
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of master’s thesis by

Vishwas Raman

and have have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Dr. Richard Maclin

Name of Faculty Advisor

Signature of Faculty Advisor

Date

GRADUATE SCHOOL

Abstract

A common computing environment consists of many workstations connected to-
gether by a high speed network. These workstations have grown in power over the
years, and if viewed as an aggregate they can represent a significant computing
resource. Using such workstation clusters for distributed computing has thus be-
come popular with the proliferation of inexpensive, powerful workstations. In this
thesis, we present a method for building a software system that runs on a cluster of
workstations and automates the execution of sequential jobs in these workstations.
The objective is that the scheduling in this system must ensure that only the idle
cycles are used for distributed computing and that local users, when they are oper-
ating, have full control of their machines. The unique feature of this system is that
the checkpointing is user-initiated and that processes submitted to the system must
have checkpointing code implemented in them. This ensures that smaller memory
images of migrating processes are captured to restore the state of the process at
a later stage, a distinguishing feature from existing traditional systems. Results of
the various tests performed show that the system presented herein manages to
make use of idle time on various workstations to run large processes across the
network without creating large checkpoint images for interrupted processes while
ensuring top priority for owners of individual machines.

Acknowledgements

I would like to thank my advisors, Dr. Richard Maclin and Dr. Masha Sosonkina
Driver, for their help and guidance that has seen me through this thesis. I would
like to express my gratitude to the other member of my examination committee, Dr.
Robert McFarland, for his patience and support. I would also like to thank the entire
computer science faculty and all my fellow graduate students for their support.

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Motivating Example . 2
1.2 Problem Description . 4

1.2.1 A Possible Solution . 4
1.2.2 Proposed Thesis Work . 5

1.3 What Follows . 6

2 Background 7
2.1 Parallel and Distributed Processing 7

2.1.1 The Concept of Distributed Computing 8
2.2 Cycle Stealing . 9
2.3 Theory Behind Distributed Systems 9

2.3.1 Important features of Distributed Systems 12
2.4 Existing Systems . 15

2.4.1 Condor High Throughput Computing System 15
2.4.1.1 Mechanisms Used in Condor 16
2.4.1.2 Architecture and Procedure 17
2.4.1.3 Limitations of Condor 19

2.4.2 BATRUN Distributed Processing System 20
2.4.2.1 BATRUN Architecture 21
2.4.2.2 Job Execution and Related Policies 23

2.5 Other Systems . 25
2.5.1 COmputing in Distributed Networked Environments (CODINE) 25
2.5.2 Distributed Queuing System 26

2.6 Types of Jobs in Distributed Systems 28
2.6.1 Backpropagation . 28

2.6.1.1 The Algorithm . 29

i

2.6.1.2 Applicability to the System 29
2.6.2 Code Breaking . 31

2.7 Distributed Objects and CORBA . 32

3 My Method 35
3.1 Architecture . 35

3.1.1 Basic Components . 36
3.2 Job Execution . 38
3.3 Algorithms Implemented . 40

3.3.1 Checkpointing . 40
3.3.2 Machine Allocation . 42
3.3.3 Scheduling of Jobs . 42

3.3.3.1 Implementation . 43
3.3.3.1.1 User-Level Scheduling 43
3.3.3.1.2 Process-Level Scheduling 44

3.4 Assumptions Made and Associated Limitations 46
3.5 Bells and Whistles . 46

4 Experiments 48
4.1 Problems Used in Testing . 48
4.2 Basic Performance Tests . 49

4.2.1 Correctness of the System 49
4.2.2 Interruption of Processes and their Quiesce Time 50
4.2.3 Checkpointing Results . 51
4.2.4 Events on a Workstation . 52

4.3 Discussion of Results . 54

5 Conclusions 56
5.1 Future Work . 58

ii

List of Figures

1.1 A network of 5 workstations shown (a) during the day time when 2
of the machines are idle while there are processes waiting to exe-
cute on other machines. (b) during the night time when the same 2
machines have a heavy load while the other machines are idle. . . . 3

2.1 Distributed Computing: A Client/Server Model 10
2.2 The Client/Server Model in a Distributed System 11
2.3 Architecture of a Condor Pool(With no jobs running) 18
2.4 Architecture of a Condor Pool(With a job submitted on Machine 2

running on Machine N) . 19
2.5 BATRUN Architecture . 21
2.6 BATRUN Components . 22
2.7 BATRUN job execution within one cell 24
2.8 BATRUN job execution across two cells 25

3.1 Basic System Framework . 36
3.2 System Components . 37
3.3 Job Execution . 39

4.1 The Load on a machine vs Time : Graph highlighting the various
events that take place on the machines in the system 54

iii

List of Tables

2.1 The stochastic gradient descent version of the BACKPROPAGA-
TION algorithm for feedforward networks containing two layers of
sigmoid units. 30

4.1 Results of backpropagation tests when submitted to my system and
when executed on a single processor. Tests were run on different
command files and their correctness of prediction on the training and
testing set were calculated both in my system when the process gets
interrupted on heavy load and outside of it where it runs on a single
processor uninterrupted. 50

4.2 Time taken by different backpropagation processes to quiesce them-
selves upon interruption. The processes are interrupted many times
due to heavy load on executing machines and the time taken to
come out of the machine was recorded after each interrupt. 51

4.3 Size of the checkpoint files written by various backpropagation pro-
cesses during each run . 52

4.4 The significant types of events happening on machines in the sys-
tem based on load :- (a) The machine is idle (i.e., load on machine �
1.0) (b) Machine gets the top priority process from the server when
it has been idle for 15 minutes or more (c) Process writes the cur-
rent state to a checkpoint file and evacuates the machine, when the
machine is no longer idle (i.e., load on machine � 2.3) 53

iv

Chapter 1

Introduction

Many computing environments consist of a number of workstations connected to-
gether by a high speed local area network. These networks of workstations have
grown in power over the years, and if viewed as an aggregate they represent a
significant computing resource. But in many cases, even though these worksta-
tions are owned by a single organization, they are dedicated to the exclusive use
of individuals.

In examining the usage patterns of the workstations, we find it useful to identify
three “typical” types of users [BLL91]. The first type of users are individuals who
mostly use their workstations for sending and receiving mail or preparing papers.
Theoreticians and administrative people often fall into this category. We identify
many software development people as the second type of users. These people
are frequently involved in the debugging cycle where they edit software, compile,
then run it possibly using some kind of debugger. This cycle is repeated many
times during a typical working day. These users sometimes have too much com-
puting capacity on their workstations such as when editing, but then during the
compilation and debugging phases they could often use more CPU power. Finally
there are the third type of users who frequently do large numbers of simulations, or
combinatoric searches. These people are almost never happy with just a worksta-
tion, because it really isn’t powerful enough to meet their needs. Another point is
that most of the first two types of users leave their machines completely idle when
they are not working, while the third type of users often keep their machines busy
the entire day. Such users rely heavily on computing throughput. A computing en-
vironment that provides large amounts of computational power over a long period
of time may be essential to solve the problems of such users. Such an environment
is called a High Throughput Computing (HTC) Environment.

1

In a HTC environment, the available resources can be made use of in a more
efficient manner by identifying idle machines and exploiting their availability to run
jobs. Foreign jobs can be permitted to run on workstations when its owner is not
using the machine assuming the owner has given prior permission to do so. This
process of running jobs that do not belong to the workstation’s owner is referred
to as cycle stealing. It should also be possible for a user to submit many jobs at
once to a system which in turn will find idle machines as they become available
and submit the jobs to them. This way, large amounts of computation can be done
with very little intervention from the user.

1.1 Motivation

Historically, users of computing facilities have been mainly concerned with the re-
sponse time of applications while system administrators have been concerned with
throughput. Users often judge the power of a system by the time taken to perform
a fixed amount of work. Given this fixed amount of computing to perform, the
question most users ask is: how long will I have to wait to get the results of this
computation?

1.1.1 Motivating Example

Consider a situation in which there are 10 workstations and there are 10 users in
a network - the owners of these workstations. Eight of these users work predomi-
nantly during the day, and leave their machines idle during the night. The remaining
two users utilize their machines mostly during the night and leave them idle during
the day. Every user runs his/her processes on his/her own machine. We find that
the load on most of the machines is high primarily during the day. The number of
processes run by the eight users during the day will tend to be high; there might
even be processes in their machines waiting for the CPU when there are a couple
of machines in the network which are lying idle. Similarly, during the night, the load
on the couple of machines used by the night users is very high and there might
be processes in these machines waiting for the CPU, when there are 8 machines
lying idle in the network.

Figure 1.1 illustrates a similar case with a network of 5 workstations. It is clear
that while there are processes waiting to execute on some machines, the CPU’s
of some other machines in the network are idle. The idle CPU cycles of these

2

Process Utilizing CPUProcess Queue

Machine 1 P4P3 P1 P2

Machine 2
 P1 P5P3 P2 P4

Machine 4 P4P6 P5 P1 P2 P3

Machine 5 Idle Machine

Process Utilizing CPUProcess Queue

Machine 3 Idle Machine

Idle Machine

Idle Machine

 P3

Machine 1

Machine 2

Machine 3

Idle Machine

Machine 5

Machine 4

P2 P4 P1

P1 P4 P3 P2 P5

(a)

(b)

Figure 1.1: A network of 5 workstations shown (a) during the day time when 2
of the machines are idle while there are processes waiting to execute on other
machines. (b) during the night time when the same 2 machines have a heavy load
while the other machines are idle.

3

machines can in turn be used to execute these waiting processes. For example in
situation (a) of Figure 1.1 it would benefit the users of machines 1, 2 and 4 if it was
possible to turn such distributively owned collections of workstations into a HTC
environment utilizing idle CPU cycles. The research herein focuses on building
a software system that runs on a cluster of workstations to harness wasted CPU
cycles.

1.2 Problem Description

For many scientists, their research is heavily dependent on computing throughput.
It is not uncommon to find problems that require weeks or months of computation
to solve. The computing needs of these throughput oriented users are satisfied by
HTC environments as mentioned in the example above. These users are less con-
cerned about the instantaneous performance of the environment (typically mea-
sured in Floating Point Operations per Second (FLOPS)), but are more interested
in the amount of computing they can harness over a month or a year. It is an active
area of interest among researchers to see how many jobs they can complete over
a long period of time (high throughput of jobs).

The key to high-throughput is the efficient use of available resources. Instead
of being concentrated in a single mainframe computer, an institution’s computing
power is “distributed” across many small computers [Fie93]. In an environment of
distributed ownership, the total computational power of the institution may be high
but the resources available to the individual users remains roughly the same. In
such an environment, many machines sit idle for long periods of time [LM93]. A
question that we might ask: Is it possible to use this idle time on the machines for
a useful purpose? In fact, in order to improve the throughput of the system, it is
very important that these idle cycles be used for processing.

1.2.1 A Possible Solution

Our Solution focuses on two issues. First, the available resources should be made
use of in a more efficient manner by identifying idle machines and exploiting their
availability to run jobs. Foreign jobs can be permitted to run on workstations when
its owner is not using the machine (assuming the owner has given prior permission
to do so).

Second, the resources available to a given user can be expanded by allowing

4

the user to take advantage of idle machines to which they would not otherwise have
access. This can be done by providing uniform access to the distributively owned
resources through the use of a master process. This thesis is an effort towards
building a software system that runs on a cluster of workstations to harness wasted
CPU cycles.

The primary issue to be taken into consideration is the checkpointing of pro-
cesses. In order to allow migrating processes to make progress, the system must
write a checkpoint of the process’s state before vacating a machine and putting it
back in the job queue to be matched with another idle machine whenever one is
available. When the job is restarted, the state contained in the checkpoint file is re-
stored and the process resumes from where it left off. In this way, the job migrates
from one machine to another. However, in traditional systems, the checkpointing
of a process is done by saving the complete image of the process’s virtual memory
address space in a file. Only a part of this entire information is necessary to restart
the process from the saved state. The checkpoint file ends up being very large
and moreover, most of the information stored in it is not needed. Other issues to
be taken into consideration are the amount of time taken by processes to quiesce
themselves and the number of workstations that should be part of the cluster.

1.2.2 Proposed Thesis Work

Recent trends show that more and more computing environments are becoming
fragmented and distributively owned, resulting in more and more wasted computing
power. There are existing systems such as Condor [BLL91] that make use of
wasted CPU cycles. But such systems use the traditional method of checkpointing
by creating large checkpoint files for processes migrating from one machine to
another.

Thesis Intent: Develop a system to automate the execution of sequential jobs
in a cluster of distributively owned workstations. This system should store small
checkpoint images for migrating processes as contrasted with currently existing
systems.

This thesis is an effort to provide answers to the following questions:

� Question 1: Can a parallel system be built that can manage a collection
of distributively owned workstations having the potential to make use of idle
time on various workstations to run large processes across the network but
still ensuring top priority for owners of machines?

5

� Question 2: Can these large processes be run across the network without
creating huge memory images (saved states of the processes) like most other
systems do every time a process is interrupted?

� Question 3: Would jobs involving large scale computations perform better in
such a system or not?

1.3 What Follows

In Chapter 2, I will provide background material for the thesis which will include
the concepts of parallel processing and distributed computing, the idea of cycle
stealing and the desirable features of distributed computing environments such as
these. Chapter 3 will describe the design and architecture of my system along with
the issues taken into consideration. In Chapter 4, I will present the results of the
experiments that were performed on the system along with their evaluations. In the
final chapter, I will draw conclusions and explain how my thesis attempts to answer
the proposed questions. I will also present directions for future research.

6

Chapter 2

Background

In this chapter, I will provide background material for this thesis. The first section
will provide a brief introduction to the ideas of parallel processing and distributed
computing. The second section will deal with the concept of cycle stealing in a
network of workstations. The third section will provide the necessary background
on Distributed Computing Environments (DCE) and Distributed Systems. It will de-
scribe some of the different features to be taken into consideration in distributed
systems. The next section will provide short descriptions of some of the existing
systems. The next section will cover the different types of jobs that we will use to
test the work presented in this thesis. The final section will provide a brief introduc-
tion to CORBA - the middleware that is used in my system, its advantages and the
reason it is used.

2.1 Parallel and Distributed Processing

Parallel processing has emerged as a key enabling technology in modern com-
puters, driven by the ever-increasing demand for higher performance, lower costs,
and sustained productivity in real-life applications. Concurrent events are taking
place in today’s high-performance computers due to the common practices of mul-
tiprogramming, multiprocessing, and multi-computing.

Parallel processing is the execution of program instructions by dividing them
among multiple CPU’s with the objective of running a program in less time. In the
earliest computers, only one program ran at a time. A computation-intensive pro-
gram that took one hour to run and a tape copying program that took one hour
to run would take a total of two hours to run. Batch processing, in which non-

7

interactive jobs are submitted to the system to be processed at appropriate times,
is an important method of computing in a centralized environment. Although sup-
porting only limited interactions with users (primarily through input and output files),
batch processing has the advantages of allowing users to submit multiple jobs with-
out having to wait for them to finish, and of giving the system the flexibility to sched-
ule the jobs according to the jobs’ priorities and as computing resources become
available.

An early form of parallel processing allowed the interleaved execution of both
programs together. The computer would start an I/O operation, and while it was
waiting for the operation to complete, it would execute the processor-intensive pro-
gram. The total execution time for the two jobs would be a little over one hour. The
next improvement was multiprogramming. In a multiprogramming system, multiple
programs submitted by users were each allowed to use the processor for a short
time. Then the operating system would allow the next program to use the proces-
sor for a short time, and so on. To users it appeared that all of the programs were
executing at the same time. Problems of resource contention first arose in these
systems. Explicit requests for resources led to the problem of deadlocks.

The next step in parallel processing was the introduction of multiprocessing. In
these systems, two or more processors shared the work to be done. The earliest
versions had a master/slave configuration. One processor (the master) was pro-
grammed to be responsible for all of the work in the system; the other (the slave)
performed only those tasks it was assigned by the master. This arrangement was
necessary because it was not then understood how to program machines so they
could cooperate in managing the resources of the system.

2.1.1 The Concept of Distributed Computing

Computing is said to be “distributed” when the computer programs and data that
computers work on are spread out over more than one computer, usually over
a network. Distributed computing allows different users or computers to share
information. Distributed computing can allow an application on one machine to
make use of processing power, memory, or storage on another machine. It is
possible that distributed computing could enhance performance of a stand-alone
application, but this is often not the reason to distribute an application.

8

2.2 Cycle Stealing

Studies have shown that up to three-quarters of the time workstations in a net-
work are idle [RH95]. Systems such as Condor [LLM98], LSF [Com96], and
NOW [AKPtNt95] have been created to use these available resources. Such sys-
tems define a “social contract” that permits foreign jobs to run only when a work-
station’s owner is not using the machine. To enforce this contract, foreign jobs are
stopped and migrated as soon as the owner resumes use of their computer.

We use the term cycle stealing to mean running jobs that do not belong to the
workstation’s owner. The idle cycles of machines can be defined at different levels.
Traditionally, studies have investigated using machines only when they are not in
use by the owner. Thus, the machine state can be divided into two states: idle and
non-idle. In addition to processor utilization, user interaction such as keyboard and
mouse activity has been used to detect if the owner is actively using their machine.
Acharya et al, [AES97] showed that for their definition of idleness, machines are in
a non-idle state 50% of the time.

Two strategies have been used in the past to migrate foreign jobs: Immediate-
Eviction and Pause-and-Migrate. In Immediate-Eviction, the foreign job is migrated
as soon as the machine becomes non-idle. Because this can cause unneces-
sary, expensive migrations for short non-idle intervals, an alternative policy, called
Pause-and-Migrate, that suspends the foreign processes for a fixed time prior to
migration, is often used. The fixed suspend time should not be long because the
foreign job makes no progress in the suspend state. We will use an Immediate-
Eviction approach with minor variations in our system because giving the owner
of the machine top priority and not affecting his/her interactive performance is of
utmost importance to us.

2.3 Theory Behind Distributed Systems

A Distributed System (DS) consists of a collection of autonomous computers linked
by a computer network and equipped with distributed system software. Distributed
System software enables computers to coordinate their activities and to share the
resources of the system - hardware, software and data. The users of a DS should
perceive a single, integrated computing facility even though it may be implemented
by many computers in different locations.

A DS must provide facilities for encapsulating resources in a modular and pro-
tected fashion, while providing clients with network-wide access. Kernels and

9

Resource

Service Request

Client Process 2

Client Process 1

Client Process N

Server Process

Figure 2.1: Distributed Computing: A Client/Server Model

servers are both resource managers. They contain resources, and as such they
have to provide:

� Encapsulation: They should provide a useful service interface to their re-
sources, that is, a set of operations that meet their clients’ needs. The details
of the management of memory and devices used to implement resources
should be hidden from clients, even when they are local.

� Concurrent Processing: Clients may share resources and access them con-
currently. Resource managers are responsible for achieving concurrent trans-
parency.

� Protection: Resources require protection from illegitimate accesses - for ex-
ample, files are protected from being read by users without read permission,
and device registers are protected from application processes.

A typical Client-Server model in distributed computing is illustrated in Figure 2.1.
There are three major problems with the client/server model:

� Control of individual resources is centralized in a single server.

� Each single server is a potential bottleneck.

� To improve the performance, multiple implementations of similar functions
must be used.

10

NETWORK

Computer 1 Computer 2 Computer 3 Computer N

Kernel Kernel Kernel Kernel

Client File Server Print Server Mail Server

Figure 2.2: The Client/Server Model in a Distributed System

The deficiencies of the client/server model led to the development of an integrated
model. According to this model, each computer’s software is designed as a com-
plete facility with a general file system and name interpretation mechanisms. This
implies that each computer in a distributed system would run the same software. A
distributed system that has been developed based on the integrated model can be
easily made to look like a client/server based system if suitable configuration flex-
ibility has been provided. A modified client/server model in a distributed system is
shown in Figure 2.2.

With the dramatic improvement in microprocessor performance and networking
technology, distributed computing is increasingly replacing mainframe and super-
computer based centralized computing. Across various industries, the production
workload running on mainframes and supercomputers is being migrated to dis-
tributed server machines and workstations [WZAL93].

Distributed computing systems provide the user community with the ability to
share resources on powerful workstations connected by a high speed network
[TKDA96]. In a distributed system, the use of workstations varies. In many cases,
workstations are utilized during the day-light hours to develop applications, and
run services (e.g., word processing, database, electronic mail, etc.). Also, there
are users who can always use additional workstations to satisfy their large-scale
computing needs.

11

Distributed Computing Environment (DCE) is an industry-standard software
technology for setting up and managing computing and data exchange in a sys-
tem of distributed computers [Bur]. DCE is typically used in a larger network of
computing systems that include different sized servers scattered geographically.
DCE uses the client/server model. Using DCE, application users can use applica-
tions and data at remote servers. Application programmers need not be aware of
where their programs will run or where the data will be located. Much of the DCE
setup requires the preparation of distributed directories so that DCE applications
and related data can be located when they are being used.

2.3.1 Important features of Distributed Systems

Certain features are essential for a Distributed Processing System (DPS) [TKDA96]
to be an acceptable way of sharing computing resources. The local users need to
be convinced that the DPS will not hurt their interactive performance. Also, the
DPS must provide the owners priority in the use of their machines when they have
jobs to execute.

The DPS services are needed for scheduling and load balancing. There are
several issues: (a) hunting for idle workstations, (b) guaranteeing that the local
users are least affected, (c) making efficient use of idle workstations, (d) ensuring
that jobs are not lost, and (e) providing a fair use of the resources to multiple users.

Using workstation clusters for distributed computing has become popular with
the proliferation of inexpensive, powerful workstations. Workstation clusters offer
both a cost effective alternative to batch processing and an easy entry into parallel
processing. However, a number of workstations on a network does not constitute
a cluster. We can define a cluster to be a collection of computers on a network that
can function as a single computing resource through the use of additional clus-
ter management software. The following features can be identified as desirable
for a DPS system to be efficient and acceptable in environments involving a net-
work of workstations. These could also be used as evaluation criteria to facilitate
the comparison of such systems. Note that the terms DPS and cluster are used
interchangeably in the following criteria.

1. Heterogeneous Support: There are two types of cluster environments, ho-
mogeneous and heterogeneous. A homogeneous computing environment
consists of a number of computers of the same architecture running the
same operating system. A heterogeneous computing environment consists

12

of a number of computers with dissimilar architectures and different operating
systems.

2. Batch Support: The cluster should allow users to submit multiple non-
interactive jobs without having to wait until they terminate. A popular use
of clusters is off-loading batch jobs from saturated supercomputers [AL93].
Clusters can often provide better turn around time than supercomputers for
small (in terms of memory and CPU requirements) batch jobs.

3. Parallel Support: There is interest in moving to massively parallel process-
ing machines via heterogeneous processing because the needs within an
application might not be uniform. A cluster can serve as a parallel ma-
chine because workstations are inexpensive and easier to upgrade. A num-
ber of packages such as Parallel Virtual Machine (PVM) [GBD

�
94] and Ex-

press [JK91] add parallel support for computers distributed across a network.

4. Message Passing Support: Message passing is the ability to pass data
between processes in a standardized way. This inter-process communication
allows several processes to work on a single problem in parallel. A large
distributed application can be split across the many different platforms that
exist in a heterogeneous environment. Some cluster management packages
do not provide their own message passing support, choosing instead to rely
on packages such as PVM and Linda [CGM93] to provide that feature.

5. Checkpointing: Checkpointing is a common method used by cluster man-
agement software to save the current state of the job [LS92]. In the event of a
system crash, the only lost computation will be from the point at which the last
checkpoint file was made. Because checkpointing in a heterogeneous envi-
ronment is more difficult than on a single architecture, most current cluster
management software that provides checkpointing does so with the following
limitations:

� Only single process jobs are supported (i.e., no fork(), exec(), or similar
calls are allowed).� No signals or signal handlers are supported (i.e., signal(), sigvec(), and
kill() are not supported).� No interprocess communication (i.e., sockets, send(), recv(), or similar
call are not implemented).

13

� All file operations must either be read only or write only. These limita-
tions will make checkpointing unsuitable for certain applications, includ-
ing parallel or distributed jobs that must communicate with other pro-
cesses.

6. Process Migration: Process migration is the ability to move a process from
one machine to another machine without restarting the program, thereby bal-
ancing the load over the cluster. Process migration would ideally be used if
the load on a machine becomes too high or someone logs on to the machine,
thus allowing processes to migrate to another machine and finish without im-
pacting the workstation owner.

7. Local User Autonomy: Local users should be guaranteed the top priority over
the use of their workstations. The distributed processes should not adversely
affect the interactive performance for local users. The DPS should use only
the idle computing resources. If local users return to their workstations, the
DPS must vacate the machines immediately and restart jobs at other idle
workstations.

8. Local Autonomy for Each owner: Local autonomy for each workstation owner
means that the participation in the cluster must be on a voluntary basis. The
owners of workstations should have control to withdraw their machines from
the pool when desired. A reconfiguration of the cluster system should be
possible without having to reboot the system. The jobs running on other
machines in the cluster should continue to run unaffected.

9. Load Balancing: Load balancing refers to the distribution of the computa-
tional workload across a cluster so that each workstation in the cluster is
doing an equivalent amount of work. On a network, some machines may be
idle while others are struggling to process their workload [AL93]

10. Job Run-Time Limits: A run time limit sets the amount of CPU time a job
is allowed for execution. Providing a limit ensures that smaller jobs complete
without a prolonged delay incurred by waiting behind a job that runs for an
excessive period of time.

11. Scalability: Scalability of a cluster is defined as the effect on its performance
when the number of workstations which are part of the pool is increased.
The scalability of the workstation cluster may be limited by the existing soft-
ware (e.g., network file system, authentication software, etc.) or the hardware

14

(network). However, the cluster management software should not introduce
new bottlenecks that limit scalability. Also, the overheads of processing a job
through the DPS should not grow as a result of adding more workstations to
the pool.

12. Ease of use: It should be possible for users to run their programs through the
cluster without requiring a major modification of their application programs. It
should also be easy for new users to join the DPS pool. There should be
facilities for submitting, monitoring and terminating jobs submitted through
the system.

2.4 Existing Systems

In this section, I will provide a detailed description of the Condor High Throughput
Computing System and the BATRUN Distributed Processing System which were a
big motivation behind my thesis. I will also be providing short descriptions of some
other existing systems such as Distributed Queuing System (DQS) [DGP96] and
Computing in DIstributed Networked Environments (CODINE) [F93].

2.4.1 Condor High Throughput Computing System

Condor is a software system that runs on a cluster of workstations to harness
wasted CPU cycles. A Condor pool consists of any number of machines, of possi-
bly different architectures and operating systems, that are connected by a network.
Condor is built on the principle of distributing batch jobs around this loosely coupled
cluster of computers. Condor attempts to use idle CPU cycles that exist on some
machines to provide more computational power to users who need them [AL93].

Several principles have driven the design of Condor. First is the principle that
workstation owners should always have the resources of the workstation they own
at their disposal. This is to guarantee immediate response, which is the reason
most people prefer a dedicated workstation over access to a time sharing system.
The second principle is that access to remote capacity must be easy, and should
approximate the local execution environment as closely as possible. Portability is
the third principle behind the design of Condor [LL90]. This is essential due to
rapid developments in the workstations on which condor operates.

15

2.4.1.1 Mechanisms Used in Condor

Five mechanisms are basic to the operation of Condor. The first is a mechanism for
determining when a workstation is not in use by its owner, and thus should become
part of the pool of available machines. This is accomplished by measuring both the
CPU load of the machine, and the time since the last keyboard or mouse activity.
Individual workstation owners can customize the parameters that determine the
state of that workstation - idle or non-idle.

Second is a mechanism for “fair” allocation of these machines to users who
have queued jobs. This task is handle by a centralized “machine manager”. The
manager allocates machines to waiting users on the basis of priority. The prior-
ity is calculated according to the up-down algorithm. This algorithm periodically
increases the priority of those users who have been waiting for resources, and re-
duces the priority of those users who have received resources in the recent past.
The purpose of this algorithm is to allow heavy users to do very large amounts of
work, but still protect the response time for less frequent users.

Thirdly, Condor provides a remote execution mechanism which allows its users
to run the same programs that they had been used to running locally after only a
re-linking step. File I/O is redirected to the submitting machine, so that users do
not need to worry about moving files to and from the machines where execution
actually takes place.

The fourth mechanism is responsible for stopping the execution of a Condor
job upon the first user activity on the hosting machine. As soon as the keyboard
or mouse becomes active, or the CPU load on the remote machine rises above a
specified level, a running Condor job is stopped. This provides automatic return of
the use of the hosting workstation to its owner.

Finally Condor provides a transparent checkpointing mechanism which allows
it to take a checkpoint of a running job, and migrate that job to another worksta-
tion when the machine it is currently running on becomes busy with non-Condor
activity. This allows Condor to return workstations to their owners promptly, yet pro-
vide assurance to Condor users that their jobs will make progress, and eventually
complete.

To meet the portability requirement, all these five mechanisms were imple-
mented entirely outside the UNIX kernel. Even checkpointing is quite portable,
but does depend on the specific formats of the “a.out” and “core” files for each
system.

16

2.4.1.2 Architecture and Procedure

One machine in the pool, the “central manager” (CM) keeps track of all the re-
sources and jobs in the pool. To monitor the status of the individual computers
in the cluster, certain Condor programs called the Condor “daemons” must run all
the time. One daemon is called the “master”. Its only job is to make sure that the
rest of the Condor daemons are running. If any daemon dies, the master restarts
it. If a daemon continues to die, the master sends mail to a Condor administrator
and stops trying to start it. Two other daemons run on every machine in the pool,
the startd and the schedd. The schedd keeps track of all the jobs that have been
submitted on a given machine. The startd monitors information about the machine
that is used to decide if it is available to run a Condor job, such as keyboard and
mouse activity, and the load on the CPU. Since Condor only uses idle machines
to compute jobs, the startd also notices when a user returns to a machine that is
currently running and removes the job.

All of the schedds and startds of the entire pool report their information to a
daemon running on the CM called the collector. The collector maintains a global
view, and can be queried for information about the status of the pool. Another
daemon on the CM, the negotiator, periodically takes information from the collector
to find idle machines and match them with waiting jobs. This process is called a
”negotiation cycle” and usually happens every five minutes (See Figure 2.3).

Besides the daemons which run on every machine in the pool and the central
manager, Condor also consists of a number of other programs. These are used to
help manage jobs and follow their status, monitor the activity of the entire pool, and
gather information about jobs that have been run in the past. These are commonly
referred to as the Condor “tools” [Ove].

Every Condor job involves three machines. One is the submitting machine,
where the job is submitted from. The second is the central manager, which finds
an idle machine for that job. The third is the executing machine, the computer
that the job actually runs on. In reality, a single machine can perform two or even
all three of these roles. In such cases, the submitting machine and the executing
machine might actually be the same piece of hardware, but all the mechanisms
described here will continue to function as if they were separate machines. The
executing machine is often many different computers at different times during the
course of the job’s life. However, at any given moment, there will either be a single
execution machine, or the job will be in the job queue, waiting for an available
computer.

Every machine in the pool has certain properties: its architecture, operating

17

Schedd Schedd Schedd

Negotiator

Collector Schedd

Startd

Startd Startd Startd

Central Manager

Machine 2 Machine NMachine 1

Figure 2.3: Architecture of a Condor Pool(With no jobs running)

system, amount of memory, the speed of its CPU, amount of free swap and disk
space, and other characteristics. Similarly, every job has certain requirements and
preferences. A job must run on a machine with the same architecture and operat-
ing system it was compiled for. Beyond that, jobs might have requirements such
as how much memory they need to run efficiently, how much swap space they
will need, etc. Preferences are characteristics the job owner would like the exe-
cuting machine to have but which are not absolutely necessary. If no machines
that match the preferences are available, the job will still function on another ma-
chine. The owner of a job specifies the requirements and preferences of the job
when it is submitted. The properties of the computing resources are reported to
the central manager by the startd on each machine in the pool. The negotiator’s
task is not only to find idle machines, but machines with properties that match the
requirements of the jobs, and if possible, the job preferences.

When a match is made between a job and a machine, the Condor daemons
on each machine are sent a message by the central manager. The schedd on the
submitting machine starts up another daemon, called the ”shadow”. This acts as
the connection to the submitting machine for the remote job, the shadow of the

18

Schedd Schedd Schedd

Negotiator

Collector Schedd

Startd

Startd Startd Startd

Central Manager

Machine 2 Machine NMachine 1

Shadow Starter

User Job

= Communication Pathway

= Process Created by fork()

Figure 2.4: Architecture of a Condor Pool(With a job submitted on Machine 2 run-
ning on Machine N)

remote job on the local submitting machine. The startd on the executing machine
also creates another daemon, the ”starter”. The starter actually starts the Con-
dor job, which involves transferring the binary from the submitting machine (see
Figure 2.4). The starter is also responsible for monitoring the job, maintaining
statistics about it, making sure there is space for the checkpoint file, and sending
the checkpoint file back to the submitting machine (or the checkpoint server, if one
exists). In the event that a machine is reclaimed by its owner, it is the starter that
vacates the job from that machine.

2.4.1.3 Limitations of Condor

Condor however has certain limitations. They are

� Only single process jobs are supported, (i.e., the fork(), exec(), and similar
calls are not implemented).

19

� Signals and signal handlers are not supported, (i.e., the signal(), sigvec(),
and kill() calls are not implemented).

� Interprocess communication(IPC) calls are not supported, (i.e., the socket(),
send(), recv(), and similar calls are not implemented).

� All file operations must be idempotent, read-only and write-only file accesses
work correctly, but programs which both read and write the same file may not.

� Each condor job has an associated “checkpoint file” which is approximately
the size of the address space of the process. Disk space must be avail-
able to store the checkpoint file both on the submitting and executing ma-
chines [BLL91].

� Condor does a significant amount of work to prevent security hazards, but
some loopholes are known to exist. One problem is that condor user jobs are
supposed to do only remote system calls, but this is impossible to guarantee.
User programs are limited to running as an ordinary user on the executing
machine, but a sufficiently malicious and clever user could still cause prob-
lems by making local system calls on the executing machine.

� A different security problem exists for owners of condor jobs who necessarily
give remotely running processes access to their own file system.

2.4.2 BATRUN Distributed Processing System

The BATRUN (Batch After Twilight RUNning) project was initiated to tap the re-
source of un-utilized CPU cycles, particularly during nighttime, for the execution
of batch type jobs requiring no interprocessor communication [TKDA96]. The use
of modern operating system features such as, multi-threading and remote proce-
dure call, makes BATRUN DPS implementation simple and more flexible than its
predecessors.

BATRUN is used to automate the execution of sequential jobs in a cluster of
workstations where machines are owned by different groups of users. The objec-
tive is to use a general purpose cluster as one virtual computer for batch process-
ing. In contrast to a dedicated cluster, the scheduling in BATRUN must ensure
that only the idle cycles are used for distributed computing and that local users,
when they are operating, have full control of their machines. BATRUN has two

20

Slaves

Slaves
Slaves

Cell Manager

Cell ManagerCell Manager

Figure 2.5: BATRUN Architecture

unique features: ownership based scheduling policy to ensure top priority for own-
ers of machines, multi-cell distributed design to eliminate single point failure and to
support scalability.

2.4.2.1 BATRUN Architecture

In BATRUN the workstation pool is divided into subsets called cells. Each cell may
further be divided into subsets called groups. The cells and groups are formed on
the basis of ownership of machines. Each cell consists of a Cell Manager and a
number of slave machines, as shown in Figure 2.5. A cell and the groups within
the cell are configured during the system installation time.

The Cell Manager consists of two daemons: Machine Allocator and Resource
Collector. On each slave machine, there are three daemons: Job Scheduler, Ex-
ecd and Keyboard Monitor(Kbdd). The BATRUN components are shown in Fig-

21

Execd Job Scheduler

Kbdd
Job

Queue

Execd Job Scheduler

Kbdd
Job

Queue

Machine

Allocator

Resource

Allocator

Cell Manager

Slave Machine Slave Machine

Figure 2.6: BATRUN Components

ure 2.6.
Job Scheduler: The BATRUN Job Scheduler on each slave machine maintains

a prioritized queue for jobs submitted through that machine. All the jobs submitted
by users at this machine are spooled to the machine’s job queue.

Machine Allocator: The Machine Allocator allocates idle slave machines to ex-
ecute jobs. If all the slave machines in the Machine Allocator’s cell are busy or do
not have a resource match, it requests slave machines from the Machine Allocator
of another cell.

Resource Collector: The Resource Collector is responsible for maintaining a
list of all slave machines in a cell. For each machine, this list includes information
about available resources and the current state of the machine. This list is sent to
the Machine Allocator when it makes a request.

Execd and User Process Agent: The Execd is responsible for reporting the
machine status to the Resource Collector. It invokes a User Process Agent (UPA),
which is responsible for the execution of the job on the machine. The Execd is
also responsible for sending a preemption signal to the UPA. The UPA starts a
user process by forking itself. The UPA communicates with the user process using
signals when it needs to do periodic checkpointing or when the user job has to be
preempted from the local machine. If a job completes or if it is preempted, the UPA
notifies the Job Scheduler of the machine where the particular job was submitted.
The checkpointing mechanism used by the User Process Agent is adopted from
Condor.

Keyboard Monitor (Kbdd): The Kbdd daemon monitors keyboard and mouse

22

activities of the machine and reports the status to the Execd. These activities are
monitored to detect the arrival of a local user. The BATRUN jobs are preempted
after a fixed time interval if a local user is detected.

2.4.2.2 Job Execution and Related Policies

In the BATRUN environment a user can submit a job from any machine in the
pool where he or she has login privileges. The machine where a user submits
jobs is called the submitting machine. The machine that runs the job is called the
executing machine which may or may not belong to the same cell as the submitting
machine. When a job is submitted it is added to the queue on the submitting
machine. The jobs submitted to BATRUN are processed as follows:

1. The Job Scheduler on a submitting machine selects the highest priority job
from its local queue.

2. The Job Scheduler request a machine from the Machine Allocator.

3. The Machine Allocator gets information about availability of idle machines
from the Resource Collector. There could be several submitting machines
that may have jobs to execute. The Machine Allocator goes through a se-
lection procedure to select jobs for execution. If all the slave machines in the
Machine Allocator’s cell are busy or do not have a resource match, it requests
slave machines from the Machine Allocator of another cell.

4. The Machine Allocator assigns a machine to the Job Scheduler on a submit-
ting machine to execute the job.

5. The Job Scheduler then contacts the Execd on an executing machine and
requests permission to execute a job. The Execd grants the permission if the
machine is still idle and has the required resources. Then the Job Scheduler
sends the job information and requests the Execd to execute the job.

6. The Execd creates a User Process Agent (UPA) which will start and monitor
the execution of the user job. The UPA informs the Job Scheduler on the
submitting machines that the job is started. When the job completes, the
UPA on the executing machine reports back to the Job Scheduler on the
submitting machine.

23

Execd Job Scheduler

Kbdd
Job

Queue

Machine

Allocator

Resource

Allocator

Cell Manager

Initiating Machine Executing Machine

Job Scheduler

Job
Queue

Execd

UP Agent

User Job Kbdd

1

2

3

4

5

6

Figure 2.7: BATRUN job execution within one cell

In the preceding discussion, it was assumed that the idle machines with ad-
equate resources are available within the same cell to execute jobs submitted
through machines in that cell. This scenario is referred to as local scheduling
(see Figure 2.7).

The other scenario, called global scheduling, deals with the situation when
there are jobs to be executed and the Machine Allocator cannot find any slave
machines in its cell that have the required resources. In this case, the job execu-
tion involves two different cells: the submitting cell where the job is submitted and
the executing cell where the job is executed. In the global scheduling scenario,
Step 3 in local scheduling is modified as follows. The Machine Allocator A from
the submitting cell chooses an executing cell and requests its Machine Allocator
B to commit itself. If Machine Allocator B decides to commit, it passes a list of
idle machines to Machine Allocator A. The global scheduling is illustrated in Fig-
ure 2.8. The Machine Allocator may need to contact several cells before it finds the
Machine Allocator B that is willing to commit.

24

S

S

S

S

C

A

C A

C

A

Execd

UPAgent

UserJob

JSched

Executing
Machine

C A

SS S S

Machine
Initiating

Execd JSched

Network

Manager

Cell
Cell

Manager
Manager

Cell
Manager

Cell

CELL A

CELL B

A = Machine Allocator
C = Resource Allocator
Jsched = Job Scheduler
UPAgent = User Process Agent
S = Slave

Idle

3

2

1

Figure 2.8: BATRUN job execution across two cells

2.5 Other Systems

2.5.1 COmputing in Distributed Networked Environments (CO-
DINE)

CODINE, a merger of the queuing framework of DQS (Distributed Queuing Sys-
tem) and the checkpointing mechanism of Condor, is targeted for optimal utilization
of the computer resources in heterogeneous networked environments.

Key features on CODINE are:

� Resource Management: CODINE allows an unlimited number of resources
to be managed. For example CODINE allows you to manage memory space,
disk space, software licenses, tape drives, and others. Each site can easily
configure the system according to its own specific resources, thus improving
the return of investment on the resources.

� Distributed Computing in Heterogeneous Networks: CODINE has been de-
signed to work in a heterogeneous computer environment consisting of hosts

25

with different operating systems as well as hardware/software configurations.
CODINE provides the user with a single system image of all the available
resources and simplifies the use of the resources.

� Support for SMP: CODINE provides special support for shared memory mul-
tiple processor machines to make full use of advanced technical possibilities
and helps shortening development cycles and time-to-market.

� Migration of checkpointed jobs: CODINE supports the migration and restart-
ing of user defined or transparent checkpointing jobs.

� Job execution environment: The job execution environment (user ID, umask,
resource limits, environment variables, working directory, task exit status, sig-
nals, terminal parameters, etc.) is maintained when jobs are sent to execute
remotely. This makes the use of CODINE completely transparent to the user.

� Fault tolerance: CODINE has no single point of failure and is operational as
long as one host of the CODINE cluster is available, by providing a shadow
master functionality. The CODINE internal communication protocol is fail-safe
and works reliably in noisy networks with heavy traffic.

� Application Programming Interface (API): The CODINE API allows users or
third party software vendors to develop distributed applications. All of CO-
DINE’s internal information is easily available from the CODINE database.

� Job accounting information and statistics: Various information on resource
utilization is available to allow sites to plan future.

2.5.2 Distributed Queuing System

DQS is designed as a management tool to aid in computational resource distri-
bution across a network. DQS provides architecture transparency for both users
and administration across a heterogeneous environment, allowing for seamless in-
teraction of multiple architectures. The goal of DQS is to provide an easy to use
tool for the heterogeneous-distributed computing environment that maximizes re-
source utilization by providing a best fit between resources and job requirements.
DQS provides GUIs for both use and administration of the queuing system, includ-
ing an X-based accounting package. These GUIs further facilitate the maintenance
and utilization of the queuing system as a network resource maximizer.

Some of the interesting features of DQS are:

26

� Scheduling and Resource Allocation: There are two methods of scheduling
possible. The first is to schedule jobs according to the queue sequence num-
ber which means the first queue in the list receives the job for execution. The
second method is to schedule by weighted load average within a group so
that the least busy node is selected to run the job. The actual method used
is selected at compilation time.

� Job Dispatching: The master scheduler will compile a list of all the queues
that meet the user’s resource request. These requests are sorted into two
categories. The first is hard resources. All of these resources must be met
before the job can begin execution. The second is soft resources. These
should be allocated to the job if possible, but the job can still execute without
them. The job is then dispatched based on which scheduling algorithm is
being used.

� Fault Tolerance: A shadow master scheduler is provided to improve redun-
dancy. If the master scheduler goes down, the system is instantly switched
over to the shadow. If a machine crashes, the master scheduler will no longer
submit jobs to it. When this machine comes back on-line, it will contact the
master scheduler and its jobs will be rescheduled.

� Queue Complexes: Queue-Complexes are a major advancement in DQS.
Queue-complexes are arbitrary resource definitions that once defined, can
be associated with queues. These resource definitions can be combinations
of available licenses, memory, architecture, available software, etc. Queue-
complexes are used by the scheduler at job submission time to determine a
best fit between requested and available resources. These resource specifi-
cations are completely arbitrary allowing for highly configurable systems.

� Security: DQS relies on the security provided by the Unix operating system.

� Impact on machine owner: Each machine is set to check for keyboard or
mouse activity at the console and suspend any currently running job. The
queues on the machine may also be set to restrict the number of jobs that
can run on the machine.

� Scalability: DQS supports the concept of cells for the purpose of increased
scalability. A cell is an instance of a cluster. For a single cell, the scalability of
DQS is 300 to 400 machines depending on the power of the machines. Very

27

large sites could potentially encompass several cells. DQS allows users to
specify which cell to connect to at job submission time.

� Parallel Make Utility: Dmake (Distributed Make) can be used to greatly in-
crease the productivity of workstations, by allowing large projects to be quickly
compiled. DQS provides Dmake which allows multiple concurrent compila-
tions. Given a list of N hosts, Dmake sends out M compilations in paral-
lel. Concurrent compilation provides great time savings in the compilation of
large projects. Dmake can be used in conjunction with DQS to get it’s list of
host machines and to takes advantage of DQS’s load-balancing features.

� Interactive Support: DQS’s ability to provide interactive support increases the
cost-effectiveness of distributed computing. DQS queues can be configured
as interactive, batch, or batch-interactive. The interactive queues, by de-
fault, would establish a session with the least loaded server of the specified
group[cell] or to a specific queue[cell].

2.6 Types of Jobs in Distributed Systems

Several different types of jobs can be executed in distributed systems. In this sec-
tion I will be introducing a couple of the types of jobs that will be used to test my
system and their applicability in this situation.

2.6.1 Backpropagation

As neural networks are often used to solve problems which are not completely
understood or which are hard to solve with the more traditional AI techniques, it is
important to know how well a neural network can learn to solve such a problem.
One category of problems that can be solved with a neural network, is the category
of association problems; each input of the problem space has to be associated
with a correct output. These association problems are often solved with so-called
backpropagation (BP) networks. A BP network is trained with a set of inputs of
the problem space and the correct outputs that are corresponding to these inputs.
During the training session, the weights of the network will converge to a point in
the network’s weight space, in which the problem examples will be known to the
network; when the network has reached this point in its state space, it can give the
correct output for each example input. However, due to the nature of the network,

28

it can not always learn the problem exactly; the output produced by the network
when presented with an input problem, will sometimes only be an approximation of
the exact output [Wul94].

2.6.1.1 The Algorithm

The Back Propagation algorithm learns the weights for a multi-layer network, given
a network with a fixed set of units and interconnections. It employs gradient de-
scent to attempt to minimize the squared error between the network output values
and the target values for these outputs. Considering networks with multiple output
units, we define E to sum the errors over all of the network output units

�����
	���
�������� �������������� ��! ��" �#�%$'&(�#� 	#) (2.1)

where outputs is the set of output units in the network, and
" ��� and &*�#� are the

target and output values associated with the kth output unit and training example+
.

The learning problem faced by Backpropagation is to search a large hypothesis
space defined by all possible weight values for all the units in the network. As in
the case of training a single unit, gradient descent can be used to attempt to find a
hypothesis to minimize

�
[Mit97].

The algorithm as described here applies to layered feed-forward networks con-
taining two layers of sigmoid units, with units at each layer connected to all units
from the preceding layer. This is the incremental, or stochastic, gradient descent
version of Backpropagation.

2.6.1.2 Applicability to the System

The weight update loop in Backpropagation may be iterated thousands of times in
a typical application. A variety of termination conditions can be used to halt the
procedure. One may choose to halt after a fixed number of iterations through the
loop, or once the error on the training examples falls below some threshold, or
once the error on a separate validation set of examples meets some criterion. The
choice of termination criterion is an important one, because too few iterations can
fail to reduce error sufficiently, and too many can lead to over-fitting the training
data [Mit97].

29

Table 2.1: The stochastic gradient descent version of the BACKPROPAGATION
algorithm for feedforward networks containing two layers of sigmoid units.

Backpropagation(training examples, , , -/.10 , - ����� , -324. �5��6 0)
Each training example is a pair of the form (78 , 7"), where 78 is the vector of network
input values and 7" is the vector of target network output values., is the learning rate, -9.:0 is the number of network inputs, -;2�. �#��6 0 the number of
units in the hidden layer, and - �<� � the number of output units.
The input from unit i into unit j is denoted 8>= . , and the weight from unit i into unit j
is denoted

� = . .

1. Create a feed-forward network with -9.:0 inputs, -324. �5��6 0 hidden units, and - �<� �
output units.

2. Initialize all network weights to small random numbers.

3. Until the termination condition is met, Do

� For each (78 , 7") in training examples, Do

(a) Propagate the input forward through the network: Input the instance78 to the network and compute the output &?� of every unit @ in the
network.

(b) For each network output unit A , calculate its error term B �
B �DC &(� �
 $E&*� 	��F" �G$E&*� 	

(c) For each hidden unit H , calculate its error term BI2
BJ2 C & 2 �
 $E& 2 	 �� KI��������� ��! � 2�L � B �

(d) Update each network weight
� = L .

� = L . C � = L .NMPO � = L .
where O � = L .;QR,SB = 8>= L .

30

The entire process of training a layered feed forward network using the gradient
descent version of Backpropagation depends on a few important parameters. The
most important are the number of iterations through the training examples also
called as epochs and the modified weights of all the connections in the network
after each training iteration. When the number of epochs for which a network has
to be trained as well as the training set size are huge, the process of training such
networks to learn successfully usually takes a long time. When such a process
is running on a single machine, it needs a lot of uninterrupted processing time to
train the network. It is usually very difficult to get enough uninterrupted processing
power to execute the training process without affecting the user of the machine to
a very great extent.

However, if such a process runs on a distributed system such as the one I have
built, the process can run unattended until completion of execution. The process
migrates from one idle machine in the system to another thereby running only on
machines which are not being used by their owners. Moreover, the state of execu-
tion is saved every time the process migrates from one machine to another. This
is done by storing just the parameters that control the training of the network such
as the number of epochs completed and the network weights at that stage. The
amount of time taken to checkpoint the state of the process as well as the saved
checkpoint file is small. Hence, once a training job is submitted to my system, it
finds idle machines and gets executed to completion.

2.6.2 Code Breaking

Another testing example that we will use in our system is the code breaking pro-
cedure. The driving forces behind encryption policy and technology are served by
two opposing functions: code making and code breaking [Ros97]. The term “code
making” is used here loosely to refer to the use and development of encryption
products. Code making serves several purposes, including protecting proprietary
information from corporate and economic espionage, protecting individual privacy,
including private communications and personal records, and protecting military and
diplomatic secrets from foreign espionage, and information relating to criminal and
terrorist investigations from those being investigated.

The term “code breaking” is also used here loosely; in this case to mean acquir-
ing access to the plain-text of encrypted data by some means other than the normal
decryption process used by the intended recipient(s) of the data. Code breaking
is achieved either by obtaining the decryption key through a special key recovery

31

service or by finding the key through cryptanalysis (e.g., brute force search). It can
be employed by the owner of encrypted data when the decryption key has been
lost or damaged, or by an adversary or some other person who was never intended
to have access [Den97].

When code breaking is done using brute force search, it takes a lot of process-
ing time and power since the number of possible combinations to be tried is very
large. This again makes it possible to run in a distributed system such as mine,
migrating between idle machines and completing to execution. This process would
also run unattended. In this case, the combinations to be examined are split into
a number of packets. These packets are examined sequentially for the presence
of the code. Therefore as in the previous case, the execution of such a process
depends on a few important parameters, such as the number of packets examined
and the packet that is being examined. By saving these parameters when the pro-
cess migrates from one machine to another, the execution of the process can be
started from the previously saved state.

2.7 Distributed Objects and CORBA

In this section, I will introduce the concept of distributed objects and how they
function in a client-server environment. I will also give a basic introduction to
CORBA [Cor], the middleware that is to be used in my system to achieve any
form of communication between the clients and the server.

A distributed object is an object that can be accessed remotely. This means
that a distributed object can be used like a regular object, but from anywhere on the
network. An object is typically considered to encapsulate data and behavior. The
location of the distributed object is not critical to the user of the object. A distributed
object might provide its user with a set of related capabilities. The application that
provides a set of capabilities is often referred to as a service. In our system we
will be using this concept of distributed objects for establishing communication and
message passing between the individual client machines and the central server.

Applications are developed with distributed objects for a number of reasons:

1. Distributed objects can be used to share information across applications or
users.

2. Distributed objects can be used to synchronize activity across several ma-
chines.

32

3. Distributed objects can be used to increase performance associated with a
particular task.

4. Distributed objects are a way to distribute computing power across a network
of computers, which makes it easier to accommodate unpredictable growth.
Centralized approaches frequently fail in such environments.

The Common Object Request Broker Architecture (CORBA) is a standard for
distributed objects. CORBA is designed to support the distribution of objects im-
plemented in a variety of programming languages. This is achieved by defining an
Interface Definition Language (IDL) that can be mapped to a number of existing
languages. IDL is used to define the services offered by a particular distributed
object. CORBA defines a wire protocol for making requests to an object and for
the object to respond to the application making the request.

In CORBA a server is defined as an Interface. Data passing between the client
and the server is defined as IDL structures, sequences, etc. The IDL is com-
piled with an IDL compiler and the generated code is included within the client
and server processes. The server implements a particular interface. The imple-
mentation is the distributed object. Clients communicate with the object through an
object reference. When an operation is performed on the object reference, network
communication occurs, operation parameters are sent to the server, and the actual
distributed object executes the operation. It then returns any appropriate data to
the client.

CORBA objects are defined as interfaces in IDL. They support operations that
take and return simple and complex IDL types. A CORBA object obeys certain
rules and which can be accessed via a particular protocol. A CORBA Object is
frequently also a distributed object, but it does not have to be. A distributed object
is not necessarily a CORBA Object. A distributed object might be a C++ object that
can be accessed via a socket, RPC, or telephony. In order for a distributed object
to be a CORBA Object, it must be declared in IDL. The object can be implemented
in a variety of programming languages.

Some advantages of using CORBA as the middleware are:

1. CORBA supports many existing languages. CORBA also supports mixing
these languages within a single distributed application.

2. CORBA supports both Distributed Processing and Object Orientation.

3. CORBA is an industry standard. This creates competition among vendors
and ensures that quality implementations exist. The use of the CORBA stan-

33

dard also provides the developer with a certain degree of portability between
implementations.

4. CORBA provides a high degree of interoperability. This insures that dis-
tributed objects built on top of different CORBA products can communicate.

CORBA communication is inherently asymmetric. Request messages originate
from clients and responses originate from servers. The important thing to realize
is that a CORBA server is a CORBA Object and a CORBA client is a CORBA
stub. A client application might use object references to request remote service,
but the client application might also implement CORBA Objects and be capable of
servicing incoming requests. Along the same lines, a server process that imple-
ments CORBA Objects might have several object references that it uses to make
requests to other CORBA Objects. Those CORBA Objects might reside in client
applications. By implementing a CORBA Object within an client application, any
process that obtains its object reference can “notify” it by performing an operation
on the client-located object [Cor].

CORBA has been used in a variety of industries on real-world systems. The
problem domain that CORBA addresses, i.e., distributed computing, is a complex
domain. Any real-world distributed computing system is complex, possibly ad-
dress issues of fault tolerance, availability, transactions, messaging, persistence,
performance, and scalability, just to mention a few. CORBA provides infrastructure,
services, and tools to develop solutions in this complex domain. We will look more
closely at how CORBA helps in implementing the client-server architecture of my
system in the next chapter.

34

Chapter 3

My Method

In this chapter, I will describe the design and the architecture of my system in detail.
In addition, I will also sketch the assumptions that were made while building the
system and the various issues such as checkpointing, process migration, quiescing
of processes and the scheduling of jobs and how they are handled. I will also
mention the various parameters on which my system is dependent.

My system is going to focus primarily on the following issues:

1. Hunting for idle workstations.

2. Guaranteeing that the local users are least affected.

3. Making efficient use of idle workstations.

4. Ensuring that jobs are not lost.

5. Providing a fair use of the resources to multiple users.

3.1 Architecture

I have developed a system to automate the execution of large processing jobs in
a pool of UNIX workstations. A pool is a cluster of workstations connected via
a network that is watched over by one of the machines in the network called the
central server (see Figure 3.1). This system allows the utilization of otherwise idle
CPU cycles in this pool of workstations.

35

T TT TT TU UU UU U V VV VV V
W WW WW W X XX XX X

Y YY YY Y Z ZZ ZZ Z
[[[[[[\ \\ \\ \

]]]]]] ^ ^^ ^^ ^
_ __ __ _

A Remote Execution MachineA Submitting Machine

Communication Through
Shared File System

Central Server

Figure 3.1: Basic System Framework

3.1.1 Basic Components

One of the machines in the pool of workstations is the central server which is
responsible for storing and maintaining the priority queue of jobs. All the other
machines in the pool are treated as client machines. Jobs that are to be run in this
distributed system can be submitted from these machines. The submitted jobs are
then passed on by the central server to one of the idle client machines in which it
runs.

The central server consists of four daemons: Job Scheduler, Execution Server,
Machine Allocator and an Alarm Sender. On each client machine, there are two
daemons: Executing Client and Load Monitor. The system components are shown
in Figure 3.2.

� Job Scheduler
The Job Scheduler on the central server maintains a prioritized queue for
jobs that were submitted to the system through the different client machines.

36

Job
Scheduler

Alarm
Sender

Executing Client

Load Daemon

Executing Client

Load Daemon

Client Machine Client Machine

Central Server

Machine
Allocator

Server
Execution

Figure 3.2: System Components

It also holds information about the various users of the system such as the
number of active processes they have running on the system and the amount
of their CPU utilization in the system as a whole.

� Execution Server
The Execution Server is also run on the central server machine. It is the
interface between the Central server machine and the Client machine. The
execution server passes the details of the job to execute that it gets from the
Job Scheduler to the Client Machine. It also reports the status of the returned
job to the Job Scheduler.

� Machine Allocator
The Machine Allocator contains information about the various machines in
the system and their state (i.e., whether they are idle or busy). It decides the
machine in the pool which is going to run the particular job that has been
submitted to the system.

� Alarm Sender
A daemon that runs on the central server and sends an alarm to the Job

37

Scheduler periodically. Upon receiving the alarm, the Job Scheduler updates
the details of all the users of the system. The overall usage of each user is
updated and the charges for that period is reset to zero.

� Executing Client
The Executing Client runs on each client machine and reports the state of the
machine periodically to the central server. It receives a process that it has to
execute from the Job Scheduler through the Execution Server only when they
are idle. Upon receiving the process the Executing Client spawns a child to
execute the process. When the executing process is either interrupted or
executes to completion, the Executing Client reports the status of the job
back to the Execution Server.

� Load Monitor
The Load Monitor daemon monitors the load on each client machine and
reports the status to the Executing Client. The load on the machine is mon-
itored to detect the arrival of a local user. The distributed job that is running
on the machine is preempted if the load is detected to be above a certain
threshold. A parameter, provided in the system configuration file, is used to
select the load threshold.

3.2 Job Execution

In my system, a user can submit a job from any machine in the pool where he or
she has login privileges. The machine in the pool from which the job is submit-
ted is called the submitting machine. The machine that eventually runs the job is
called the executing machine. Through its lifetime, a job could run in one or more
machines in the pool before executing to completion.

When a job is submitted from a client machine to the Job Scheduler in the cen-
tral server it is added to the priority queue of jobs maintained by the Job Scheduler.
The jobs submitted are processed as follows: (see Figure 3.3)

1. The client in the submitting machine submits either a single job or a batch
of jobs to be executed in the system. The job/jobs are submitted to the Job
Scheduler in the Central Server.

2. The Job Scheduler requests a machine from the Machine Allocator.

38

Submitting Client

Load Daemon
Spawned

Child

Job
Scheduler

Alarm
Sender

Central Server

Machine
Allocator

Server
Execution

Executing Client

Submitting MachineExecuting Machine

1

2

3

4

5

67 8 9

10

11

12

Figure 3.3: Job Execution

3. The Machine Allocator stores the information of the status of machines in the
pool. Upon receiving a request from the Job Scheduler, it assigns the idle
machine that is at the head of the idle machine queue to execute the job.
After allocating that idle machine it then removes it from the idle machine
queue. This allocated machine will now be called the executing machine for
the job that is to be run.

4. The Job Scheduler selects the highest priority job from its job queue. It then
passes the process details as well as the information of the machine in which
the job has to be executed to the Executing Server.

5. The Executing Server then contacts the Executing Client in that executing
machine and requests permission to execute a job. The Executing Client
grants the permission if the machine is still idle. Then the Executing Server
sends the job information and requests the Executing Client to execute the
job.

39

6. The Executing Client spawns a child which will start and monitor the execu-
tion of the user job. The Executing Client then waits in a loop either for the
child to return on completion or till the load on the machine goes above the
upper threshold.

7. If the load on the machine goes above a certain threshold, the load daemon
indicates that to the Executing Server.

8. When the load on the machine is high, the Executing Server interrupts the
child immediately and forces it to checkpoint itself.

9. The child dies either due to completion of execution or because of interruption
due to heavy load. The status of the job is extracted by the Executing Client.

10. The Executing Client reports the status of the job to the Executing Server. If
the process has been interrupted, then the process details are passed back
to the Executing Server.

11. The Executing Server in turn reports the above details to the Job Scheduler.
If the job has been interrupted, the Job Scheduler inserts the job back into
the Priority Queue after adjusting its priority based on the amount of CPU
utilized by it.

12. Finally, if the process has executed to completion, the Job Scheduler passes
the information to the submitting machine along with the published results.

3.3 Algorithms Implemented

This section describes the algorithms that are chosen to implement the different
features of the system. There are a number of issues that have to be handled in this
system such as checkpointing of processes, allocation of machines to processes,
and the scheduling of jobs by the Job Scheduler in the central server. We will
examine each of these issues in detail and describe the algorithms implemented
to handle these issues.

3.3.1 Checkpointing

In simple words, checkpointing involves saving all the work a job has done up until
a given point. Normally, when performing large-scale computations, if a machine

40

crashes, or must be rebooted for some reason, all the work that has been done is
lost. The job must be restarted from scratch, which can mean days, or even weeks
of wasted computation. Checkpointing ensures that you only loose the computa-
tion that has been performed since the last checkpoint. A command can be issued
to asynchronously checkpoint a job on any given machine, or you can even call a
function within your code to perform a checkpoint as it runs. Checkpointing also
happens when a job is moved from one machine to another which is known as
“process migration” [Dob95].

Traditional distributed systems such as Condor and BATRUN accomplish check-
pointing by saving all the information about the state of the job to a file. This in-
cludes all the registers currently in use, a complete memory image, and information
about all open file descriptors. This file called a “checkpoint file”, is written to disk.
The file can be quite large, since it holds a complete image of the process virtual
memory address space. Such systems therefore have to make sure, before writing
to the checkpoint file, that there is enough space to store the checkpoint file in the
machine.

In most processes the execution of the job depends on a few important param-
eters. The execution of the process can be resumed after interruption if the values
of these important parameters are known at the time the process was interrupted.
The above space constraint for the checkpoint file can be avoided in my system
by ensuring that the checkpointing is part of the executing process itself. Every
process that is submitted to my system therefore needs to have checkpoint code
incorporated in it. This code would be invoked upon receiving an interrupt from the
Executing Client and will contain code that saves just the parameters essential to
restart the process later from the point where it was interrupted.

As explained earlier, upon receiving the process details from the Central Server,
the Executing Client on the idle executing machine spawns a child to execute the
process. The load daemon running on the executing machine monitors the load
on the machine. When the load daemon detects that the load on the machine
goes above a certain threshold because of the user returning to the machine, it
forces the Executing Client to send a kill signal to the child that it spawned (i.e.,
the running job is interrupted). The child catches the interrupt signal and executes
the checkpoint code to save the essential state of the process in a file and then
dies. The Executing Client then reports the status of the interrupted child to the
Job Scheduler which inserts it back into the job queue with a changed priority.
Therefore, the requirement of my system is that any job submitted to it has to have
its own checkpoint code incorporated in it (i.e., upon receiving an interrupt, it would
write a checkpoint file that it understands rather than having to deal with more

41

complex issues such as saving register values).

3.3.2 Machine Allocation

To implement a machine allocation algorithm, the system supports the following
states: the REQUESTING state to identify all the machines in the pool that have
jobs to be executed, the IDLE state to identify the machines that can be allocated,
the BUSY state to identify the machines that are executing the jobs. Note that a
machine can be in REQUESTING and IDLE state at the same time.

At any given point in time, there can be several REQUESTING and also several
IDLE machines. Note that the Job Scheduler selects one job per REQUESTING
machine. The purpose of the machine allocation algorithm is to decide how to allo-
cate the IDLE machines given that there may be several REQUESTING machines.

Implemented Algorithm: There are two separate queues maintained, one for
REQUESTING machines and the other for IDLE machines. When a job is submit-
ted from a machine, that machine is added at the end of the REQUESTING queue.
As and when REQUESTING machines are allocated to an idle machine to execute
the job submitted, they are removed from the front of the REQUESTING queue.
Similarly, when a machine from the IDLE queue is allocated to execute a job, it is
removed from the IDLE queue. Also, when a machine completes execution of a
process and is still idle it is added to the end of the IDLE queue.

3.3.3 Scheduling of Jobs

One of the critical requirements of a scheduler is that it be fair. Traditionally, this has
been interpreted in the context of processes and has meant that schedulers were
designed to share resources fairly between processes [EL68], [L.K70], [B.W68].
More recently, it has become clear that schedulers need to be fair to users rather
than just processes. This is reflected in work such as [G.J84] and [C.M86].

A fairly typical scheduler was inadequate in our environment for a number of
reasons:

1. It gave more of the machine to users with more processes, which meant that
users could increase their share of the system simply by submitting more
processes to the system.

2. It did not take into account the long-term history of a user’s activity. Thus,
if a student used the system heavily for approximately two hours, the same

42

system share was allocated as to a student who had not used the machine
for some time.

3. When one user or a set of users have a lot of jobs to run and they submit
numerous jobs to the system, the system responds poorly to all other users.

4. If someone needed a good response from the system, it was difficult to en-
sure that they would get that response without denying all other users access
to the system.

In our system, we will try and address these problems by using the charging
mechanism. Typically, charging systems involve allocation of a budget to each
user, and as users consume resources, they are charged for them. We might
call this the fixed-budget model, in that each user has a fixed-size budget allot-
ment [JP88]. Then, as the resources are used, the budget is reduced, and when
it is empty, the user cannot use the system at all. This fixed-budget model is re-
fined in order to suit our system requirements. Every user has a usage and charge
associated with him/her. Every time a process is run by a user and executes to
completion or returns to the central server due to interruption, the charges of the
user that submitted that user is updated. The usage of a user is updated periodi-
cally by adding all the charges accrued by all the processes submitted by that user
since the last update. The priority of the individual processes submitted are also
adjusted when they return from the executing machine based on the charges they
accrued. The charges that my system uses may be defined in terms of the per-
centage of the CPU used by a process when it is executing on a remote machine.

3.3.3.1 Implementation

As one might expect, conceptually there are two main components, one at the user
level and the other at the process level.

3.3.3.1.1 User-Level Scheduling Every user has a usage, which is a decayed
measure of the work the user has done in the system. The usage of a user has
to be updated periodically, so that no user is allowed to dominate the system. The
following are the steps to be taken:

� Update usage for each user by adding charges incurred by all their processes
since the last update and decaying by an appropriate constant.

43

� Update accumulated records of resource consumption for planning, monitor-
ing and policy decisions.

The user-level scheduler is invoked every
"
 seconds. The value of

"
 defines
the granularity of changes in a user’s usage as he or she uses the system. Since
usage is very large compared to the resources consumed in a second,

"
 can be
of the order of a few seconds without compromising the fairness of the scheduler.

The first component of the user-level scheduler decays each user’s usage. This
ensures that usages remain bounded and the value of the constant K1 in combi-
nation with

"
 defines the rate of decay. We generally consider the effect of K1 in
terms of the half-life of usage. At a conceptual level, this step is performed for all
users. In fact, the effect of the calculation is computed as each user logs in, and
the actual calculation need only be performed for active users [JP88]. The next
part of user-level scheduling involves updating the usage of active users by the
charges they have incurred in the last

"
 seconds and resetting the charges tally.
At this point, the system computes the charges due to a user for the resources

the user has consumed during the last cycle of the user-level scheduler. This part
of the scheduler does not need to run frequently because usage generally changes
slowly.

For each user,

decay usage and update with costs incurred in last t1 seconds:

@9`badcSe �I!f6Fg Q @9`?ahcSe �I!f6Fgjilk
 MnmoHpahqbcSeb` �I!f6Fg (3.1)

reset cost tally: mIHparq?cSeb` �I!f6Fg Q s (3.2)

3.3.3.1.2 Process-Level Scheduling The remainder of the scheduler operates
at the process level. Each process has a priority, and the smaller its value, the
better the scheduling priority. The priority defines the order in which processes are
entitled to be allocated CPU resources in idle machines. We also introduce the
term active process to describe any process that is ready to run which means it
is in the job queue held by the central server. Accordingly, there are two types of
activities at the process level performed by the scheduler:

1. It schedules or allocates idle machines to the process with the smallest pri-
ority, which corresponds to the process being at the head of the queue; and

44

2. It increases the priority of a process each time it is allocated CPU time in an
executing machine. This can be viewed as putting the process further down
in the job queue.

Process Activation

When a process returns from an executing machine, Update costs incurred by the
current process

mIHparq?cSeb`ot � gug�vr� Q moHpahqbcSeb`It � gug�vr� Mnm & ` " 6fwx6 t � � . � 0 (3.3)

Next is the adjustment to the priority of the current process, which defines the
resolution of the scheduler. This ensures that the CPU use of the current process
increases (worsens) its priority.

Priority Adjustment

When a process returns from an executing machine unfinished, (i.e., it has been
interrupted due to heavy load on the executing machine), Increase the priority of
current process in proportion to the user’s usage, shares, and number of active
processes

y q(z & q(z "|{ t ��g<g�v(� Q y q(z & qbz "|{ t � gug�v(� M @}`?adcSeIt � gug�vr�~i a�m " z<�Se $ y q & m�eb`b`?eb`ot � gug�vr�
`(HNahqdeb`)t � gug�vr� (3.4)

My system pushes the current process down the queue by an amount propor-
tional to the usage and the number of active processes of the process’s owner,
and inversely proportional to the square of that user’s shares. Processes belong-
ing to higher usage (more active) users are pushed further down the queue than
processes belonging to lower usage (less active) users. This means that a process
belonging to a user with high usage takes longer to drift back up to the front of the
queue. (The priority needs longer to decay to the point that it is the lowest).

The basic purposes of such a fair share scheduling system are:

� It is fair to all the users of the system and does not end up favoring users
submitting a large number of jobs to the system. It does not allow users to
cheat the system;

� Gives a good prediction of the response that a user might expect; and

� Gives meaningful feedback to users on the cost of various services.

45

3.4 Assumptions Made and Associated Limitations

Both the execution server and the Job scheduling server run on a single machine
(the central server) in the cluster. Both these servers are CORBA servers and
therefore deadlocks can occur between them. However dead-locks can only occur
under certain conditions. First of all, a cyclic or looping relationship must exist
between the servers. For example: one server must make invocations on the
second server which is in turn implemented to make an invocation upon the first
server. This situation is referred to by some as nested call-backs. While cyclic
relationship between servers might seem easy to avoid, it often arises, if CORBA
is being used to support the combination of client/server request/response and
server/client notification. If a cyclic relationship exists and a remote invocation
blocks a process, a dead-lock will occur.

The load detecting daemon runs on each machine in the cluster and continu-
ously reports the status of the machine to the central server. If the load daemon on
a machine fails for any reason, then the status of the machine is not known to the
central server. After waiting for a specific time-interval, the central server makes
the machine permanently busy until the load daemon in that machine is corrected
to report its status.

Only single process jobs are supported by the system. This means that any
job that is to be executed by the system cannot have the fork(), exec() and similar
calls present in them. Also all file operations must be idempotent. This means
that read-only and write-only file accesses work correctly, but programs which both
read and write the same file may not.

The distributed system assumes a shared file system. Hence a different secu-
rity problem exists for owners of jobs who essentially give remotely running pro-
cesses access to their own file system. Each job submitted to the system has an
associated “checkpoint” file. This file is stored in a common place accessible by all
machines in the cluster. Interprocess Communication (IPC) calls are not supported
which means that any of the jobs executing cannot implement the socket(), send(),
recv() and similar calls.

3.5 Bells and Whistles

There is very minimal interaction between the clients and the server as well as
between the clients themselves. The only form of interaction between the clients
and the server is in the form of the IDL structure representing the job to be run. The

46

submitting machine passes the structure representing the process to the central
server and the job enters the job queue in the server. The central server extracts
the highest priority job and passes the structure representing it to one of the idle
machines which then becomes the executing machine for that process. Other than
that the interaction is only in the form of reporting the status of machines. Such a
minimal interaction reduces the network traffic considerably and the throughput of
the system increases considerably.

A user can submit one or more jobs from a machine in the cluster. If a user
wants to submit a number of jobs to the system, he/she can do so through writing
the details of the job/jobs to a file. All the jobs whose details are present in the
file are passed on as structures to the central server. My system also provides the
capability to remove the jobs from the job queue in the central server. However,
only the user who has submitted the job is allowed to remove the job from the
queue. This is especially useful, when a user has submitted a single bad job
multiple times with different parameters. If the user is not able to remove all these
bad jobs from the queue then a lot of the processing time of the individual machines
would be wasted in executing these bad jobs.

47

Chapter 4

Experiments

In this chapter, we present the results of experiments we performed to test our
system. We used two types of test problems: backpropagation processes and
code-breaking processes. We contrast our results with similar processes that run
on the Condor High Throughput Computing System.

4.1 Problems Used in Testing

Our system is built for processes that have large amounts of computation and
hence require a large amount of processing power in order to execute to comple-
tion. My system provides such a computational environment with large amounts
of computational power over a long period of time which is essential to solve such
problems.

Another requirement of my system is that the user who submits a process to
the system has to write code that is already capable of checkpointing. The user
includes the checkpointing code himself. The process on interruption executes that
checkpointing code and migrates from that machine back to the server. The main
purpose of user-initiated checkpointing is to avoid saving all the information about
the state of a job, such as the registers currently in use, a complete memory image,
and information about all file descriptors, to a file. Instead, the checkpointing code
in each process would save just the information essential to restart the process
from the previously interrupted state. One important example of such a process
would be a neural network training problem using the backpropagation algorithm.
The training at any stage is dependent on only a few parameters such as the num-
ber of epochs that the network has been trained until then as well as the weights

48

of the connections between the nodes at the interrupted stage. Saving just these
parameters is enough to restart the process from the previously interrupted state.

If the standard method of checkpointing was used (i.e., dumping a core image
with all information about the state of a process), then the size of the checkpoint file
ends up being quite large. The file is large because it holds a complete image of
the process’s virtual memory address space. In fact some existing systems such
as Condor have to check that there is enough space to store the checkpoint file
every time they write the checkpoint file to the checkpoint server.

Another kind of problem which would be tested in our system is the code-
breaking problem. For this, the client provided by distributed.net was down-loaded
which uses a trial and error method to examine numerous codes before arriving at
the right one. Here again, the amount of computational power required to exam-
ine all the codes is extremely high and it requires long uninterrupted amounts of
computational power to do so.

4.2 Basic Performance Tests

A number of tests were performed to verify that the system was working as ex-
pected. Tests were run to check that running a process on a single processor as
well as running it over a number of workstations in my system yielded the same
results. Tests were also performed to verify the interruption of executing processes
on machines when the machines are no longer idle (i.e., when the load on them
becomes heavy). Experiments were also done to prove that the average time of
execution of a process is much better in my system than running it in a single
processor sequentially.

4.2.1 Correctness of the System

In order to test that the system was working as it was expected to, backpropagation
tests were run on it. Different variations of a command file were given as input to
the backpropagation code and the results (i.e., the training set correctness as well
as the test set correctness of the network) were obtained both when it was run
on a single processor as well as when it was submitted to my system. Table 4.1
illustrates these results.

The goodness or the correctness of my system can be defined as follows:

49

Table 4.1: Results of backpropagation tests when submitted to my system and
when executed on a single processor. Tests were run on different command files
and their correctness of prediction on the training and testing set were calculated
both in my system when the process gets interrupted on heavy load and outside of
it where it runs on a single processor uninterrupted.

Command Correctness with Interruptions Correctness on single processor
Files Training Set Test Set Training Set Test Set

let(7 epochs) 0.730 0.705 0.730 0.705
let(8 epochs) 0.742 0.711 0.742 0.711
let(10 epochs) 0.758 0.709 0.758 0.709
let(12 epochs) 0.769 0.749 0.769 0.749
let(18 epochs) 0.787 0.768 0.787 0.768
let(20 epochs) 0.791 0.766 0.791 0.766
let(22 epochs) 0.796 0.754 0.796 0.754
let(24 epochs) 0.798 0.776 0.798 0.776

m & q(qde?m " -;eb`b`�Q � @N��� eIq &*��� eb` " ` � z " H���ar��e���eb`o@9� "�D& " a>� � @���� eIq &d��� eb` " `��
eIq �9& q(��e + (4.1)

From Table 4.1 we can find that the results obtained by executing a process
on a single processor as well as when the process is submitted to the system and
executes on multiple processors (idle machines) are the same every time. This
effectively means that the correctness of our system is 1. The same tests were run
using Condor and they yielded the exact same results.

4.2.2 Interruption of Processes and their Quiesce Time

Tests were performed to indicate that processes running on idle machines did mi-
grate back to the server when the load on the machine went above a certain thresh-
old. In other words, when the load on an executing machine goes above the upper
threshold defined by the system, the process running on that machine would re-
ceive an interrupt signal from the client which actually spawned the child process
in the executing machine. The time taken for a process to quiesce itself and check-
point was recorded for a number of backpropagation tests as shown in Table 4.2.

50

Table 4.2: Time taken by different backpropagation processes to quiesce them-
selves upon interruption. The processes are interrupted many times due to heavy
load on executing machines and the time taken to come out of the machine was
recorded after each interrupt.

Quiesce Quiesce Quiesce Quiesce Quiesce
Command-File Time (sec) Time (sec) Time (sec) Time (sec) Time (sec)

Interrupt1 Interrupt2 Interrupt3 Interrupt4 Interrupt5
let(7 epochs) 40 15 – – –
let(8 epochs) 8 – – – –
let(10 epochs) 24 27 – – –
let(12 epochs) 25 8 8 55 20
let(18 epochs) 33 39 13 6 9
let(20 epochs) 35 42 45 5 4
let(22 epochs) 58 37 9 7 55
let(24 epochs) 19 61 52 4 2

The time taken to do so should ideally be as little as possible, since the process is
supposed to evacuate the machine as soon as the machine is indicated to have a
heavy load.

For the code-breaking tests, the quiesce time was less than 1 second for all
interruptions. This is because, the code-breaking processes were designed to per-
form periodic-checkpointing. Hence the process on interruption does not execute
any special code but just kills itself. The next time the process is restarted it re-
sumes from the previously checkpointed state.

4.2.3 Checkpointing Results

When a process is interrupted while execution, the interrupt handler in the process
executes the code to write the essential information to a checkpoint file. The size
of the checkpoint file written depends on the number of parameters whose values
have to be saved in order to restart the process from the interrupted state. In
case of the backpropagation, it is sufficient to store the number of epochs that
the network has been trained until then as well as the weights of the connections
in the network at that stage. Table 4.3 shows the average size of a checkpoint

51

Table 4.3: Size of the checkpoint files written by various backpropagation pro-
cesses during each run

Average Size of Checkpoint File
Command-File Number of Interruptions (Bytes)
let(7 epochs) 2 21840.5
let(8 epochs) 1 21811
let(10 epochs) 2 21834.5
let(12 epochs) 7 21847.5
let(18 epochs) 5 21888.2
let(20 epochs) 11 21878.3
let(22 epochs) 10 21873.3
let(24 epochs) 11 21876.1

file created for various backpropagation tests. The different backpropagation tests
were performed on the same command file with the number of epochs that the
network is trained being different every time.

The same checkpointing tests were performed on Condor. For the same com-
mand files Condor yielded a checkpoint file of size 7.31 MegaBytes on an average.
The maximum size of a checkpoint file was 10.20 MegaBytes. In contrast, our
system yields a checkpoint file of size 21.85 KiloBytes on an average. This tells
us the effect user-initiated checkpointing has in drastically reducing the size of a
checkpoint image created.

4.2.4 Events on a Workstation

The various events that happen on a machine which is a part of my system is
based on the load on the machine. When the load on a machine goes below the
lower threshold and stays under it for a certain period of time, it is viewed as idle.
The machine then gets the top priority process from the server and starts executing
it. The machines continues running the process either until completion or until the
load on the machine goes above the upper threshold. At that point, the process
evacuates the machine after writing to a checkpoint file. When the server does not
have any more jobs to run, the client idle machines wait in a loop till a process is
submitted to the server.

All the machines in the system execute the above mentioned cycle. Table 4.4

52

Table 4.4: The significant types of events happening on machines in the system
based on load :- (a) The machine is idle (i.e., load on machine � 1.0) (b) Machine
gets the top priority process from the server when it has been idle for 15 minutes
or more (c) Process writes the current state to a checkpoint file and evacuates the
machine, when the machine is no longer idle (i.e., load on machine � 2.3)

Time Load State of Processor Time Load State of Processor
(min) ”moe” ”moe” (min) ”curly” ”curly”

0 0.43 (a) idle 0 0.089 (a) idle
5 0.71 idle 5 0.094 idle
10 0.92 idle 10 0.092 idle
15 0.85 (b) idle - gets process 15 0.123 (b) idle - gets process
20 1.59 Process Running 20 2.06 Process Running
25 2.17 Process Running 25 2.21 Process Running
26 2.28 (c) Process Evacuates 30 2.22 Process Running
28 1.90 Process Migrated 33 2.26 Process Running
32 1.55 Load Decreasing 34 2.28 (c) Process Evacuates
35 1.36 Load Decreasing 35 2.13 Process Migrated
40 1.10 Load Decreasing 40 0.85 (a) Load Decreasing - idle
45 0.97 (a) idle 45 0.016 idle
50 0.84 idle 50 0.036 idle
55 0.84 (b) idle - gets process 52 0.038 (b) idle - gets process
59 1.48 Process Running 59 1.78 Process Running
65 1.90 Process Running 65 2.09 Process Running
70 2.25 (c) Process Evacuates 70 2.14 Process Running
71 2.19 Process Migrated 74 2.29 (c) Process Evacuates
75 1.28 Load Decreasing 75 1.93 Process Migrated
80 0.81 idle 80 1.33 Load Decreasing

shows this cycle of events on a couple of machines ”curly” and ”moe” which were
part of my system. The upper and lower load threshold of the system were set to
2.30 and 1.0 respectively for these results.

Table 4.4 is also plotted as a graph of the load on various machines versus
time (Graph 4.1). The graph highlights the various events that take place on the
machines in the system.

53

Figure 4.1: The Load on a machine vs Time : Graph highlighting the various events
that take place on the machines in the system

4.3 Discussion of Results

Table 4.1 shows that the results obtained by executing a process on a single pro-
cessor as well as when the process is submitted to the system and executes on
multiple idle machines are the same. This clearly indicates that the system works
exactly as it was expected to in terms of producing identical results with that of
uninterrupted execution of processes. The execution of the same processes in
the Condor system also yielded the same results. Clearly from the results tabu-
lated in Table 4.1 we can see that the accuracy of my system is very good and is

54

comparable with the Condor system.
The time taken by different backpropagation processes to quiesce themselves

upon interruption were recorded in Table 4.2. The processes were interrupted
many times due to heavy load on machines in which they were running and the
time taken to come out of the machine was recorded after each such interruption.
The quiescing time for the same processes on interruptions were recorded for Con-
dor and it was noted to be over 1 minute on an average. On the other hand the
quiescing time for almost all interruptions in our system was less than 1 minute.
The quiescing time in effect depends on the amount of checkpointing code written
and in Condor and other such systems, which examine the core file dumped by
a process to save its state, the time taken to extract all information from the core
image dumped is high.

The next issue that we dealt with while recording results was the size of the
checkpoint images created by our system. Table 4.3 shows the average size of
the checkpoint files written by our system during each run of various backpropa-
gation tests. The average size of the checkpoint file created by Condor was also
recorded for the same tests. As mentioned in Section 4.2.3 the size of the Condor
checkpoint file on an average was 7.31 MegaBytes whereas the average size of
the checkpoint file created by our system was only 21.85 KiloBytes. This clearly
indicates that the size of the checkpoint file created is far less than that of Condor.
This is primarily because Condor saves the complete image of the process’s virtual
memory address space in the checkpoint file whereas our system saves only the
parameters essential for restarting the process from the saved state. This method
that we have adopted to checkpoint migrating processes allows us to overcome
the limitation of Condor in creating huge checkpoint memory images.

Finally, in order to test the involvement of individual workstations which are part
of the cluster, we monitored the load on the various machines in the cluster and
recorded the various events that happen in a machine in the system with respect
to the load on it. This test was performed on a couple of machines in the system
and significant events such as the machine being idle, a process moving into the
machine from the server and the quiescing of a process when the load overshoots
the upper threshold defined in the system, were identified.

All the results recorded above give us further evidence that the different features
of our system such as the load monitoring code, the quiescing of processes and the
checkpointing of migrating processes with small checkpoint images are all working
correctly.

55

Chapter 5

Conclusions

In this thesis I implemented a new distributed processing system to satisfy large-
scale computational needs by using idle cycles in a network of workstations. I
evaluated the results obtained from my system and then compared its performance
with Condor in terms of the throughput of jobs, size of the checkpoint file created
and the quiescing time of processes on individual machines. I believe that my
system has demonstrated that it is a viable method for addressing the computing
needs of users.

Experiments performed on the system indicate that the questions put forth in
Chapter 1 have been answered. In the preliminary tests, I first determined the
basic correctness of the system. Tests were performed to check if my system
yielded the same results for a process as that when it was run on a single machine
uninterrupted. Tests were also performed to verify the interruption of processes
on machines when the machines are no longer idle. These results confirmed the
correctness of our system.

The main contribution of this thesis is to investigate alternatives to the idea
of storing large checkpoint files in memory when processes running on individual
machines are interrupted as experienced in currently existing systems. My thesis
proposes user-initiated checkpointing instead of saving the entire virtual address
space of the process.

The questions from Chapter 1 that provided the motivation for this thesis are
restated here along with the conclusions that can be drawn from answering them
in light of the experiments conducted:

Question 1: Can a parallel system be built that can manage a collection of
distributively owned workstations having the potential to make use of idle time on
various workstations to run large processes across the network but still ensuring

56

top priority for owners of the machines?
From the results of the initial correctness experiments we see that the system

that I have built produces the exact same results for processes as when it is exe-
cuted sequentially in a single processor. The system makes use of only the idle
time on the various workstations in the cluster to execute the submitted jobs, thus
giving highest priority to owners of workstations. It ensures this by setting an upper
load threshold on machines and forcing processes to migrate from a machine as
soon as the load on the machine goes above the threshold.

Question 2: Can these large processes be run across the network without
creating large memory images (saved states of the processes) like most other
systems do every time a process is interrupted?

In order to overcome this inherent problem with the standard checkpointing
method adopted by existing systems, we propose a new technique of checkpoint-
ing with user-initiated checkpointing. Here, instead of using the core file dumped
by the process on interruption to recover the state of the process, the user is asked
to insert the checkpointing code in the process himself. This strategy is particularly
useful for those processes that are dependent on a few essential parameters for
their execution. Upon receiving an interrupt the process executes the checkpoint-
ing code and writes the essential parameters to a file. This file is much smaller
than that created with the information extracted from the core dump. The results
shown in Section 4.2.3 show that the sizes of the checkpoint images created in our
system are much smaller than those created in Condor for the same processes.

Question 3: Would jobs involving such large scale computations perform better
in such a system or not?

The results in section 4.2.1 indicate again that jobs involving large scale com-
putations such as the backpropagation processes produce the same results in my
system as they would outside of it. The advantage in using my system would be
when a batch of such jobs have to be executed. Such a batch of jobs can be sub-
mitted from a client machine and the system in turn queues the jobs in the server
and uses the idle time present on the individual machines to execute a number
of these jobs at the same time in different idle machines. This in turn improves
the throughput of the system and is much better than having the whole set of pro-
cesses executing sequentially on a single machine.

The principle conclusion of this thesis is that in a cluster of workstations it is
possible to use only the idle cycles for executing processes involving large-scale
computations. This can be done without storing the entire memory image of the
process as is done in most existing systems. Instead, the suggested method of
user-initiated checkpointing to restart the process from its saved state, proves vital

57

in drastically reducing the size of the checkpoint image.

5.1 Future Work

Preliminary testing of the scheduling policy which provides a fair share to all users
of the system, yielded results that were expected. But the different features of the
scheduling strategy that were implemented such as the user-level scheduling, the
process-level scheduling and the decay of users’ shares as they use the system,
have not been tested rigorously and there is need for a more detailed analysis
of the scheduling policy. The scalability of the system has also not been tested
rigorously. Most of the experiments that I performed were on a small cluster of
5 workstations and all the features that I have implemented worked correctly in
such a cluster. The scalability of my mechanism cluster requires further testing
and analysis.

The system assumes the presence of a single central server which runs the
job scheduler and the executing server daemons. If this central server goes down,
then the whole system goes down. Mechanisms to cope with the loss of the central
server have to be devised. One possible solution would be to start a shadow
process which would monitor the central server. As soon as the central server
goes down, the shadow process spawns a new master process and the entire
control is transferred to that new process. The feasibility of such a solution has to
be analyzed as well. In addition to this, further testing has to be done to measure
the capability of the system to deal with missing slaves.

At this point, the system assumes a homogeneous collection of workstations
(i.e., all the machines in the cluster are SUN Solaris workstations with UNIX). Fur-
ther attempts can be made at making the system heterogeneous to support work-
stations in different environments. Moreover, the requirement that the user check-
points his/her own code might make it too complex for some processes. Simple
mechanisms can be identified to automate the checkpointing to an extent such as
the user specifying the important parameters of the process to be saved. The val-
ues of these parameters are then automatically saved every time the process is
interrupted. Finally, the system also assumes that all the workstations in the clus-
ter have the capability to provide the necessary resources for all submitted jobs.
However, this might not be true in some complex cases. These cases have to be
analyzed and the idle machine resources have to be checked before processes
are sent to them.

58

Bibliography

[AES97] A. Acharya, G. Edijlali, and J. Saltz. The Utility of Exploiting Idle Work-
stations for Parallel Computation. SIGMETRICS ’97, pages pp. 225–
236, May, 1997.

[AKPtNt95] Thomas E. Anderson, David E. Keller, David A. Patterson, and the
NOW team. A Case for NOW (Networks of Workstations). Technical
report, University of California, Berkeley, February 1995.

[AL93] Joseph A.Kaplan and Michael L.Nelson. A Comparison of Queueing,
Cluster and Distributed Computing Systems. Technical report, NASA
Langley Research Center, October, 1993.

[BLL91] Allan Bricker, Michael Litzkow, and Miron Livny. Condor Technical
Summary. Technical report, Computer Sciences Department, Univer-
sity of Wisconsin – Madison, 1991.

[Bur] Ted Burghart. Distributed Computing Overview.
http://www.quoininc.com/quoininc/dist comp.html.

[B.W68] B.W.Lampson. A Scheduling philosophy for Multiprocessor Systems.
In Communications of the ACM, volume 11, pages pp. 347–360, 1968.

[CGM93] Nicholas Carriero, David Gelernter, and Tim Mattson. Experience with
the Linda Coordination Language and its Environment. Technical re-
port, Yale University - Department of Computer Science, April 1993.

[C.M86] C.M.Woodside. Controllability of Computer Performance Tradeoffs
Obtained using Controlled-Share Queue Schedulers. In IEEE Trans-
action Software Eng., volume 10, pages pp. 1041–1048, Oct, 1986.

[Com96] Platform Computing. LSF MultiCluster: Software for Global Load
Sharing. December 1996.

59

[Cor] The CORBA FAQ. http://www.aurora-tech.com/corba-faq.

[Den97] Dorothy E. Denning. Encryption Policy and Market Trends.
http://www.cs.georgetown.edu/ denning/crypto/Trends.html, 1997.

[DGP96] Dennis W. Duke, Thomas P. Green, and Joseph L. Pasko. Research
Toward a Heterogeneous Networked Computing Cluster: The Dis-
tributed Queuing System. Technical report, Florida State University,
Tallahassee, Florida, 1996.

[Dob95] Dr. Dobbs. Checkpointing and Migration of UNIX Processes in the
Condor Distributed Processing System. Dr. Dobbs Journal, 1995.

[EL68] E.G.Coffman and L.Kleinrock. Computer Scheduling Methods and
Their Countermeasures. In In Proceedings of the Spring Joint Com-
puter Conference, volume 32, pages pp. 11–21, 1968.

[F93] Ferstl. F. CODINE Technical Overview. Technical report, Genias Soft-
ware, April 1993.

[Fie93] Scott Fields. Hunting for Wasted Computing Power. Research Sam-
pler, 1993.

[GBD
�

94] Al Geist, Adam Beguelina, Jack Dongarra, Weicheng Jiang Robert
Manchek, and Vaidyalingam S. Sunderam. PVM: Parallel Virtual Ma-
chine: A Users’ Guide and Tutorial for Network Parallel Computing.
1994.

[G.J84] G.J.Henry. The Fair Share Scheduler. Bell Systems Technical Journal,
63:pp. 1845 – 1857, Oct, 1984.

[JK91] J.Flower and A. Kolawa. Parallel Programming with EXPRESS. Tech-
nical report, ParaSoft Corporation, 1991.

[JP88] J.Kay and P.Lauder. A Fair Share Scheduler. In Communications of
The ACM, volume 31, pages pp. 44–55, Jan, 1988.

[L.K70] L.Kleinrock. A Continuum of Time-Sharing Scheduling Algorithms. In
In Proceedings of the Spring Joint Computer Conference, volume 36,
pages pp. 453–458, 1970.

60

[LL90] Mike Litzkow and Miron Livny. Experience With The Condor Dis-
tributed Batch System. In IEEE Workshop on Experimental Distributed
Systems, 1990.

[LLM98] M. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, pages pp. 104–111, 1998.

[LM93] M. Livny and M.W. Mutka. The Available Capacity of a Privately Owned
Workstation Environment. Performance Evaluation, vol. 12, no.4:269–
284, 1993.

[LS92] Michael Litzkow and Marvin Solomon. Supporting Checkpointing and
Process Migration Outside the UNIX Kernel. In Proceedings of the
Usenix Winter Conference, 1992.

[Mit97] Tom M. Mitchell. Machine Learning. 1997.

[Ove] Overview of The Condor High Throughput Computing System.
http://www.cs.wisc.edu/condor/overview/.

[RH95] Kyung Dong Ryu and Jeffrey K. Hollingsworth. Linger Longer: Fine-
Grain Cycle Stealing for Networks of Workstations. SC98, Orlando,
Florida, June, 1995.

[Ros97] Shawn J. Rosenheim. The Cryptographic Imagination. The Johns
Hopkins Univ. Press, 1997.

[TKDA96] Fredy Tandiary, Suraj C. Kothari, Ashish Dixit, and E. Walter Anderson.
BATRUN Distributed Processing System(DPS): Utilizing Idle Worksta-
tions for Large-scale Computing. In IEEE Parallel and Distributed
Technology, volume 4, Summer 1996.

[Wul94] Alex Wulms. On the Dynamic Behavior of Back Propagation Networks.
Project Study on Neural Networks, 1994.

[WZAL93] Jingwen Wang, Songnian Zhou, Khalid Ahmed, and Weihong Long.
LSBATCH: A Distributed Load Sharing BAtch System. Technical re-
port, Computer Systems Research Institute, University of Toronto, 6
King’s College Road, Toronto, Ontario, Canada, MFS 1A1, April 1993.

61

