THE BIOLOGY AND MANAGEMENT OF WILD RUMINANTS

CHAPTER FIFTEEN

THERMAL CHARACTERISTICS AND BASIC HEAT TRANSFER

bу

Aaron N. Moen

Professor of Wildlife Ecology

Department of Natural Resources

College of Agriculture and Life Sciences

Cornell University

Ithaca, N.Y. 14853

and

Certified Wildlife Biologist
(The Wildlife Society)

Published by

CornerBrook Press Box 106 Lansing, N.Y. 14882

First printing, January 1982 Second printing, August 1982

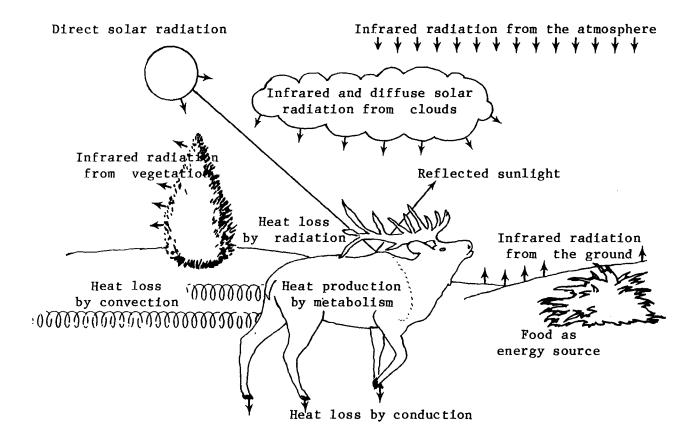
Copyright © 1982 by Aaron N. Moen

No part of this book may be reproduced by any mechanical, photographic or electronic process, or in the form of a phonograph recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use without written permission of Aaron N. Moen.

Library of Congress Card Catalog Number 80-70984

CONTENTS OF CHAPTER FIFTEEN

THERMAL CHARACTERISTICS AND BASIC HEAT TRANSFER


TOPIC	UNIT	1.1:	R AI	rai c	CIO	N E	PRC	FI	LЕ	S					•	•	•	•	•	٠		•	•	•	•	•	•	•	•	
		1.1:		FERE																										
		1.2: 1.2:		CAI																										
		1.3:																												
		1.3:																												
	ONTI	1.3:	KE.	FERE	SINC	C O	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2]
TOPIC			TIO	. V		•	•	•	•		•		•	•	•	•	•		•		•	•		•			•	•	•	23
	UNIT			TUR A																										
		2.1:																												
		2.2:																												
	UNIT	2.2:	RE	FERE	ENC	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
TOPIC	3. (CONDUC	TIO	N .																										31
	UNIT			ATIC																										
		3.1:																												
		3.2:																												
		3.2:																												
		3.3:																												
		3.3:		FERE																										
TOPIC	4.	EVAPOR	ATI	NC			•		•	•	•			•	•		•	•	•	•	•			•	•				•	47
			SU																											
	UNIT	4.1:	RE	FERF	ENC	ES		•		•			•	•	•		•	•	•	•		•					•		•	51
	UNIT	4.2:	RES	SPIR	CAT(ORY	. E	CVA	PC	RA	ΤI	01	V	•		•							•		•					53
		4.2:																												
CLOSI	NG COM	MENTS	•									•	•	•				•	•		•						•			57
07.000		- a.u.a	22.2		•																									
GLOSSA	ARY O	Y SYMB	OLS	USE	SD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	59
GLOSSA	ARY O	F CODE	NS		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
LIST (OF PUI	BLISHE	RS		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
GLOSSA	ARY OI	F ANIM	AL (CODE	E NA	AME	S	•	•	•		•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	65
JULIAN	N CALI	ENDAR			•		•		•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•		•	•	67
LIST (OF WOL	RKSHEE	TS		_			_	_						_															60

CHAPTER 15. THERMAL CHARACTERISTICS AND BASIC HEAT TRANSFER

Thermal energy is transferred by radiation, conduction, convection, and evaporation. The physical processes are beyond the control of the animal, although the animal can change the amount of its surface participating in energy exchange by these different modes.

The sun's energy, especially the visible portion, is often thought of as energy input at the earth's surface. There must be a means to dissipate this energy from the earth's surface, however, or the energy content and the temperature of the earth would continue to rise. Overall, the radiation exchanged between the earth and space must be approximately equal in both directions, or else the earth would be heating up or cooling off. When the energy balance of the earth's surface was slightly negative, glaciation was extensive.

There have been many evaluations by field biologists and ecologists of the responses of different species to weather conditions, with the usual approach being a correlation analysis between weather data, such as temperature and wind velocity, and observed animal responses. This approach has resulted in some useful conclusions, but it does not provide an understanding of the four thermal exchange processes—radiation, convection, conduction, and evaporation—that every organism is involved in when subjected to atmospheric conditions.

It is possible to conceptualize the complex nature of homeothermy, but it is impossible to describe mathematically all of the dynamic thermal relationships between an animal and its environment. Recent research on the thermal balance of both plants and animals has provided an insight into the functional mechanisms used to maintain a thermal balance within certain physiological limits.

Thermal transfers between organism and environment always involve these thermal exchange processes, so an understanding of each is essential for an understanding of the effects of weather on an organism. Heat transfer is, in reality, incredibly complex and beyond analyses on a real-time basis. The basic principles are fairly simple, however, and may be understood by the use of selected situations that illustrate each of the four modes of heat transfer and interactions between them.

It is important to quantify basic heat transfer before attempting to interpret thermoregulatory behavior. Objective calculations are best made before subjective interpretations because they provide a framework within which alternatives may be chosen by animals in particular situations.

REFERENCES

CHAPTER 15. THERMAL CHARACTERISTICS AND BASIC HEAT TRANSFER

BOOKS

	TYPE	PUBL	CITY	PAGE	ANIM	KEY WORDS	AUTHORS/EDITORS	YEAR						
	aubo aubo		nyny nyny			micrometeorology enrgy exchang in biosphere	sutton, og	1953 1962						
	edbo		nyny			advances in heat transfer	viskanta,r,ed	1966						
		-	oxen			biometeorology, volume 2								
			nyny			heat transfer	gebhart,b	1971						
			sfca			wildlife ecology	•	1973						
			nyny			princip environmentl physics	moen, an	1973						
			• •											
			sfca			intro biophys plant ecolog		1974						
			nyny			microclimate, biolog envir		1974						
		-	nyny			persp, biophysical ecology	- ,, ,							
		_	nyny			intro physiol plant ecolog	, <u>-</u>	1976						
	aubo	mhbc	nyny	325		theor, prob, heat transfer	pitts,dr; sissom,1	1977						
SERIALS														
	CODEN	vo-m	J BEPA	ENPA	ANIM	KEY WORDS	AUTHORS	YEAR						
	AM SCA	513	327	348		the energy environment	gates,dm	1963						
	IJBMA	202	239	156	dome	e meteorol in anim productn	hianca w	1976						
	IREZA			344	~ 0.111	heat trans in biolo system		1966						
	-110011	-	200	J 1.1		nout claims in block system	DILICOUR	1700						

energy flow in biosphere gates, dm

1971

SCAMA 225-3 88 100