve the same results as Dynamic Programming (DP)
algorithms. One of the reasons DP algorithms are not suited for large problems is

the amount of computation involved in finding the best policy.

2.9 Q Learning

Q-learning [Watkins and Dayan, 1992] maps state-action pairs to values (Q-values).
We make use of a function called the Q-function to find the best policy instead of
the value function V. Each action in a state has a Q-value. The Q-value of an action
is the sum of the discounted reinforcement received when that action is executed
and the current policy is followed. The value of the state is the maximum Q-value
in that state.

Q-learning extends the value iteration of DP. Q-learning can be applied to de-
terministic and non-deterministic Markov Decision Processes (MDPs). In a deter-
ministic MDP, an action in a state s; always results in the same state s;+1. In a

non-deterministic MDP the same actions may result in a set of states s;11 with

30

various probabilities.

Not all actions in a state are performed to calculate the cumulative rewards
resulting from successor states. Only the action with the maximum probability is
chosen. When an action is taken, its Q-value is updated by adding the reward
received upon executing that action and the discounted maximum Q-value of the

resulting state.

2.9.1 Q-Function

The Q-function updates the Q-values of the action taken in the current state. The
Q-value, Q(s,a), of an action is the reward received immediately upon executing
action from the state, plus the value (discounted by =) of following the best policy

thereafter:

Q(s,a) = r(s,a)+ymazyQ(4(s,a),a) (4)

Q(s,a) = r(s,a) + ymazy (Q(s', a)) (5)

where the function that determines the new state in which the agent should move
into by taking action a in state s is d(s,a) and the reward received by taking that
action is determined by the function r(s,a). The new state resulting from taking
action a is s”. The Q(s,a) value for a given state s and an action a from that state
is the cumulative reward the agent would receive starting from state s and reaching
the goal. The Q(s,a) values for each state and action are stored in a 2-dimensional
table containing entries for all possible state/action pairs. This entry is the Q(s,a)
value of action a in state s. Each Q(s,a) value for an action is updated following the
above given rule when that action is executed. We choose the maximum @(s,a) in

order to choose the best action a in state s:

31

w(s) = argmaz,Q(s,a) (6)

This is the agents policy. The value of Q for the current state and action summa-
rizes in a single number all of the information needed to determine the discounted
cumulative reward that will be gained in the future if action a is selected in state s.
Figure 9 shows a simple maze world where Q-learning is applied to find an optimized
path to the goal along with the cumulative rewards in each state and the Q values
for each action from a state.

Earlier we considered Q-learning in a deterministic environment. In a non-
deterministic case, the reward and the action executed at some state are probabilis-
tically chosen. In robot problems with noisy sensors and effectors it is appropriate
to consider actions and rewards as nondeterministic. Here the rewards and the ac-
tions leading to new states are viewed as producing a probability distribution over
outcomes based on the states and the actions, and then choosing the action with
maximum future reward. When these probability distributions do not depend on
previous states and actions, the system is called a non-deterministic MDP. In the
nondeterministic case we take into account that the outcome of actions are no longer
deterministic. We redefine V™ of a policy 7 to be the ezpected value (over these non-
deterministic outcomes) of the discounted cumulative reward received by applying

this policy

Vi(st) = E [Z Vrers
=0

To define the algorithm we use Q to refer to the learner’s current estimate of

the actual Q-function. The following rule updates the @ values by keeping a count

32

0 0 V=90 VvV =81 V=729
- == - <
oA | LA | °lA A | A
e
47; «; V=100 | V=90:: V=61
| I A o A | | f | %
o [y, : | Y Y
G~ [:Of G D loo:iv =90
(@ ()
Q(s,a)<72'3’Q(S’a)¢%z1 Qsa)
81 g
| f g1 A 72.% | | |
%0y |81 Y [729 + 6561 Y Y *
Qsd= . = Qsa)
U QA e
| LA 81l) l | |
100V 9 ‘ 8l ‘ 72.9 ' V V
| 100 _ 8] L
G i Q(s,a)*% Q(sa) G -
(© (d)

Figure 9: A maze world is a simple example of Reinforcement Learning. Part (a)
shows possible moves from one state to the next. For each action leading to a state
which is not the goal state, the reward received is 0. The maximum reward for
moving into the goal state is 100. The value V' in part (b) is the sum of discounted
future rewards the agent will receive when it starts from that state. The best policy
might yield the shortest path to the goal. One such policy is shown in part (d).
Q(s,a), the values on each arrow in part (c), are the maximum discounted cumulative

reward that can be received starting from s and taking an action a.

33

of the number of times a state is visited. The value of @ is updated by taking a

weighted average over the number of visits to the state:

~

Qn(s,a) = (1- an)@n,l(s, a) + ay[r(s,a) + ’ymamaIQn,l(s', a’)] (7)

where

1
“ 1 + visitsy(s,a) ®)

s and a are the state and action updated during the nth iteration and visits,(s, a)
is the total number of times this state-action pair has been tried including the nth
iteration. The new state in which the agent is thrown into is s’ and the action in

this state which yields the highest cumulative reward is a’.

2.9.2 An Algorithm for Q-learning

The key problem is finding a reliable way to estimate training values for @), given
only a sequence of immediate rewards r spread over time. This can be accomplished

through iterative approximation.

~

Vi) = mazyQ(s,d) 9)

Q(s,a) = 7(s,a) +ymazaQ(é(s,a),a’) (10)

In this algorithm (see Table 2) the learner represents its hypothesis @ by a large
table with a separate entry for each state-action pair. The table entry for each
pair (s,a) stores the current estimate for @(s,a), the learner’s hypothesis of the
actual but unknown value Q(s,a). The table is filled initially with small random

values. The agent repeatedly observes the current state s, chooses some action a,

34

Table 2: The Q-learning algorithm for deterministic rewards and actions. The dis-

count factor v is a constant € [0,1).

@ learning algorithm
e For each s,a initialize the table entry Q(s,a) to a small random value.
e Observe the state s.
e Do forever:

— Select an action a and execute it

* Initially choose actions randomly

*x As number of iterations choose actions with highest Q

1
1+67Q(3!a)

*

Assign a probability to each action using the formula
* Select an action stochastically

Execute that action

*

— Receive immediate reward r
— Observe new state s’

— Update table entry for Q(s, a) using the equation:
@(s, a) + @(s, a) + p((r+ ’ymama:@(s’, a))— @(s, a))

— s« 4

executes this action, then observes the resulting reward r = r(s,a) and the new state
s’ = §(s,a). It then updates the table entry for @(s,a) following each transition

with the following rule:

35

Q(s,a) < Q(s,a) + p((r + ymazsQ(s',a')) — Q(s, a)) (11)
where p is the learning rate parameter.
This training rule uses the agent’s current Q values for the new state s’ to refine

its estimate of @(s, a) for the previous state s. Each action is assigned a probability

between 0 and 1 by using the function , using their @ values. The action

1+e=Q(s:0)
with the highest probability is the action which returns the maximum cumulative
rewards. The agent executes an action in its new environment and then observes the
resulting state s’ and the reward r. It can be viewed as sampling these functions at
the current values of s and a. Using this algorithm the agent’s @ estimate converges
in the limit to the optimal @-function, provided the system can be modeled as a
nondeterministic MDP, the reward function r is bounded, and actions are chosen
so that every state-action pair is visited infinitely often [Mitchell, 1997]. Once the

optimal policy is reached, @(s,a) directly approximates the optimal action-value

function.

2.10 Reinforcement Learning with a Teacher

Reinforcement learning for adaptive control generally involves less human interac-
tion than many other learning techniques. The problem with RL methods is that
the convergence is slow. They also assume a MDP, where only the current state
determines the next state, which does not hold for many robot problems. An agent
can be made to deal with a range of non-Markovian tasks by relying on prior knowl-

edge [Lin, 1993, Maclin and Shavlik, I 94].

36

2.10.1 Experience Replay and Teaching

One approach to speeding up RL is to use a teacher. The teacher demonstrates how
the goal can be reached from some initial states by providing a lesson [Lin, 1993].
Each lesson contains the record of the states, actions and rewards encountered during
the teacher’s problem solution.

In the case of MagellanPro, our RuleNavigation program acts as the teacher. In
RuleNavigation, written directly using Mobility, Magellan is given a goal state and
it moves towards it recording the states it encounters on its way towards the goal.
The states which have been recorded become a lesson.

A lesson is a record of the series of states and actions encountered by the agent
in the past. For example, the information at time ¢ of the robot being in state s;
and taking an action a which results in state s;; with reinforcement r; is kept as
a tuple during learning and is known as experience. The sequence of experiences
collected in a learning trial is called a lesson. After the trial the lesson is replayed by
the learning algorithm to update the initial @ function. The agent, in this way, can
save many action executions required to learn a good control policy. The collection
of experiences is in fact a model, used by the agent, representing the environment’s
input-output patterns.

Teaching is useful in three ways:
e Partial solutions can be readily made available from the teacher.

e The learner is directed by teaching to first explore the parts of search space
which possibly contain the goal states. This is important when the search

space is large and a thorough search is impractical.
e The learner can avoid getting stuck in a local minima during the search for the

37

best policy by relying on teaching. The reason for this is that the learner is
dependent on the teacher, the teacher knows where the goal is and the learner

would be pulled out of local minima when it takes the teacher’s advice.

38

3 Robot’s Sensors Phrased as a Reinforcement Learn-

ing Problem

The sensors in MagellanPro have a range of four meters. A sensor returns the
location of an object in X,Y coordinates. The distance is measured in meters. Fig-
ure 10 shows the readings of the sonar sensors of Magellan when an object is nearby.
A problem in applying RL to a robot in a real world environment is determining
the states of the robot at each time step. The actuators and the sensors operate
using continuous values and therefore the states and actions are described in real
values. This is a problem for standard Reinforcement Learning, which assumes dis-
crete states and actions. To take each real value as a state would be impractical,
resulting in a large Q-value table.

To address this problem we divide the continuous values in ranges and represent
the sensor readings in these ranges. Thus two sensor readings sr; and sro would
have the same value if they lie in the same range. For example, if sensor 10 returns
0.51 meters for an object and sensor 9 return 0.40 meters both these readings will
have value 3 because they lie in the same range, which is 3. The range distances
used in training Magellan are shown in Figure 11. By converting the continuous
values of the sensor readings into discrete ones we are ready to apply standard RL.
We have also reduced the size of the Q-value table considerably by using discrete
values. The size of the Q-table is dependent upon the number of sensor values we
use to represent a single state. The number of actions possible from any state are
three: left, right and front. Left and right actions result in 30 degree turns. Only
three actions were taken to restrict the number of actions available to the robot,

which affects (reduces) the size of the Q-table.

39

1 4.00
2 4.00
3 4.00
4 4.00
5 4.00
13 6 1.345
- S 7 1.246
12 \ 6 8 4.00
7 // 9 4.00
! /% 10 4.00
11 :
11 4.00
8
10 9 12 4.00
13 4.00
14 4.00
15 4.00
16 4.00

Figure 10: The sensor readings when an object is near the robot. The position of an
object is returned in X, Y coordinates. The distance of the object from the robot,
where the robot is considered the origin, is v/ X2 + Y2. The distances shown in the

table above are the Euclidean distances calculated from the readings of each sensor.

40

@) (b)

Figure 11: The distance discretized by dividing it into ranges. The sensor readings
are then represented in these values instead of continuous values. This reduces the
number of states in which a robot can be. The number of states possible are 47,
where n is the number of sensors used for representing a state. The distance from
the goal is also discretized. The distance is represented in the coordinate form as X
and Y distance from the goal. The Y distance is positive if the goal is to the left of
the robot and negative if it’s on the right. The X distance is positive if the goal lies

ahead of the robot and negative if it is behind it.

41

In the case of MagellanPro, the sensor readings are first scaled to continuous
values between 0 and 1. The distance of four meters is scaled to 1 as it is the
maximum distance the sensors can read. Any object lying beyond four meters has
a reading of four meters on the sensor irrespective of its position. However this
maximum distance is not included in the view of the robot. Anything around the
robot within a radius of 60 centimeters makes up the environment of the robot.
The distance of perception is kept small because it is easier to navigate and avoid
obstacles, and the closer the object the more sensors will detect it. Therefore, by
considering the reading of a group of sensors, an obstacle can be located with some
precision.

The sensor reading is divided into four ranges. Nine sensor readings are used
to represent a state. Figure 12 shows this vector with an object lying to the left
of it. The readings represent the surroundings of the robot. These nine values are
calculated by first taking readings in three different views of the environment and
then overlapping the resulting values to produce a single view. The three views are
the sensor readings of the view in front of the robot, the view at angle € to the left of
the robot and the view at an angle 6 to the right of the robot. The final vector has
7 sensor values and two values to represent its current position from the goal in X
and Y coordinates. If goal is within 10 centimeters then range is 0, for a difference
that lies between 10 and 30 centimeters the range is 1 and for a difference from 30
to 65 centimeters the range is 2. Beyond 65 centimeters the range is 3. The range
for Y is positive if robot is to the left of the goal and negative if it is to the right.
Similarly for X coordinate the range is positive if the goal is ahead of the robot and
negative if it is behind the robot. If the robot’s present coordinate are (1,0) and the

goal is at (1,-1) then its position is (0,-4). The distance of the robot from the goal

42

15 3 2 1 0 15 14 13
2 g A]3.25 | 3.10 | 2.91 | 2.34 | 1.94 | 0.54 ﬂ 0.46\
~_ e 3 2 1 0 15 14 13
B | 3.30]3.12] 257 | 2.03] 275] 181] 1.75]
3 2 1 0 15 14 13
c | 2.86] 193 | 167 | 0.63] 057] 156] 4.00]
0 15 14 13
. 1330 [312 [257 | 1.93 [167 | 063 | 0.53] 046 | 4.0 |
2 Final discretized state description using 9 sensors
’ SI S2 S3 S4 S5 S6 ST X Y
(4]a Jalalals [s]3]3]
Left Left Left Front Right Right Right Goal Distance
32
b s o
15
14
13

Figure 12: The state is represented by nine sensors. The values of the sensors are
calculated by overlapping the sensor readings in 3 different directions. The contin-
uous values are then discretized to form the needed state description. The numbers
0,1,2,3,4,13,14,15 are the sensors that are read. The creation of the sensor array can
be compared to taking a scenic picture but in three parts and then combining them
to form a single view. Such a picture would have some overlapping areas which
need to be combined to form one scene. The same is the case here where three
different readings are taken and combined into one. In case of overlapping sensors
the minimum of sensor readings is considered. Out of the nine sensor readings the
two extreme readings are discarded. These 7 sensor readings with the distance of
the robot along X,Y axis from the goal, form the final state description of 9 values.
Here we have assumed that the goal is to the front and right of robot at a distance

greater than 60 cm. 43

along the X axis is 0 meter which falls in range 0 and the distance along Y axis is
1 meter to the right of the robot which falls in range -4 and therefore the position
(0,-4).

After obtaining the final view of the surroundings, the available actions (actions
are turning to the left, turning to the right and moving straight) are defined. This
is done by reading the range values, which give an estimate of the object distance
from the current position of the robot. Each action is then given a random initial
value between 1 and -1, which is the Q-value for that action in a particular state.
The size of the table formed was 47 x 9.

The values considered for discretization for sensor readings as shown in Figure

11 (a) were:
e Value 1: Range is less than 20 cm.
e Value 2: Range is between 20 cm and 35 cm.
e Value 3: Range is between 35 cm and 60 cm.

e Value 4: Range is greater than 60 cm.

The thresholds for X and Y distances from the goal as shown in Figure 11 (b)

were:

Value 0: If goal lies within a distance of 10 cm.

Value 1: If the goal lies within a distance of 10 cm to 30 cm.

Value 2: If the goal lies within a distance of 30 cm to 65 cm.

value 3: If the goal lies beyond 65 cm.

44

When the RL program begins it asks for the position of the goal. It then defines
its initial state. Based on the table created internally it makes a stochastic move, it
moves a short distance about 20 cm in the chosen direction. After it makes a move
it updates the table and chooses an action again. For each move, it receives a reward
of -1 if the new state is not the goal state. The robot uses bump sensors to see if it
has hit an obstacle or not. If it collides with an object it receives a high negative
reward of -200. For moving into the goal state it receives a positive reward of +200.
The reason for giving a reward of -1 for states that were not goal states is that we
want the robot to take actions it did not take before and explore the environment.
With newer actions it may find policies better than the one it currently follows and
change to a newer one.

To test RL with a teacher, the RuleNavigation program is run again and each
state the robot enters is recorded. The RuleNavigation program is a simple navi-
gation program. The robot calculates the direction of the goal and moves towards
it. After each move it stops to capture the state description and the action taken
to move out of the current state. The nine valued state description along with the
action taken is stored in a file. This is done until the robot reaches the goal. The
stored state descriptions and actions are a lesson. The lesson is replayed offline
multiple times to update the agent’s Q estimate and acts as a guide to the robot
when RL is applied again. The Q table is not randomized initially but the one which

replay was performed is used.

45

4 The Task

A basic task in programming robots is navigation. Figure 13 shows a sample nav-
igation task. Many algorithms and methods have been applied to the problem of
robot navigation through an obstacle filled environment [Choset and Burdick, 1995,
Wolfram et al., 1999], to improve performance.

The problem is teaching a robot to navigate around objects and to reach a goal.
The goal can be as simple as reaching a corner on the other end of the room or as
complex as docking to a battery charger in the other room. The robot is dependent
only on its sensors for moving in an environment. The performance of the robot
depends on its internal description of the environment. Since the sensors are not
always accurate, we must expect an approximate description of the state instead of
a perfect one. As the robot moves it creates a table of sensor readings and based

upon them it decides where there is space available.

4.1 Basic Robot Program to Solve the Problem

The basic robot program, RuleNavigation, does not use RL. The robot creates and
reads an array of sensor readings to determine its moves. The robot’s sonar sensors
and odometry are the only source of information about the environment and about
itself. The odometer readings give the position of the robot relative to the starting
position. The position is given in X, Y coordinates and direction 6 of heading. The
state description of the environment is created only when the robot nears an obstacle.
The continuous values of the sensors pose a problem for defining the states of the
robot. In the real world we deal with continuous values and the number of states

in which the robot can be is very large. To deal with this problem the readings are

46

- {

Figure 13: Navigation is a basic task in robotics. A robot navigates through an

environment with obstacles and makes its way towards the goal, here the DOCK.
The task may also be navigating through a number of rooms searching for battery
re-charger. Advanced internal map creation methods [Thrun and Buecken, 1996],

are used for such complex tasks, to guide the robot with accuracy around obstacles.

47

discretized, which reduces the number of states, which can still be large depending
upon the number of sensors used to get the description of the environment. The
state description used in navigating is an array of nine sensor values. This state
description is created by overlapping readings from the same sensors when they face
the left, right and the front.

We have written a simple navigation program to move between two points in the
robot’s environment, avoiding any obstacles in between. Our program, RuleNavi-
gation runs by taking the coordinates of the destination as input. It calculates the
direction in which the goal lies and moves in that direction. The sensor readings
are constantly updated to check for any approaching obstacle. If an obstacle comes
within a desired range, the robot stops, creates a table of sensor readings, and finds
available moves to avoid the obstacle. The robot turns in that direction and moves
a small distance. It then checks the goal’s position relative to its own and corrects
itself by turning in the direction of the goal and moving towards it. For example

if the destination coordinates were given as (1,1) and the robot was at its starting

Endy—Originy) ¢

position, the direction to move would be 45° (calculated as arctang;, 4. —Origin.

the left, based on its coordinate system where the axis have been changed, the X-
axis in the real world being the Y-axis in the robot’s system and vice-versa. If an
obstacle appears in the middle, the robot updates its sensor readings and creates
the nine sensor value table which for example may have a value [4,4,4,3,1,1,2,2,2]
for the nine sensors, then the robot after reading the table would place its position
in the front and to the right. This is calculated by taking the minimum of the three
rightmost readings [1,2,2] and of the three in the middle [3,1,1] of the table. The
available space is on the left [4,4,3], where the robot will move.

RuleNavigation is very basic. It works by creating a table of the sensor readings

48

and reading it to make a move. The state description is created only when the
robot is near an obstacle. There is no knowledge of previous states encountered.
The navigation is guided by the direction in which the goal lies.

There are some errors involved in running RuleNavigation. The errors are due
to the robot’s own systems like sonars and odometer. It can happen that the robot
bumps into objects because the sonar is late in detecting it. This happens quite
often. The actuator system of the robot introduces errors in the motion of the
robot. As the robot moves, small errors due to the actuator system accumulate over
time and cause the values to be inaccurate. Therefore the achieved and the desired
direction of motion are not the same. This is a problem when precision is required

of the robot.

49

5 Experiments

We conducted five experiments where Magellan Pro was trained to navigate using
RuleNavigation, Reinforcement Learning (RL) and RL with RuleNavigation as a
teacher. The task was to move between two points, about 1.1414 meters apart.
The starting point was fixed as was the origin. The end point lay to the right and
front of the robot. In the robot’s coordinate system it was the point (1,-1). In
RuleNavigation the robot would turn in the direction of the goal and move towards
it. In the case of the other experiments, RL and RL with a teacher, the robot
made stochastically chosen moves. In the act of choosing an action it might collide
with walls or wander away from the goal. If a collision occurred we would start
again, otherwise we let the robot explore the environment. In RL with a teacher
the RuleNavigation was run and all the states encountered by the robot and the
actions taken from those states while moving towards the goal were recorded. The
start and the end points were the same in all experiments. The reason for choosing

such a small distance was to avoid errors due to the actuators to affect the results.

5.1 Effectiveness of RuleNavigation

RuleNavigation was run 5 times in each experiment. The program ended success-
fully with the robot reaching the goal. When there is no obstacle the robot turns
and moves towards the goal. When an obstacle lies in the path, the robot finds a
way to avoid the obstacle and then moves on to find the goal. Figure 14 shows how
RuleNavigation moves the robot from its starting position to the goal. RuleNaviga-
tion takes into account dynamic objects. The robot stops and recreates the sensor

table of the environment, if a dynamic object passes close to it. The time taken to

50

DOCK

SN

< _ \ N /7
B [~
\ / |)
c-
<

B

Figure 14: Rule Navigation approach to obstacle avoidance. The robot turns and
moves in the direction of the goal, from its initial position A. If it encounters an
obstacle at B, it creates an internal table of the environment (state description) and
moves to C, avoiding the obstacle. At C, it recalculates the direction of the goal

and moves towards it. D is the final position, the goal, for the robot to reach.

51

reach the goal without any obstacle in the way, depends on the speed of the robot.
I used a translational velocity of 0.15 m/second. The goal position is given in the

coordinates, taking the robot’s position as the origin.

5.2 Reinforcement Learning Results

During learning, a reward of -1 was given to a move leading the robot into a state
which is not the goal, a negative reward of -200 for colliding with objects and +200
for reaching the goal. Figure 15 shows how the robot will navigate if it learns using
RL.

The robot had a training phase of 10 episodes and then an evaluation phase of
5 episodes. In the training phase the robot was made to learn the task. It made
stochastic moves to reach the goal based on the current predicted Q-values of the
possible moves. The probability of making a random move was high initially and
then decreased slowly as the training continued and the robot picked the action
with the maximum Q-value later. In the evaluation phase the robot just chooses
the move with the highest Q-value. In both the phases the starting position of the
robot was the same.

The total number of training phases in each experiment were 200, divided into
20 training phases of 10 episodes each. The number of evaluation phases were 20,
one for each training phase, of 5 episodes each. The robot was stopped and made
to start all over again if a collision occurred or if it reached the goal in the training
phase. In the evaluation phase the number of steps before it collided or it took to
reach the goal were noted. The average time for a training phase with 10 runs varied
from an hour and a half to two hours. The average time for evaluation was forty

five minutes to an hour and fifteen minutes. We did not set a limit to the number

52

DOCK

A
o
\\/’ N /’/
' \¢
\l
\ /
A
|
| N

\

,T 7
\/ NI
| <
\ |
\ 7

/ A

Figure 15: A sample of the path the robot might follow during reinforcement learn-
ing. The robot makes moves probabilistically and explores the environment. Shown
is an episode of training that results in a failure, the robot never reaches the DOCK.
For each move the robot receives a reinforcement of -1 if the state is not the goal
state, -100 if it hits an object and 4100 if it reaches the goal. RL may consist of a

number of such episodes before the robot learns to reach the DOCK.

53

of moves the robot should make before stopping if it does not reach the goal.

The results obtained from each experiment were averaged to get a final result
of the the performance of the robot. Table 3 shows the average results for the five
experiments. Dynamic objects like people affected the evaluation, causing the robot
to wander a lot and ending up with a collision. Figure 16 shows the percentage
of collisions and successes in reaching goal by RuleNavigation, RL and RL with
Teacher. The percentage of the robot reaching the goal is low initially and then
increases with the training episodes. It finally reaches a maximum of 80% at the

end. This percentage is an average taken over the 5 experiments.

5.3 RL With RuleNavigation as a Teacher

RuleNavigation was also used as a teacher. During a run of RuleNavigation, the
robot stored state descriptions with the action taken in that state. A number of state
descriptions are stored, collectively called a lesson, and used when RL is applied to
the robot. The robot refers to the stored states and action when making a move.
This results in the reduction of random moves made by the robot. The presence of
a teacher affects the learning by speeding it up. Table 4 shows the average results
over the 5 experiments for RL with a teacher.

The number of steps taken by the RuleNavigation was generally 10. The robot
just turned in the direction of the goal and moved towards it. The stored moves are
then replayed as if the robot is learning to move on that path only. The training and
evaluation is done in the same way as in the RL without teacher after the replay is
over. The robot makes random moves to reach the goal. If it finds the path followed
in the replay it is pushed towards the goal.

For RL with the teacher after a training phase an evaluation phase was com-

54

Table 3: Below are the average results for the evaluations in 5 experiments done for
RL without a teacher. The average performance of the robot over the 5 experiments

improves with the training and reaches a maximum of 80%.

Evaluation | Runs | Percentage of Times | Average Steps | Average Steps
No. Goal Reached before Collision | to Reach Goal
1 5 20 14.34 11
2 5 0 9.76 na
3 5 60 11.2 12.67
4 5 0 10.76 na
5 5 20 9.84 13
6 5 0 11.56 na
7 5 0 6.16 na
8 5 40 11.08 12
9 5 20 9.53 11
10 5 40 14.31 11.3
11 5 20 10.84 12
12 5 20 8.1 15
13 5 50 13.82 9.5
14 5 60 16.24 10.08
15 5 45 15.07 9.58
16 5 53.33 15.7 9.67
17 5 66.67 15.6 9.67
18 5 65 14.68 10.25
19 5 76 15 10.3
20 5 80 15 10.3

55

Table 4: Results for RL with a teacher. The results are again averaged over the
5 experiments. The performance of the robot is certainly better with the teacher,

which speeds up the learning and promises a faster convergence to the solution.

Evaluation | Runs | Percentage of Times | Average Steps | Average Steps

No. Goal Reached before Collision | to Reach Goal
1 5 20 11.53 7

2 5 20 14.16 21

3 5 60 17.20 10

4 5 33.33 13.88 12.167
5 5 60 15.74 13

6 5 40 13.73 12.8
7 5 100 13.2 10

8 5 53.33 13.65 11

9 5 60 15.96 10.167
10 5 60 14 10.33
11 5 72 15 10.2
12 5 80 15.3 10
13 5 80 15.3 10
14 5 80 15.67 10
15 5 80 15.67 10
16 5 80 15.67 10
17 5 80 15.67 10
18 5 80 15.67 10
19 5 80 15.67 10
20 5 80 15.67 10

56

Percentage of Time Goal is Found

T T T
RuleNavigation
RL w/o teacher -------
100 T RL w/ teacher ————
n
in
i
[
i
.
- 7)
80 P , ,,
[/ Pid
I ! Va /
[} i \ 7 /
o i \ / /
% i i / /
) H i /‘/ PRl
\ /7
8 j \ ; /
S 60 \ P R TP / -
N i o i (e Y /
;|\ I\ e N ’
(] iy Y | 1% J \ K
% i 0\ ;N / \ /
£ i 1 i ! \
) .’,' \ \'\ ,‘l \\ i‘ ! v
[&] I I k L 1
= ",' HAN \ !
) 40 i ' i A ! T
o o " A |
i (Y A !]
it vy [! !
1 !
i | Y \ 1
il | [! \ 1
I \ FEY ! \ !
I N
Iy 1 1 H \ 1
h 1] \ \)
I ! 1 \ / \ 1
1 \ 1 i \ ’:
20 F -1t \ s H v Ao -
\ ! ! " i
\ !] 1\ h
\ ! 1 [i
\ 1 | [i
\ ! 1 v 1
\ 1 1 1 \ 1
\ Vo \ H
\ 1 1 1 \ 1
vl V1 \ !
\ 1 Vi \ !
Y] v \ 1
0 Y Yy 1\ i I I

Number of training episodes

Figure 16: Graph of percentage of times goal is found for the two learning meth-

ods and RuleNavigation averaged over the five experiments conducted. The robot

reaches the goal in the initial training periods but this is not consistent. As the train-
ing continues and the learning becomes more refined and the robot starts reaching
the goal more consistently (shown by the straight line towards the end). The graph
has been plotted for RL and RL with a teacher. The RL with teacher performs
better than the RL method. In both the methods the robot reaches the goal 80%

of the times at the end of the training episodes.

87

pleted. The performance of the robot was as good as or better than RL without
teacher through all the evaluation phases. We can see in Table 4 at the RL with
a teacher converges to a solution faster than RL. The average time for running the
training phase and evaluation was the same as the earlier experiments with RL.
Figures 17 and 18 show the number of steps before collisions and the number of

steps to reach the goal.

5.4 Evaluation of the Results Obtained

The RL results obtained show that a lot of time is taken to learn a task. Even
a simple task such as moving between two points may take more than 20 training
phases. The number of runs before the goal is robot actually reached the goal
during evaluation was high. The performance was affected dynamic objects like
people walking around it. As the robot learns the number of steps before it collides
with the walls increases. The number of times it reaches the goal during evaluation
also increases. With the help of a teacher the convergence is faster.

The results obtained in RL with RuleNavigation are definitely better than the
ones obtained when using RL alone. The reason for this is that in RL the robot
makes random moves to reach the goal. It is not guided by any external agent
towards the goal and must explore the environment by making all possible moves.
By making random moves it learns from the reinforcement or the reward received,
whether its move was a good one or a bad one. So, if in a state it made a bad move
earlier, we are sure that it will not make that move again. By exploiting actions
already taken and exploring the environment by taking new ones the robot moves
towards a better policy which would tell the best move to take when in a particular

state. The question is how long would it take to learn that policy?

58

Number of Steps Before Collision
20 T T T

RL w/o teacher
RL w/ teacher -------

15

Number of steps
[
o
T

0 1 1
0 50 100 150 200

Number of training episodes

Figure 17: Graph showing number of steps before collision after training. Collisions
occurred later after increased training. The number of steps before collision increase
as the robot learns how to avoid obstacles and make the right moves to avoid them.
The number of steps taken before collision are expected to increase as the learning
continues. It may drop to zero if the robot reaches the goal all the times in the
testing. The increase in the number of steps before collision is a sign that the robot

is learning to avoid obstacles while moving around in the environment.

59

Number of Steps to Reach the Goal

RuleNavigation
RL w/o teacher -------
RL w/ teacher --—-—
25 | |
i
20 i i

Number of steps
=
[6)]
T
1

=
o
T
-
\
\

O | | |
0 50 100 150 200

Number of training episodes

Figure 18: Graph showing number of steps taken to reach the goal after training.
Initially the robot may not reach the goal and if it does it takes more than the
required number of steps. With training the robot learns the best path to the goal.
Once the task is learned the number of steps to reach the goal reduce and finally

become constant.

60

In RL with teacher the agent has a guide to take it towards the goal. If it
encounters a state common to the recorded lesson, it will be directed towards the

goal. This ensures that the learning would be faster with a teacher than without it.

61

6 Conclusions

Reinforcement Learning (RL) has been applied to robot navigation problems. The
aim is to find the best policy which would map states to actions. In a real world
environment, applying RL to an agent can be time consuming. The convergence
of a policy to the best one is slow and it may take thousands of episodes before
the agent learns a task perfectly. A method of speeding the convergence of the RL
algorithm is replay. In replay previous experiences are stored and the agent makes
use of the past experience to make better moves during learning. The agent has the
experience of the teacher which guides it towards the goal and helps in learning the
task faster. The question is whether the learning time can be reduce and whether

replay is effective in doing so.

6.1 Thesis

In my thesis I have investigated a form of RL called Q-learning. Q-learning is
effective in teaching a task but as seen requires a lot of training time. As seen in
the experiments the robot does not reach the goal until 8 training phases of 10 runs
each have passed. Even after that there is no consistency in reaching the goal. This
indicates the need for more training phases. Thus Q-learning will converge to a
solution but is slow. The results for RL with a teacher show that learning can be
hastened by using replay. With a teacher Q-learning converges faster to a solution.

The robot reached the goal after 30 runs.

62

6.2 Results

The results obtained show that automatic methods such as RL take a long time to
converge. The number of episodes done were 200 for RL without the teacher. The
number of times the robot reached the goal was small. The number of times the
robot collided was high. The low percentage of goal reaching runs indicates more
training runs are needed. The time required for training and evaluation was high.
This means that if a more complex task was to be performed the time taken to learn
it would increase.

If the teacher is used a quicker solution is possible. The teacher reduces the
difficulty of learning, as seen earlier where the robot began reaching the goal after

3 training phases as compared to 8 training phases in case of using RL only.

6.3 Future Work

Robot navigation is a basic task in learning. We have seen that RL applied to such
tasks takes a lot of time. One future possibility is applying RL to more complex tasks
such as navigating from one room to the other. Complex tasks require a better de-
scription of the environment. For instance internal maps [Thrun and Buecken, 1996,
Wolfram et al., 1999] can be created or a camera can be used to identify objects. A
task can be broken into subtasks and each subtask to be learned to learn the entire
task. We can assume that the learning of a subsequent subtask is begun only when
the agent has learned the present one. In replay instead of storing all the states
we can store some of them. Also a neural network representation can be used for

Q-learning instead of a table.

63

References

[Chambers and Michie, 1968] Chambers, R. and Michie, D. (1968). Boxes: An ex-

periment in adaptive control. Machine Intelligence, 2.

[Chapman and Kaelbling, 1991] Chapman, D. and Kaelbling, L. (1991). Input gen-
eralization in delayed reinforcement learning: An algorithm and performance com-
parisons. In Proceedings of the Ninth International Joint Conference on Artificial

Intelligence, pages 726—731.

[Choset and Burdick, 1995] Choset, H. and Burdick, J. (1995). Sensor based plan-
ning, part ii: Incremental construction of the generalized voronoi graph. In Pro-
ceedings of the 1995 IEEE International Conference on Robotics and Automation,
pages 1643 — 1648.

[Giacomo et al., 1996] Giacomo, D., Iocchi, L., Nardi, D., and Rosati, R. (1996).
Moving a robot: The KRR approach at work. In Principles of Knowledge Repre-

sentation and Reasoning, pages 198-209.

[Giacomo et al., 1997] Giacomo, D., Tocchi, L., Nardi, D., and Rosati, R. (1997).
Planning with sensing for a mobile robot. In Proceedings of the European Con-

ference on Planning, volume 1348, pages 156—168.

[Gonzalez et al., 1999] Gonzalez, H., Mao, E., Latombe, J., Murali, T., and Efrat,
A. (1999). Planning robot motion strategies for efficient model construction. In

Proceedings of the 9th International Symposium of Robotics Research.

[Group, 1997] Group, M. C. (1997). Intoduction to EBX. Technical report, Mo-

torola.

64

[Lin, 1993] Lin, L. (1993). Scaling up reinforcement learning for robot control.

ICML (International Conference on Machine Learning), pages 182-189.

[Maclin and Shavlik, I 94] Maclin, R. and Shavlik, J. (AAAI-94). Incorporating
advice into agents that learn from reinforcements. In Twelfth National Conference

on Artificial Intelligence (American Association of Artificial Intelligence).

[Mahadevan and Connell, 1991] Mahadevan, S. and Connell, J. (1991). Automatic
programming of behavior-based robots using reinforcement learning. Aritificial

Intelligence, 55(2):311-365.

[Michi and Vinoski, 1999] Michi, H. and Vinoski, S. (1999). Advanced CORBA Pro-

gramming with C++. Addison-Wesley Pub Co.

[Millan and Torras, 1992] Millan, J. and Torras, C. (1992). A reinforcement connec-
tionist approach to robot path finding in non-maze-like environments. Machine

Learning, 8(3/4):363-395.
[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. Mc-Graw Hill.

[RWII, 1998a] RWII (1998a). Magellan Pro compact mobile robot user’s guide.
Technical Report 3625, REAL WORLD INTERFACE.

[RWII, 1998b] RWII (1998b). Mobility robot integration software user’s guide.
Technical Report 3625, REAL WORLD INTERFACE.

[Saffiotti, 1997] Saffiotti, A. (1997). The uses of fuzzy logic in autonomous robot
navigation: a catalogue raisonne. Paper TR/IRIDIA/97-6, Université Libre de

Bruxelles, Brussels Belgium.

65

[Saffiotti et al., 1999] Saffiotti, A., Ruspini, H., and K.Konolige (1999). Using fuzzy
logic for mobile robot control. In International Handbook of Fuzzy Sets and Pos-

sibility Theory. Kluwer Academic Publisher.

[Simmons, 1996] Simmons, R. (1996). The curvature-velocity method for local ob-

stacle avoidance. In International Conference on Robotics and Automation.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (March 1998). Reinforcement
Learning: An introduction (Adaptive Computation and Machine Learning). MIT

Press.

[Thrun and Buecken, 1996] Thrun, S. and Buecken, A. (1996). Learning maps
for indoor mobile robot navigation. Paper 121, Computer Science Department,

Carnegie Mellon University.

[Watkins and Dayan, 1992] Watkins, C. and Dayan, P. (1992). Q-learning. Machine

Learning, 8, pages 279 — 292.

[Wolfram et al., 1999] Wolfram, B., Fox, D., Jans, H., Matenar, C., and Thrun, S.
(1999). Sonar-based mapping with mobile robots using em. In Proceedings of the

16th International Conference on Machine Learning.

66

