INTRODUCTION

TO PART I

PHYSICAL, CHEMICAL AND GENETIC CHARACTERISTICS OF WILD RUMINANTS

Individual animals have characteristics that identify them as members of different groups. Animals with hair, for example, are mammals, and animals with feathers are birds. Most mammals have four legs that are used for locomotion, and most birds have wings that are used for flying. In some species, however, these structures are no longer functional, or are adapted for other uses.

Some characteristics are used to group animals according to physiological similarities rather than anatomical ones. Those that use internal regulatory mechanisms to maintain fairly uniform body temperatures are called endotherms, and those that are much more dependent on external conditions are called exotherms. The degree of development at birth may also be used as a basis for grouping animals; the young of wild ruminants are very well-developed and the young of marsupials very poorly developed at birth. Similar categories exist for birds; the young of some species are very precocial, and of other species, <u>altricial</u>. Many other categories may also be used to compile similarities in animal characteristics.

Sometimes categories are often more sharply delineated than biological functions warrant. <u>Hibernators</u>, for example, are often considered separately from <u>semi-hibernators</u> and <u>non-hibernators</u>. Functionally, however, these three categories are all part of a gradient of <u>energy con-</u> servation adaptations, and it may be better to consider the gradient rather than the categories when evaluating ecological relationships. This will be discussed in more detail later, especially in Part III.

A review of the physical, chemical, and genetic characteristics of a species is a good way to start a series of analyses of animal-range relationships. Much natural history of species has been accumulated over the years by biologists, naturalists, ecologists, and wildlife managers, and these natural history data are important biological inputs into high-speed computer analyses. Many of the equations in this book are mathematical versions of previously-expressed natural history facts. For example, lengths of gestation periods of wild ruminants can be related to the dates of parturition and conception to determine the cost of living for the pregnant female during that period of time. The growth rate and chemical composition of the fetus and associated reproductive tissues and the cost of maintenance of maternal body tissue must also be known since these costs must all be met if the animal is to reproduce successfully. Such costs are worthy of anlayses because population growth is very much more dependent on the productivity of the living than on mortality rates or the characteristics of the dead.

Many biological functions are on a rather predictable time schedule. Each species has a sequence of events through its life from conception to death that comprises a biological chronology for the species. The timing of these events is generally under hormonal control, mediated by the light regime, with short-term changes due to transient local conditions. Timedependent equations, based on the sequence of biological events in the life of an animal from conception to death, express certain ecological commitments. Conception, for example, commits the female to a gestation period of rather fixed length, parturition at a particular time, and a lactation period of somewhat fixed length. After gestation and lactation have been completed, the time period before the next conception is also of rather fixed length, and the cycle begins again. Annual cycles tend to be repetitive after reproductive maturity is reached as gestation, parturition, and lactation dominate the production throughout the year by the females of each species.

The Julian calendar is used for expressing time through each annual cycle. Presentation of the sequence of biological events over successive annual cycles is done by dividing the annual cycle into 365 days (Julian day = JDAY) rather than months and days. Many annually-occurring biological functions can be represented by sine waves, where one annual cycle is one sine wave. Days of the year are converted to degrees in a circle with the conversion factor 360/365 = 0.9863. JULIAN DAY:MONTH AND DAY EQUIVALENTS are shown on the next page.

The two CHAPTERS in PART I are rather descriptive, setting the stage for many interactive and mutually dependent relationships analyzed in the remaining six PARTS of this book. Characteristics presented first (weight, for example) are used in later analyses [metabolism = f(weight), for example] as relationships are evaluated sequentially [forage requirements = f(weight) = f(metabolism), for example]. One important guideline followed throughout all seven parts of this book is that equations representing biological characteristics or functions are merged with other equations representing related biological characteristics or functions whenever possible and appropriate. Not all of the many possible characteristics, functions, and equations are presented, of course, and students, research scientist, and wildlife managers are encouraged to derive additional equations for species of interest and for populations in local areas.

JULIAN DAY: MONTH AND DAY EQUIVALENTS

. .

.

Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Day
1	001	032	060	091	121	152	182	213	244	274	305	335	1
2	002	033	061	092	122	153	183	214	245	275	306	336	2
3	003	034	062	093	123	154	184	215	246	276	307	337	3
4	004	035	063	094	124	155	185	216	247	277	308	338	4
5	005	036	064	095	125	156	186	217	248	278	309	339	5
6	006	037	065	096	126	157	187	218	249	279	310	340	6
7	007	038	066	097	127	158	188	219	250	280	311	341	7
8	008	039	067	098	128	159	189	220	2 51	281	312	342	8
9	009	040	068	099	129	160	190	221	252	282	313	343	9
10	010	041	069	100	130	161	191	222	253	283	314	344	10
11	011	042	070	101	131	162	192	223	254	284	315	345	11
12	012	043	071	102	132	163	193	224	255	285	316	346	12
13	013	044	072	103	133	164	194	225	256	286	317	347	13
14	014	045	073	104	134	165	195	226	257	287	318	348	14
15	015	046	074	105	135	166	196	227	258	288	319	349	15
16	016	047	075	106	136	167	197	228	259	289	320	350	16
17	017	048	076	107	137	168	198	229	260	290	321	351	17
18	018	049	077	108	138	169	199	230	261	291	322	352	18
19	019	050	078	109	139	170	200	231	262	292	323	353	19
20	020	051	0 79	110	140	171	201	232	263	293	324	354	20
21	021	052	080	111	141	172	202	233	264	294	325	355	21
22	022	053	081	112	142	173	203	234	265	295	326	356	22
23	023	054	082	113	143	174	204	23 5	266	296	327	357	23
24	024	055	083	114	144	175	205	236	267	297	328	358	24
25	025	056	084	115	145	176	206	237	268	298	329	359	25
26	026	057	085	116	146	177	207	238	269	299	330	360	26
27	027	058	086	117	147	178	208	239	270	300	331	361	27
28	028	059	087	118	148	179	209	240	271	301	332	362	28
29	029		088	119	149	180	210	241	272	302	333	363	29
30	030		089	120	150	181	211	242	273	303	334	364	30
31	031		090		151		212	243		304		365	31
	~ \				•								

31

The lists of references that follow provide essential bibliographic information for books and articles containing general information on several biological characteristics. These general references will be helpful in many of the UNITS that follow, but they are not listed again after each UNIT as the UNIT lists are limited to more specific articles of direct application to the material discussed in each UNIT.

REFERENCES, PART I

PHYSICAL, CHEMICAL, AND GENETIC CHARACTERISTICS OF WILD RUMINANTS

auth/edit type publ city page anim kewo year 1964 aubo rokp loen 597 cerv deer of g. britain, irelan whitehead, gk aubo huho nyny 426 od-- deer, antelope of america caton, jd 1877 edbo stac hapa 668 od-- deer of north america taylor,wp 1956 stac hapa 128 od-- if deer are to survive dasmann,w 1971 aubo aubo vipr nyny 194 od-- deer of the world whitehead, gk 1972 aubo omcc eail 107 odvi the white-tailed deer madson, j 1961 odvi the white-tai deer, new ha siegler, hr 1968 edbo nhfg conh 256 aubo ucap beca 567 odhe a herd of mule deer linsdale, jm; tomic 1953 oxup loen 215 ceel herd of red deer, behavior darling, ff 1937 aubo ceel elk of north america 1959 stac hapa 386 murie,oj aubo madson,j wiwe eail 125 ceel the elk 1966 aubo ucap beca 209 mccullough, dr aubo ceel tule elk 1971 aubo utop toon 280 alal north american moose peterson,r1 1955 macm nyny 300 rata bar-gr car of north canada pike,w 1892 aubo 1955 aubo ukap laka rata bar-ground carib, keewatin harper,f rata migratory, barren-ground c kelsall, jp 1968 aubo gupr oton 339 aubo stac hapa 238 anam the pronghorn antelope einarsen,as 1948 aubo utop toon 957 bibi the north american buffalo roe,fg 1951 aubo ther nyny 242 bibi the buffalo haines.f 1970 bibi time of the buffalo 1972 aakn nyny 339 mchugh, t aubo swap atoh 374 bibi the buffalo book, saga ani dary,d 1974 aubo aubo uchp chil 383 ov-- mt sheep, behavior, evolut geist, v 1971 ov-- mt sheep, man, norther wil geist, v 1975 aubo coup itny 248 aubo usgp wadc 242 ovca the bighorn of death valley welles, re; welles 1961 qupr oton 166 obmo muskoxen in canada tener, js 1965 aubo

BOOKS

aubo	dalt	1aen	271	dada	fal de: histor, distr, bio	chapman,d; chapman	1975
aubo	doup	nyny	318	many	americ anim; popular guide	stone,w; cram,we	1902
aubo	cscs	nyny	347	many	our big game	huntington, d	1904
aubo	cscs	nyny	1267	many	life hist northern animals	seton, et	1909
aubo	ropr	nyny	129	many	wildlife in alaska, ecolog	leopold, as; darlin	1953
edbo	holt	nyny	264	many	records of n a big game an	boone & crockett c	1958
aubo	ropr	nyny	547	many	mammals of north america	hall, er; kelson, kr	1959
aubo	ucap	beca	586	many	wildlife of mexico	leopold, as	1959
aubo	vipr	nyny	304	many	wildlife in america	matthiessen,p	1959
aubo	repu	nyny	335	many	principals of mammalogy	davis, de; golley, f	1963
aubo	blsp	loen	308	many	guide, study of productivi	golley, fb; buechne	1968
aubo	jhpr	bamd	769	many	mammals of the world	walker, ep; paradis	1968
aubo	whfr	sfca	458	many	wildlife ecology	moen, an	1973
aubo	utop	toon	438	many	the mammals of canada	banfield, awf	1974
aubo	renu	nvnv	1023	ർറനം	bioenergetics and growth	brody s	1945
odbo	coup	itny	1/63	domo	duke's physical domest anim	swangon mi	1070
eano	coup	Truy	1405	uome	duke s physiol domest anim	swellson,mj	1970
aubo	dipr	nyny	276		problems of relative growt	huxley, js	1932
aubo	wbsc	phpa	601		the vertebrate body	romer, as	1970
aubo	wbsc	phpa	574		fundamentals of ecology	odum, ep	1971
aubo	dohr	stpa	361		biblio of quantita ecology	schultz.vll: eber/	1976
2250	40 M L	o opu			JISTIC OF ACCURATE COOLOGY		

SERIALS

CC	DDEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
MI	OCBA	5	1	64	odvi	w-tailed deer of minnesota	erickson, ab; gunv	1961
MI	OCRA	14	1	80	odvi	michigan white-tailed deer	jenkins,dh; bart1	1959
WC	CDBA	14	1	282	odvi	white-tailed deer, wiscons	dahlberg,bl; guet	1956
<u>C</u>	DDEN	vo-nu	bepa	<u>enpa</u>	anim	kewo	auth	year
AZ	ZWBA	3	1	109	odhe	in arizona chaparral	swank,wg	1958
Cł	FGGA	8	1	163	odhe	life hist, managemt, calif	taber,rd; dasmann	1958
CC	DDEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	year
U	CPZA	88	1	209	ceel	tule elk: hist, behav, eco	mccullough,dr	1969
WI WI	LMOA LMOA	16 24	1 1	49 66	ceel ceel	status, ecol, roosevel elk the sun river elk herd	harper,ja; harn/ knight,rr	1967 1970

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
NCANA NCANA	101 101	1 437	436 735	alal alal	ecol, proc inter sym, pt 1 ecol, proc inter sym, pt 2	bedard,j bedard,j	1974 1974
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	year
BPURD	2	1	215	rata	ecol, caribou, prudhoe bay	white, rg; thomso/	1975
CWRSB	38	1	71	rata	biology, kaminuriak popula	dauphine,tc,jr	1976
UABPA	8	1	82	rata	ecology, managment, sweden	skunke,f	1969
CODEN	vo-nu	bepa	<u>enpa</u>	anim	kewo	auth	year
WMBAA	10A	1	79	rata	prelim investigation, pt 1	banfield,awf	1954
WMBAA	10B	1	112	rata	prelim investigation, pt 2	banfield, awf	1954
WMBAA	12	1	148	rata	caribou, continued studies	kelsall,jp	1957
WMBAA	15	1	145	rata	barrn gr carib, coop study	kelsall,jp	1960
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AMNAA	432	257	354	anam	life hist, ecology, texas	buechner, hk	1950
JOMAA	3	82	105	anam	the prong-horn	skinner,mp	1922
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
AMNAA	243	505	580	ov	distribut, variat, no amer	cowan,imct	1940
AZWBA	1	1	153	ov	desert bighorn	russo, jp	1956
WLMOA	4	1	174	ov	united sta, past to future	buechner,hk	1960
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AMNAA	562	297	324	ovca	ecology of mountain sheep	mccann,1j	1956
WGFBA	1	1	127	ovca	wyoming bighorn study	honess, rf; frost,	1942
XNFSA	6	1	242	ovca	th bighorn of death valley	welles,re; welles	1961

Introduction to Part I - Page 6

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CAFNA	811	1	22	oram	observat, brit col, canada	holroyd,jc	1967
CGFPA	8	1	23	oram	liter review on ecology of	hibbs,ld	1966

CODENvo-nubepaenpaanimkewoauthyearNATUA 221-- 5960dada geographi var, fallow deer chapman, di:chapm 1969

OTHER PUBLICATIONS

Proceedings of the White-tailed Deer in the Southern Forest Habitat Symposium Transactions of the Annual Meeting of the Northeast Deer Study Group Proceedings of the North American Moose Conference Proceedings of the International Reindeer/Caribou Symposium Proceedings of the Biennial Antelope States Workshop Transactions of the Interstate Antelope Conference Transactions of the North American Wild Sheep Conference Transactions of the Desert Bighorn Council Proceedings of the International Mountain Goat Symposium Proceedings of the Annual Conference of Western Association of State Game & Fish Commissioners

LIST OF PUBLISHERS - PART I

aakn	Alfred A. Knopf	New York	nyny
b1sp	Blackwell Scientific Publications	London	loen
coup	Cornell University Press	Ithaca, NY	itnv
cscs	Charles Scribner's Sons	New York	nyny
•			
dalt	Dalton	Lavenheim, England	laen
dipr	Dial Press, The	New York	nyny
dohr	Dowden, Hutchinson & Ross	Stroudsburg, PA	stpa
doup	Doubleday, Pace, & Co.	New York	nyny
hoc1	Hollis & Carter Ltd.	London	loen
huho	Hurd Houghton	New York	nyny
holt	Holt	New York	nyny
jhpr	John Hopkins Press	Baltimore, MD	bamd
macm	MacMillan Co.	New York	עמעמ
		NCW IVIN	nyny
nhfg	New Hampshire Fish & Game Deptartment	Concord, NH	conh
omcc	Olin Mathieson Chem. Corp.	E. Alton, IL	eail
oxup	Oxford University Press	London	loen
qupr	Queen's Printer	Ottowa, Canada	oton
ropr	Ronald Press	New York	nyny
repu	Reinhold Publishing	New York	nyny
rokp	Routledge & K. Paul	London	loen
stac	The Stackpole Company	Harrisburg, PA	hapa
swap	Swallow Press	Athens, OH	atoh
ther	Thomas Crowell Co.	New York	nyny
		- • • •	
ucap	University of California Press	Berkely, CA	beca
uchp	University of Chicago Press	Chicago, IL	chil
ukap	University of Kansas Press	Lawrence, KA	laka
utop	University of Toronto Press	Toronto, Ontario	toon
usgp	U. S. Government Printing Office	Washington D. C.	wadc
vipr	Viking Press	New York	nyny
wbsc	W. B. Saunders Co.	Philadelphia	phpa
whfr	W. H. Freeman Co.	San Francisco, CA	sfca
wiwe	Winchester-Western Press	East Alton, II	eail

1

GLOSSARY OF CODE NAMES, PART I

Code names (CODEN) of Serials are defined in a GLOSSARY OF CODENS at the end of each CHAPTER. The GLOSSARY below includes the CODENS listed as Serials in this PART I. It is a miniature version of the lists given at the ends of CHAPTERS.

- AMNAA American Midland Naturalist AZWBA Arizona Game and Fish Department Wildlife Bulletin (US)
- BPURD Biol. Pap. Univ. Alaska Spec. Rep.
- CAFNA Canadian Field Naturalist (Canada) CFGGA California Department of Fish and Game, Game Bulletin CGFPA Colorado Division of Game, Fish, and Parks Special Report CWRSB Canadian Wildlife Service Report and Management Bull. Series
- JOMAA Journal of Mammalogy
- MDCBAMinnesota Deptartment of Conservation Technical BulletinMDCRAMichigan Department of Conservation Game Division Report
- NATUA Nature (England) NCANA Naturaliste Canadien, Le
- UABPA Proceedings of the Utah Academy of Sciences, Arts and Letters UCPZA University of California Publications in Zoology
- WCDBAWisconsin Department of Natural Resources Technical BulletinWGFBAWyoming Game and Fish Commission BulletinWLMOAWildlife MonographsWMBAAWildlife Management Bulletin
- XNFSA U S National Park Service Fauna of the National Parks of the United States, Fauna Series

Introduction to Part I - Page 10

THE BIOLOGY AND MANAGEMENT OF WILD RUMINANTS

CHAPTER ONE

PHYSICAL CHARACTERISTICS

by

Aaron N. Moen

Professor of Wildlife Ecology

Department of Natural Resources

College of Agriculture and Life Sciences

Cornell University

Ithaca, N.Y. 14853

and

Certified Wildlife Biologist

(The Wildlife Society)

Published by

CornerBrook Press Box 106 Lansing, N.Y. 14882

Copyright © 1980 by Aaron N. Moen

1

No part of this book may be reproduced by any mechanical, photographic or electronic process, or in the form of a phonograph recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use without written permission of Aaron N. Moen

11

CONTENTS OF CHAPTER ONE

TOPIC	1. MASS, UNIT 1.1: UNIT 1.1: UNIT 1.2: UNIT 1.2: UNIT 1.3: UNIT 1.3: UNIT 1.4: UNIT 1.4: UNIT 1.5:	WEIGHT, AND GROWTH	1 3 4 7 7 1 3 7 1 3 5
TOPIC	2. GEOME UNIT 2.1: UNIT 2.1: UNIT 2.2: UNIT 2.2: UNIT 2.3: UNIT 2.3: UNIT 2.4: UNIT 2.4:	TRY2LINEAR MEASURMENTS2REFERENCES2VERTICAL PROFILES2VERTICAL PROFILES3REFERENCES3SURFACE AREAS3REFERENCES3BED AREAS4REFERENCES4	789357913
TOPIC	3. SYSTEM UNIT 3.1: UNIT 3.1: UNIT 3.2: UNIT 3.2: UNIT 3.2: UNIT 3.3: UNIT 3.3: UNIT 3.4: UNIT 3.4: UNIT 3.4: UNIT 3.5: UNIT 3.6: UNIT 3.6: UNIT 3.6: UNIT 3.7: UNIT 3.7: UNIT 3.8: UNIT 3.8:	MS CHARACTERISTICS 44 GASTROINTESTINAL SYSTEM CHARACTERISTICS 44 REFERENCES 55 CARDIOVASCULAR SYSTEM CHARACTERISTICS 55 REFERENCES 55 REFERENCES 55 REFERENCES 55 REFERENCES 55 REFERENCES 66 REFERENCES 66 REFERENCES 67 REFERENCES 66 REFERENCES 67 REFERENCES 67 REFERENCES 67 REFERENCES 67 REFERENCES 67 REFERENCES 74 SKELETAL SYSTEM CHARACTERISTICS 77 REFERENCES 74 MUSCULAR SYSTEM CHARACTERISTICS 74 MUSCULAR SYSTEM CHARACTERISTICS 74 MUSCULAR SYSTEM CHARACTERISTICS 74 NERVOUS SYSTEM CHARACTERISTICS 74 NERFORES 74 NERFORES 74 REFERENCES 74 NERFORES 74 REFERENCES 74 REFERENCES	57035125734781256
CLOSI	NG COMMENTS	s	9
GLOSS	ARY OF SYMI	BOLS USED	1
GLOSSA	ARY OF CODE	ENS	3
LIST (OF PUBLISHE		6

CHAPTER 1. PHYSICAL CHARACTERISTICS

Wild ruminants have many physical characteristics that are important adaptations for survival and production in their natural environments. Weights vary as fat reserves are accumulated and used in relation to seasonal variations in the availability of food resources. Pelage characteristics change as thermal conditions change from season to season. Individuals alter their exposed surface areas and postures as parts of sothermoregulatory behavioral regimes. The volume of cial and the gastrointestinal tract and the rate of passage of forage through the tract are related to the amount of nutrients required by the animal. These are just a few examples of physical characteristics that affect the relationships between organism and environment.

Physical characteristics are best expressed with internationally defined units of measurements. MASS, WEIGHT, and GROWTH (TOPIC 1) are expressed in kg from the fetus to the mature adult, and are used later in calculations of metabolism, reproductive rates, and other characteristics. GEOMETRY (TOPIC 2) may be described by using several linear measurements, expressed in cm, to calculate such things as vertical profiles and surface areas in different postures. SYSTEMS CHARACTERISTICS (TOPIC 3) are important when considering such things as upper limits to forage volumes that can be ingested, volume of blood in the cardiovascular system, potential mineral reserves in the bones, and many more. These are important when evaluating nutrient balances of animals.

The TOPICS and WORKSHEETS that follow provide information on physical characteristics and also on curve-fitting and statistical techniques. It is desirable to go through each of them in the sequence presented so the proper skills are available when new problems and WORKSHEETS are presented.

TOPIC 1. MASS, WEIGHT, AND GROWTH

The body of an animal is a mass subject to gravitational forces, and the measured force has traditionally been expressed as weight. The live weight of an animal is composed of the animal's metabolically active tissues (muscle, for example), tissues that have ceased metabolic activity (hair, for example), and ingested material that has not yet been digested and absorbed. The live weight of a pregnant female includes not only the weight of the female herself, but also the weight of fetuses and associated reproductive tissues. Weights increase from birth to physical maturity, with a more rapid increase early in life and a less rapid increase as maturity is approached.

Weights of wild ruminants vary seasonally, with highest weights usually observed in the fall after an abundance of forage during the growing season, and fruits and seeds, or mast, have been available. Lowest weights are observed when the balance beween resources required and resources available is most negative. This often occurs in late winter and early spring when dormant forage resources are depleted and new growth is not yet available. Pregnant females metabolically support their own body tissue, and the increasing mass of fetal tissue plus associated membranes and other tissues in the uterus. Pregnant females may go into negative balances in order to provide nutrients for fetal growth, mobilizing their own body reserves to supplement ingested nutrients. Lowest weights of reproducing females may occur after parturition When the fetus has been expelled and the high requirements for the costly process of milk production must be met. The lactating female may mobilize her own body tissue in order to produce milk for suckling offspring.

It is desirable to express the weight of an individual as a continuous mathematical function over time. Sine functions can be used to represent weight changes through the annual cycle, providing the biological continuity desired when weights are used in the calculation of other biological functions, such as metabolism. Weight is used in many other calculations in this book also; the mathematical expressions of weight should be fully understood before proceeding to later units.

Most weight data for wild ruminants come from one of two sources: one, hunter-killed animals that are weighed at checking stations, or two, captive animals that are weighed for experimental purposes. Live weights may be estimated from field-dressed weights of hunter-killed animals with conversions equations, although there are several sources of error.

Weights of captive animals may be determined more accurately than those of hunter-killed animals, but there are questions about how well the weights of captive animals coincide with those of wild ones since they are on different diets and are living under different conditions. While there are problems associated with the measurement of weights of free-ranging and captive ruminants, weights are very important when evaluating the ecological relationships of a population. Weight data from both hunter-killed and experimental animals may be used judiciously to recognize patterns, however, and first approximations of weight structures of populations determined.

The first time-period used in deriving weight equations for a species is from conception to birth (UNIT 1.1). The second is from birth to weaning (UNIT 1.2), and then, post-weaning weights are used to derive equations for the expression of seasonal variations in weights over successive annual cycles as the animal grows older (UNIT 1.3). One important consideration when expressing weight as a mathematical function over time is that equations used for different time periods in the animal's life must merge. Fetal weights, for example, must end at birth weight, neonate growth must begin at the birth weight and continue to a weaning weight, and seasonal variations in growth after weaning must begin at the weaning weight used. If this consideration is not made, then there will be discontinuities between the growth curves from conception through seasonal variations of the adults, and such discontinuities are not biologically reasonable.

The UNITS that follow include descriptions of curve-fitting procedures for deriving equations from conception through physical maturity, with no discontinuities between different stages of growth.

UNIT 1.1: FETAL WEIGHTS AND GROWTH

The general pattern of growth of the ruminant fetus shows a slow of increase in the first 1/4 to 1/3 of the gestation period, a faster rate of increase in the middle of the gestation period, and a rapid rate of increase in the last 1/3 to 1/4 of the gestation period. The basic problem to be solved here is that of representing fetal weights of different species with mathematical expressions. Three kinds of formulas may be used to represent increasing rates over time. They are:

> exponential: FEWK = a e^b(DIGE) logarithmic: FEWK = a + b ln (DIGE) power: FEWK = a (DIGE)

where FEWK = fetal weight in kg and DIGE = days into gestation. FEWK are entered as the dependent variable, and DIGE as the independent variable. The best fit of the three curves is then used to express FEWK as a function of DIGE.

The lengths of the gestation periods of the wild ruminants are different; fetuses of different species have different amounts of time to develop from fertilized eggs to full-term fetuses. The aproximate lengths of the gestation periods (LEGP) from the table in TOPIC 3, UNIT 3.4, are:

LEGP

white-tailed deer;	odvi	200
mule deer;	odhe	200
elk;	ceel	260
moose;	alal	245
caribou;	rata	220
pronghorn;	anam	240
bison;	bibi	29 0
bighorn sheep;	ovca	150
Dall sheep;	ovda	150
muskox;	obmo	270
mountain goat;	oram	180

Lengths of the gestation periods are used in comparing growth between species. Mountain goat fetuses, for example, develop from conception to parturition in 0.75 of the time (150/200 = 0.75) required by white-tailed deer. Since both of these species, and all wild ruminants, give birth to well-developed young, fetal growth must be quite proportional throughout the gestation periods; development is relative throughout the length of the gestation period.

The WORKSHEETS illustrate how data on fetal growth can be expressed with equations, how first approximations of equations for fetal growth can be made when only birth weights are available, and how equations can be derived for estimating the fetal growth of all species of wild ruminants.

REFERENCES, UNIT 1.1

FETAL WEIGHTS AND GROWTH

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
AMNAA	433	650	666	odvi*fetal develop, white-taile	armstrong, ra	1950
JOMAA JOMAA	401 472	108 266	113 280	odvi breeding records, captive odvi endoc glan, seas, sex, age	haugen,ao hoffman,ra; robin	1959 1966
JWMAA JWMAA JWMAA JWMAA JWMAA	143 163 223 342 394	290 400 319 383 684	295 400 321 388 691	odvi breeding records of white- odvi late breeding record for w odvi/determin age of young fawn odvi*morphol develop, aging, fe odvi*uterine compositio, growth	<pre>haugen,ao; davenp erickson,ab haugen,ao; speake short,c robbins,ct; moen,</pre>	1950 1952 1958 1970 1975
NAWTA	28	431	443	odvi*nutrit, growth, fetal, faw	verme,1j	1963

CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
CJZOA CJZOA	48- - 1 482	123 275	132 282	odhe*development, fetal period odhe/feed intake, heat producti	ommundsen,p; cowa nordan,hc; cowan/	1970 1970
JOMAA JOMAA	361 523	145 628	145 630	odhe unusual twin fawns in mule odhe contrib organ tot bod mass	illige,dj; erling hakonson,te; whi/	1955 1971
JWMAA JWMAA JWMAA	233 284 342	295 773 383	304 784 388	odhe*embryo, fetal developmentm odhe evaluat, eye lens tec, agi odhe morphol developp, aging,fe	hudson,p; browman longhurst,wm short,c	1959 1964 1970
CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
CJZOA	476	1418	1419	ceel sexual dimorphism, fetuses	retfalvi,l	1969
JWMAA	231	27	34	cee1*breed seas, known-age embr	morrison,ja; tra/	1959
JZOOA	164-2	250	254	ceel weight, newb calves, scotl	mitchell,b	1971

CODEM		hana		and -	1	a	
CODEN	vo-nu	pepa	enpa	anım	ĸewo	auth	vear
		<u> </u>					

ala1

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
LBASA	216	817	824	rata	reindeer in biomed researc	dieterich,ra; lui	1971
CODEN	vo-nu	bepa	enpa	<u>anim</u> anam	kewo	auth	year
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				bibi			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA JOMAA	463 581	524 106	525 106	ovca ovca	fetal measure, milk charac brth wt, gest, capt rcky m	forrester,dj; sen blunt,m: dawson,/	1965 1977
CODEN	vo-nu	bepa	enpa	<u>anim</u> ovda	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> obmo	kewo	auth	year
CODEN	<u>vo-nu</u>	bepa	епра	<u>anim</u> oram	kewo	auth	<u>year</u>
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AMNTA	114-1	101	116	ungu/	matern repro effort, fetal	robbins,ct; robbi	1979
JPHYA	114	306	317	mamm	relat fetal wt, concep age	huggett,astg; wid	1951

Chapter 1 - Page 5

CHAPTER 1, WORKSHEET 1.1a

Fetal growth of white-tailed deer (odvi)

Mean weights of twin fetuses of white-tailed deer in Robbins and Moen (1975) are:

DIGE	=	50;	FEWK	=	0.019
		100			0.289
		145			1.240
		190			3.580

These data fit an exponential curve with an \mathbb{R}^2 of 0.96, a logarithmic curve with an \mathbb{R}^2 of 0.69, and a power curve with an \mathbb{R}^2 of 1.00, a perfect fit. The equation for a power curve is:

FEWK = $4.094 \times 10^{-9} (DIGE)^{3.924}$

Verify the equation with DIGE = 200 and FEWK = 4.38, and then calculate enough data points to plot the curve from DIGE = 1 to 200.

Robbins, C. T. and A. N. Moen. 1975. Uterine composition and growth in pregnant white-tailed deer. J. Wildl. Manage. 39(4):684-691.

CHAPTER, 1, WORKSHEET 1.1b

Fetal weights and growth (odvi)

This worksheet illustrates how to calculate fetal weights of whitetailed deer for any weight at birth.

Fetal growth of white-tailed deer may be represented with a power curve. The equation derived from data of Robbins and Moen (1975) resulted in a weight at AGDA = 1 of 4.094×10^{-9} , the value of the coefficient a in the equation for whitetail fawns in the previous WORKSHEET, and at birth (DIGE = 200) of 4.38 kg. Some fawns are lighter and some heavier at birth, however. An array of equations may be easily derived by fitting just two pairs of data--FEWK @ DIGE = 1, and FEWK @ DIGE = 200--to a power curve. Use FEWK = 4.094×10^{-9} (just a fraction of a gram) at DIGE = 1. This is reasonable biologically, and necessary mathematically when using a power curve as the y value in the x, y pair must be different from zero and positive. This data point is then connected to birth weight in kg (BIWK) by curve-fitting procedures. The equations for different fetal weights at birth (FWAB) are:

Ιf	BIWK	=	2.0,	FEWK	=	4.094	х	10-9	DIGE ^{3.//6} ;	6	DIGE	=	100:	0.146
If	BIWK	=	2.5,	FEWK	=	4.094	х	10-9	DIGE ^{3.818} ;	0	DIGE	=	100:	0.177
If	BIWK	=	3.0,	FEWK	=	4.094	х	10-9	DIGE ^{3.853} ;	0	DIGE	=	100:	0.208
If	BIWK	=	3.5,	FEWK	=	4.094	х	10-9	DIGE ^{3.882} ;	0	DIGE	=	100:	0.237
If	BIWK	=	4.0,	FEWK	=	4.094	х	10-9	$DIGE^{3.907};$	0	DIGE	=	100:	0.267
If	BIWK	=	4.5,	FEWK	=	4.094	х	10-9	DIGE ^{3.929} ;	0	DIGE	=	100:	0.295
If	BIWK	=	5.0,	FEWK	=	4.094	х	10-9	$DIGE^{3.949};$	0	DIGE	=	100:	0.324

Plot FEWK for several DIGE for each FWAB on the graph below:

Chapter 1 - Page 6b

CHAPTER 1, WORKSHEET 1.1c

Fetal weights and growth of all wild ruminant species

The previous WORKSHEET (1.1b) illustrated how fetal weights of whitetailed deer could be calculated for any weight at birth. This WORKSHEET illustrates how fetal weights of any wild ruminant can be calculated for any birth weight. The only assumption is that the fetal weight growth pattern of these different species is similar to that of the white-tailed deer. This is a reasonable assumption; all ruminants exhibit slow fetal growth early in the gestation period and rapid growth late in the gestation period.

The parameters needed to derive an equation for calculating fetal weights of any species at any time during the gestation period are lengths of the gestation period (LEGP), days into gestation (DIGE), and birth weights in kg (BIWK). The values used in curve-fitting b (from WORKSHEET 1.1b) in relation to BIWK ARE:

BIWK	<u>b</u>
2.0	3.776
2.5	3.818
3.0	3.853
3.5	3.882
4.0	3.907
4.5	3.929
5.0	3.949

A logarithm curve fits these data perfectly $(R^2 = 1.00)$; a = 3.6452 and b = 0.1888. The equation is:

b = 3.6452 + 1n 0.1888 BIWK

Since this is a perfect fit, extrapolation to larger birth weights results in b values that are exactly proportional to those from 2.0 to 5.0 for white-tailed deer. Thus b can be predicted for the birth weight of any wild ruminant as long as its fetal growth is proportional to the fetal growth of white-tailed deer, and the above equation substituted for b in the equation for a power curve given in WORKSHEET 1.1b. The combined overall equation is:

FEWK = $4.094 \times 10^{-9} [(DIGE/LEGP)200]^{(3.6452 + 0.1888 ln BIWK)}$

The phrase within the brackets, [(DIGE/LEGP)200], makes the lengths of the gestation periods porportional. For example, if DIGE = 234 and LEGP = 260, the gestation period is 90% complete, which is equivalent to 180 days of gestation (0.90 x 200 = 180) for a deer.

Since BIWK must be stipulated, the calculated FEWK will always be within the appropriate range for any species, and the fetal growth pattern will show the increasing rates characteristic of the last 1/3 to 1/4 of the gestation period which was expressed very well for white-tailed deer with a power curve. Choose a species, label the x-axis (DIGE = 0 - _____ and graph the results on the next page.

	10															_					
		Т	Т	T	T	Т	Т	Т	T	Т	Т	Т	T	T	Т	Т	Т	Т	Т	Т	Т
	÷	÷	÷	÷	÷	÷	÷	÷	ή-	Ť	÷	Ť	÷	Ť	τ	÷	Ϋ́-	τ ·	÷	÷	τ
	<u> </u>	1	1	<u> </u>	1	<u> </u>	<u> </u>	1	<u> </u>	1	1	7	<u> </u>	1	1	1	1	1	<u> </u>	1	1
		ſ		Т	T		Į	1													
	÷	Ť	÷	÷	÷	÷	Ť	Ť	΄ τ́	τ	τ	τ̈́	Ť	Ť	Ť	Ť	Ť	Ť	τ	Ť	Ť
	<u> </u>	1	<u> </u>	<u> </u>		<u> </u>	1	1	<u> </u>	<u> </u>	1	<u> </u>	1	1	1	1	<u> </u>	1	Ļ	<u>+</u>	1
	9					T											1				
	· - +	Ť	Ť	Ť	÷.	τ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
		+	4	1	1	1	1	1	+	1	+	+	+	+	+	+	+	+	4	÷	+
				1																	
	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Т	Ť	Т	T	Ť	Т	Т	Т
		+	- + '	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+
																1		1	1		
	яΤ	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	<u> </u>	+	+	+	+	+	+	+	+	+	+	+	÷	÷	÷	÷	+	÷	÷	÷	÷
			1				1							1							
	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	T	Т	T	Т
	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷
									1	1			1	1	1	1	<u> </u>	<u> </u>	<u> </u>	1	1
	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	T	T	Т	T	Т	T	Т	Т	Т	T
	- ÷	÷	÷	÷	÷	÷	÷	÷	Ť	÷	÷	÷	Ť	÷	÷	÷	÷	÷	÷	÷	÷
		1	1	1	1	1	1	1	Ţ	1	1	1	1	1	1	1	1	+	Ŧ	÷	+
				T		T		T	T		1		1								
	Ť	Ť	Ť.	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	- +	+	+	+	4	+	+	+	÷	+	+	1	+-	+	+	+	÷	+	+	+	+
				1				1							1						
	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Т	Т
	. +	÷	÷	+	÷	÷	+	÷	+	+	÷	+	+	÷	÷	+ .	÷	÷	+	÷	+
	6																1	1		1	1
	- T	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	<u></u>	+	÷	+	÷	÷	÷	÷	+	+	÷	+	÷	÷	÷	÷	÷	÷	\pm	÷	÷
												ł	1		1	1	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>
FEWK	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	T	Т	Т	Т
	÷	÷	÷	÷	÷	÷	÷	τ	÷	÷	÷	÷	Ť	Ť	÷	÷	÷	τ	÷	τ	τ
	1	<u> </u>	1	1	<u> </u>	<u> </u>	1	<u> </u>					1	1	1	1	1	Ţ	<u> </u>	1	1
	5 T	T			Т	Т	T	T	T		Т	T									
	<u></u>	÷	Ť	Ť	Ť	÷	Ť	Ť	τ	τ	τ	τ	Ť	Ť	Ť	τ	τ .	τ .	τ	Ť	Ť.
		+	+	1	1	1	1	1	1	1	Ŧ	1	4	+	+	+	+	+	÷	+	+
																			1		
	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Т	Т	Т	Т	Ť	Ť	Т	Т
	+	÷	÷	+	+	+	+	+	+	÷	+	+	+	+	÷	4	+	÷	÷	÷	÷
												ļ	1					1			
	4 T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т
		+	÷	+	÷	+	÷	÷	÷	+	÷	+	÷	÷	+	÷	÷	÷	+	÷	÷
		1		<u> </u>			1	<u> </u>		1			<u> </u>	<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>	1	1
	T	T	T	T	Т	Т	Т	Т	T	T	T	Т							I		
	Ť	Ť	Ť	÷	÷	÷	Ť	Ť	Ť	Ť	Ť	τ	Ť	Ť	Ť	Ť	Ť	Ť	τ	Ť	Ť
		+	+	+	+	+	+	+	÷	4	÷	+	+	÷	+	÷	÷	+	+	÷	÷
	зT	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т
	~ + -	÷	÷	÷	÷	+	÷	÷	+	+	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	÷
			1				<u> </u>					1	<u> </u>	<u> </u>	<u> </u>		1	<u> </u>	<u> </u>	1	1
	T	Т	Т	T	Т	Т	Т	T	Т	Т	Т	T		T	T	T	Т			T.	ſ
	Ť	Ť	τ	Ť	Ť	Ť	Ť	Ť	τ	τ	Ť	τ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	<u>+</u>	÷	+	+	+	+	+	÷	+	+	+	÷	+	÷	+	÷	+	Ŧ	+	+	+
					Í		Ι											1		1	1
	2 Ť	Т	Т	Т	Т	Ť	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	~÷-+	+	+	+	+	÷	÷	÷	÷	÷	+	+	+	+	+	÷	+	÷	÷	÷	÷
		1						- E		1				1					1		
•	Т	Т	Т	Т	Т	Т	T	Т	T	Т	Т	Т	T	Т	Т	Т	Т	T	Т	T	Т
	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷
		1	1	1	1	1	1	Ţ	1	<u> </u>	1	<u> </u>	1	Ţ	1	1	1	1	1	+	Ť
`	Т	Т	Т	Т	Т	Т	F	Т	Т	Т	Т	Т	T	Г	Г	E.	Г	T .	T .	1	Г
	, ÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	τ	τ	÷	τ́.	÷
	⊥_ <u>↓</u>	1	Ļ	1	1	1	1	Ť	1	1	1	1	1	Ļ	+	1	+	+	÷	<u>+</u>	+
	1																		1		1
	τ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
	1	1	+	+	Ļ	Ŧ	÷	+	+	+	1	1	+	+	+	+	+	4	4	+	÷
								1						I							
	Т	Т	Т	Т	Т	Т	Т	Ť	Т	Ť	Ť	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	~ +	÷	÷	+	÷	÷	÷	+	÷	÷	÷	÷	+	÷	+	+	÷	÷	+	÷	÷
	0	1	I.		_		1	1					_l	1		<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>
DIGE	= 0																_	_	_		

,

Chapter 1 - Page 6cc

10

UNIT 1.2: SUCKLING WEIGHTS AND GROWTH

The weight curve for the suckling animal begins with birth weight (BIWK) and continues through the suckling period to the weaning weight. The growth of suckling ruminants may be expressed with linear, exponential, logarithmic, or power functions. Growth from birth through weaning has been essentially linear for whitetail fawns at the Wildlife Ecology Laboratory; deviations from a constant rate of gain have been small and linear regression equations have been good overall representation of the growth curve. Linear regression is expressed with the formula:

CLWK = a + b AGDA

where CLWK = calculated live weight in kg, a is the intercept, b the slope of the line, and AGDA = age in days.

There are no data describing the growth of the suckling young of some of the wild ruminants. Linear regression equations may be used as first approximations, and can be easily determined by considering birth weight to be the intercept at AGDA = 0, and the slope calculated by subtracting birth weight from weaning weight and dividing that by AGDA at weaning. The quotient is the slope of the line, b. This is explained further and illustrated in the WORKSHEETS.

Whatever mathematical function is used, it is important that suckling weights begin at the birth weights calculated using the equations for fetal growth in the previous UNIT. Further, weaning weights must merge with weights calculated using equations for older animals in the next UNIT. This constraint must be respected or there will be discontinuities in the overall growth curves from birth through physical maturity.

REFERENCES, UNIT 1.2

SUCKLING WEIGHTS AND GROWTH

SERIAL PUBLICATIONS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA	401	108	113	ođvi	breeding records, captive	haugen,ao	1959
JWMAA	143	290	295	odvi	breeding records of white-	haugen, ao; davenp	1950
JWMAA	163	400	400	odví	late breeding record for w	erickson, ab	1952
JWMAA	203	221	232	odvi	nutri req, growt, antl dev	<pre>french,ce; mcewe/</pre>	1956
JWMAA	244	439	441	odvi	rear, breeding fawns, capt	murphy,da	1960
JWMAA	251	66	70	odvi	deer milk, subst for fawns	silver, hs	1961
JWMAA	344	887	903	odvi	reprod, grow, residu, diel	murphy, da; korscg	197 0
JWMAA	392	355	360	odvi	milk consumpt, weight gain	robbins,ct; moen	1975
JWMAA	413	506	510	odvi	growth, var ener, cons pro	holter,jb; hayes	1977
NAWTA	22	119	132	odvi	nutrient requirements, w-t	<pre>mcewen,1c; frenc/</pre>	1957
NAWTA	28	431	443	odvi' odvi	nutrit, growth, fetal fawn continued on the next page	verme,lj	1963

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
NFG.IA	111	13	27	odvi	produc growth adiron, ny	severinghaus.cw /	1964
		20	27	0011	product, growen, durron, ny		1901
VJSCA	272	49	49	odví	age, wt, heart girth relat	<pre>russel1,md; voge/</pre>	1976
CODEN	vo-nu	bepa	<u>enpa</u>	anim	kewo	auth	year
CJZOA	404	593	603	odhe	periodicity of growth, odo	wood,aj; cowan,i/	1962
CJZOA	486	1401	1410	odhe	comparative growth, body w	bandy,pj; cowan,/	1970
GROWA	203	179	186	odhe	factor anal, growth, calif	mankins,jv; bake,	1956
JOMAA	523	628	630	odhe	contrib organ tot body mas	hakonson,te; whi/	1971
JWMAA	193	331	336	odhe'	growth rate of blacktailed	cowan,im; wood,aj	1955
JWMAA	202	212	214	odhe	post-natal grow, milk cons	kitts,wd; cowan,/	1956
JWMAA	284	773	784	odhe	evaluat, eye lens tec, agi	longhurst,wm	1964
JWMAA	373	312	326	odhe/	effect nutr chan on captiv	robinette,wl; ba/	1973
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ATRLA	14-10	141	151	ceel	growth, devel, red deer ca	dzieciolowski,r	1969
.TWMAA	94	295	319	ceel	roosev elk, olvmp pepp, wa	schwartz.ie: mitc	1945
TUMAA	154	396	410	ceel	biology of the elk calf	johnson de	1951
TWMAA	231	27	34	ceelt	breed seas known-age embr	morrison, ia: tra/	1959
JWMAA	342	467	470	ceel	rearing red dee calv, capt	youngson, rw	1970
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
TOWAA	51_ 0	602	105	-1-14	volument ut continue masse	wanna 1 i	1070
JUMAA	512	405	405	arar	characteric, captive moose	verme, 1j	1970
JWMAA	232	231	232	alal'	feeding, grow, captiv calf	dodds,dg	1959
JWMAA	264	360	365	alal	studies, gravelly mt. mont	peek,jm	1962
VILTA	41	1	42	alal	captive hand-reared calves	markgren,g	1966
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
0 1704	20 7	0/ 5	05(hand the hand of	10(1
CIZOA	Jy/	043	020	rata/	ciima, melad, therm, infan	hart, js; neroux/	1060
CJZCA	405	1022	007	rata	anouth development from the form	Kiebs,cj; cowan,1	1060
CJZUA	403	201	1023	rata'	erowen, developm, postnata	meewan, en	1070
CIZOA	402	740	372 117	rata	energy metad, darren groun	mcewan, en	1071
UJZUA	494	443	44/	rata'	measurem mirk intake, Calv	mcewan,en; whiteh	19/1
CWRSB	384	1	71	rata	growth, reprod, ener reser	dauphine,tc,jr	1976
LBASA	216	817	824	rata	reindeer in biomed researc	dieterich.ra: lui	1971

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JWMAA	351	76	85	anam	measurem, weights, carcass	mitchell,gj	1971
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
CNJNA	381	87	90	bibi	doca, hybrid,feedlot study	peters, hf	1958
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA JOMAA	441 463	116 524	118 525	ovca ovca	growth, behav, captiv lamb fetal measure, milk charac	forrester,dj; hof forrester,dj; sen	1963 1965
JWMAA JWMAA	292 342	387 451	391 455	ovca ovca	growth, develop, des bigho weights,growth,west alber	hansen,cg blood,da; flook,/	1965 1970
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CAFNA	902	157	162	ovda	weights, growth, yukon ter	bunnell,fl; olsen	1976
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
			C	obmo			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA	194	417	429	oram	two-year study, crazy moun	lentfer,jw	1955
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AMNTA	114-1	101	116	ungu	neonate growth patt, repro	robbins,ct; robb	1979

Chapter 1 - Page 10

CHAPTER 1, WORKSHEET 1.2a

Suckling weights and growth of white-tailed deer (odvi)

Weight gains of three maternal-nursed fawns and two groups of bottlefed fawns at the Wildlife Ecology Laboratory (Robbins and Moen 1975) were essentially linear over the suckling period. The calculated live weight in kg (CLWK) of the maternal-nursed fawns may be determined with the equation:

CLWK = 2.96 + 0.244 AGDA

Birth weight was 2.96 (the intercept a at AGDA = 0), and the daily gain was 0.244 kg (the slope, b, of the regression line) which is 244 grams per day. Seven bottle-fed males gained an average of 250 gms per day, and two females, 247 gms per day, and another group of bottle-fed fawns, 245 gms per day.

Plot the weights using the equation above for a 100-day suckling period. Then substitute 0.250 for the 0.244 given in the equation and plot the weights again. Since the line is straight, you only need to calculate the weight at one AGDA (100 is the best one to choose in this case) and simply draw a straight line between the intercept, 2.96, and CLWK @ AGDA = 100.

LITERATURE CITED

Robbins, C. T. and A. N. Moen. 1975. Milk consumption and weight gain of white-tailed deer. J. Wildl. Manage. 39(2):355-360.

CHAPTER 1, WORKSHEET 1.2b

Linear approximations of suckling weights and growth

A range of fetal weights at birth (FWAB) from 2.5 to 5.0 were given in WORKSHEET 1.1 in the previous UNIT. Rates of gain were described as linear in WORKSHEET 1.2a in this UNIT with daily gains ranging from 244 to 250 gms per day. Suppose a fawn weighed 3 kg at birth and reached 28 kg in 100 days (AGDA = 100). The linear regression expression for that weight curve includes the intercept, a, of 3.0, and the slope, b, which is determined by (28.0 - 3.0)/100 = 0.250. The equation is:

CLWK = 3.0 + 0.250 AGDA

Plot this weight curve, and derive additional weight curves for birth weights ranging from 2.5 to 5.0 kg and suckling weights up to 60 kg. The main idea of this exercise is to illustrate how a linear approximation of the growth curve can be made from birth weights and weaning weights. Note that birth weights must equal fetal weights at birth discussed in UNIT 1.1 if discontinuities between equations are to be avoided.

Chapter 1 - Page 10b

CHAPTER 1, WORKSHEET 1.2c

Suckling weights and growth of different subspecies of mule deer (odhe)

The weight curves of several individuals of different subspecies of <u>Odocoileus</u> <u>hemionus</u> were expressed by Wood et al. (1962) with exponential equations. The published equations were for weight in pounds. Converting to kg and substituting AGDA for the symbol "t" given in the original equations, the equations for four individuals, all males, are:

> CLWK = $3.91 e^{0.01831} AGDA$; at AGDA = 100, CLWK = 24.40CLWK = $3.55 e^{0.01324} AGDA$; at AGDA = 100, CLWK = 13.34CLWK = $4.32 e^{0.00996} AGDA$; at AGDA = 100, CLWK = 11.70CLWK = $3.91 e^{0.01134} AGDA$; at AGDA = 100, CLWK = 12.15

Verify the use of these equations with the CLWK given for AGDA = 100 in the table above, and plot the data points at several values of AGDA from 1 to 100 in the graph below.

LITERATURE CITED

Wood, A. J., I. McT. Cowan, and H. C. Nordan. 1962. Periodicity of growth in ungulates as shown by deer of the genus <u>Odocoileus</u>. Can J. Zool. 40(4):593-603.

CHAPTER 1, WORKSHEET 1.2d

Exponential approximations of suckling weights and growth

Exponential approximations of weight curves for species of any birth weight and weaning weight can be easily derived with a curve-fitting program by entering two pairs of data inputs: birth weight at AGDA = 0 and weaning weight at whatever AGDA weaning occurs.

Suppose birth weights were 4.0 kg, and weaning weights ranged from 15 to 30 kg. The equations determined with this procedure are:

Verify the use of the equations by calculating CLWK when AGDA = 100, and then calculate several data points at selected increments from AGDA 1 to 100 and plot the weight curves. Derive additional equations for species up to 60 kg @ AGDA = 100 also.

Chapter 1 - Page 10d

UNIT 1.3: ADULT WEIGHTS AND GROWTH

Wild ruminants continue to grow after weaning, reaching physical maturity when they are several years old. The annual rate of growth slows as physical maturity is approached, of course. Seasonal variations are imposed on the annual rate of growth, and are considerably larger than the annual growth increases, in animals two years and older. Two expressions of adult weights and growth--maximum and minimum weights--are described in this UNIT, followed by discussions of seasonal variations in weights and growth in UNIT 1.4.

Maximum weights during each annual cycle, reached in the fall of the year, may be expressed with an equation where maximum weight in kg (MAWK) is the dependent variable Y and the age in days (AGDA) when these maximum weights occur (the independent variable X) each year. The JDAY when MAWK is observed should also be noted for use in determining phase corrections in UNIT 1.4. A tabular format for organizing these inputs for curve-fitting is shown below.

N	AGDA	MAWK	JDAY	LINE	EXPO	LOGN	POWE
1							
2							
•	•	•	•	R ² =			<u> </u>
•	•	•	•	a =		<u></u>	
N				b =			·

Field-dressed weights of hunter-killed animals are often the only source of data for estimating maximum live weights. Conversions of fielddressed weights to live weights are described in UNIT 1.5. If live weights need to be estimated from field-dressed weight data, go to UNIT 1.5 for the conversion equations and then come back to this UNIT to derive the live weight equations.

Live weights estimated from field dressed weights of hunter-killed animals may not be maximum, however, since the animals could already be in the weight-decline period when they are removed from the range. Conversions may be made after evaluating the concepts and techniques discussed in UNIT 1.4. For now, use the best estimate of maximum fall weights that you have and begin the curve-fitting procedures.

After tabulating the AGDA when maximum weight (MAWK) is reached and estimating JDAY of maximum weight, determine the \mathbb{R}^2 , a, and b values for the linear, exponential, logarithmic, and power curves. The equation with the best fit is then selected for the overall equation used in determining seasonal fluctuations in weights discussed in the next UNIT. An equation expressing the relationship between minimum weights in kg (MIWK; the dependent variable Y), and AGDA (the independent variable X) is determined in the same way as for MAWK. The JDAY when minimum weights occur should also recorded for use in UNIT 1.4. As minimum weights occur after the maximum weights, the animals are older, of course, and this must be considered when tabulating AGDA. The tabular format is illustrated below.

N	AGDA	MAWK	JDAY	LINE	EXPO	LOGN	POWE
1		<u></u>					
2							
•	•	•	•	R ² =			
	•	•		a =	_ <u>.</u>		
N				 h =			
14				·			

After tabulating the AGDA when minimum weight (MIWK) is reached and estimating JDAY of minimum weight, determine the R^2 , a, and b values for the linear, exponential, logarithmic, and power curves. The equation with the best fit is then selected for the overall equation used in determining seasonal fluctuations in weights discussed in the next UNIT.

The biggest problem in determining the minimum weight equation is the lack of data. Weights of animals that have died in the winter are seldom measured. Animals live-trapped in the winter are seldom weighed, and such weights are not necessarily the minimums possible for recovery from winter stress anyway. Nevertheless, minimum weights can be represented with good approximations by using good judgement and common sense in interpreting available data and deriving the equation.

REFERENCES, UNIT 1.3

ADULT WEIGHTS AND GROWTH

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
CPSCA	74	217	218	odvi*	*organ, body weight relatio	robinson,pf	1966
JOMAA	171	67	68	odvi	size, weight adironda deer	schoonmaker,wj	1936
JOMAA	311	5	17	odvi	weight relation, george re	hamerstrom, fn; ca	1950
JWMAA	52	182	190	odvi	study, edward plateau, tex	saunders,e	1941
JWMAA	172	166	176	odvi	irruption, necedah refuge	martin, fr; krefti	1953
JWMAA	184	482	495	odvi	management study, mud lake	<pre>hunt,rw; mangus,1</pre>	1954
JWMAA	193	346	352	odvi	controlled deer hunts,	<pre>kruefting,iw; eri</pre>	1955
JWMAA	203	221	232	odvi	nutri req, growth antl dev	<pre>french,ce; mcewan</pre>	1956
JWMAA	203	286	292	odvi	regional differ, size,pro	gill,j	1956
JWMAA	333	482	490	odvi	energy req, winter mainten	ullrey, de; youat/	1969
JWMAA	334	1027	1028	odvi	longevi rec, females, mich	ozoga,jj	1969
JWMAA	344	887	903	odvi	repro, grow, resid, dieldr	murphy, da; korsch	1970
JWMAA	391	48	58	odvi/	morph char, crab orch herd	roseberry,jl; kli	1975
NAWTA	2	446	457	odvi	weigh, antl meas, pop dens	johnson,fw	1937
NAWTA	3	261	279	odvi	wt, meas, alleghen nat for	park, bc	1938
NAWTA	22	119	122	odvi'	nutri requirements of deer	mcewen.rc: french	1957
NAWTA	34	137	146	odvi	nutri, climate, south deer	short, h1; newsom,	1969
NFGJA	22	154	160	odvi	weig as index to range con	severinghaus, cw	1955
NFGJA	22	247	247	odvi	fawn weights, regul, antle	severinghaus, cw	1955
NFGJA	111	13	27	odvi	growth, adirondacks, new y	<pre>severinghus,cw; t</pre>	1964
NYCOA	14	30	31	odvi	big, little deer, food key	severinghaus, cw/	1959
PAABA	600	1	50	odvi'	nutri reg, growt, antl dev	french.ce: mcewa/	1955
PAABA	628	1	21	odvi*	nutri req, growt, antl dev	magruder, nd; fre/	1957
PCGFA	13	62	69	odvi	mast abund, weigh, reprod	harlow,rf; tyson,	1959
PIAIA	61	615	630	odvi	results, iowa's first seas	<pre>sanderson,gc; spe</pre>	1954
ντωτΔ	143	18	19	tubo	report 1952 hig le refuge	moshby he	1952
VIWIA	14-10	18	19+	odvi	highligh, vir 1952 dee etu	richards ev	1953
VIWIA	169	5	7+	odvi	report on glades the deer	davey, sp	1955
WSCBA	410	49	51	odvi	wisconsins large dee, 1938	hopkins,r	1939

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA CJZOA	404 486	593 1401	603 1410	odhe' odhe	periodicity of growth, odo comparat growth in 4 races	wood,aj; cowan,i/ bandy,pj; cowan,i	1962 1970
JANSA	366	1201	1201	odhe	wt, plasma minrl indx, fem	lesperance,al; h/	1973
JOMAA JOMAA	451 523	48 628	53 630	odhe odhe	comp 3 morph attrib, n mex contrib organ tot body mas	anderson,ae; fra/ hakonson,te; wh/	1964 1971
JWMAA JWMAA JWMAA	152 173 373	129 256 312	157 267 326	odhe odhe odhe/	in nebraska national fores operation, check stat, col effect nutr chan on captiv	mohler,11; wampo/ rogers,ge robinette,wl; b/	1951 1953 1973
NAWTA	22	179	188	odhe	ovca, feed req, grow, main	cowan,i mct; wood	1957
PMASA	19	72	79	odhe	ann cycl of condit, montan	taber,rd; white,k	1959

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ATRLA	115	129	194	ceel	morph varia, skul, bod wei	mystkowska,et	1966
ATRLA	14-10	141	151	ceel	growth, dev, calves, capti	dzieciolowski,r	1969
ATRLA	15	253	268	ceel	relat age and size, poland	dzieciolowski,r	1970
BUFOA	997	75	82	ceel	size, recent, prehistoric	walvius,mr	1961
BVJOA	133	215	218	ceel	dada observ, weighing, dee	dansie,o	1977
JWMAA	151	57	62	cee1	weights, measurem, rock mt	quimby,dc; johnso	1951
JWMAA	241	15	21	ceel	on afognak island, alaska	troyer,wa	1960
JWMAA	301	135	140	ceel*	*measurements, weight relat	blood,da; lovaas 1	1966
NAWTA	29	237	248	ceel	winter weights, yellowston	greer, kr; howe, re	1964
POASA	47	406	413	cee1	size, weight, wichita moun	halloran,af	1968
UAABB		80	82	cee1	wt dynam, free ranging elk	gates,cc; hudson,	1979
ZEJAA	11	92	98	ceel	[weights, red deer,germny]	ueckermann,e	1955
ZEJAA	21	13	20	cee1	[pop densit, wt, ant1 dev]	caesar,h	1956
ZEJAA	34	145	153	ceel	[reprod rates, body weigh]	kroning,f; vorrey	1957
ZOGAA	33	85	105	ceel	[bod gro, siz eur red dee]	stubbe,c	1966

Chapter 1 - Page 14

.

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CAFNA	81	263	269	alal	weight, measurements, albe	blood,da; mcgill/	1967
JOMAA JOMAA JOMAA JOMAA	271 502 512 514	90 302 403 808	91 310 405 808	alal alal* alal* alal	weigh of a minnesota moose odvi, structur adapt, snow charact of captive, michig weights and measurements o	breckinridge,wj kelsall,jp verme,lg doutt,jk	1946 1969 1970 1970
JZAMD	64	10	12	alal y	winch/tripod device, weigh	arneson,pd; franz	1975
VILTA	27	409	417	alal ;	puber, dentit, weigh, swed	markgren,g	1964

CODEN	<u>vo-nu</u>	<u>bepa</u>	<u>enpa</u>	anim	kewo	auth	year
AJVRA	38	308	311	rata	fattening, sex, increas	e hadwen,s	1942
BJNUA	292	245	259	rata	seas variation, gluc meta	b luick,jr; perso/	1973
CJZOA CJZOA CJZOA	443 465 485	401 1023 905	411 1029 913	rata rata [;] rata	growth, developmen, bar g growth, developm, post-na seas chan, energ, nitr in	r mcewan,eh; wood,a t mcewan,eh t mcewan,eh; white/	1966 1968 1970
CWRSB	38	1	71	rata	kaminuriak barr gr, growt	h dauphine,tc	1976
JWMAA JWMAA	322 362	350 612	367 619	rata rata	introduct, increase, cras growth, domest, wild, nor	h klein,dr w reimers,e	1968 1972
NJZOA	244	407	417	rata*	morph, fat stor, org weig	n krog,j; wika,m; /	1976
TNWSD	28	91	108	rata	phys variab, condit, bgca	r dauphine,tc,jr	1971

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA	163	387	389	anam	measurements, hart mt ante	mason,e	1952
JWMAA	342	470	472	anam	derivation, whole weights	o'gara,bw	1970
JWMAA	351	76	85	anam	measurem, weights, carcass	mitchell,gj	1971

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		<u>year</u>
JOMAA	454	63 0	632	bibi	data on	bison	bison	athaba	bayrock,la;	hille	1964
POASA	41	212	218	bibi	weight,	meas,	wichit	a moun	halloran,af		1961
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year				
-------	--------------	------	------	------	----------------------------	---	------				
JOMAA	241	1	11	ovca	life hist, rocky mt, color	<pre>spencer,cc forester,dj; hoff woolf,a</pre>	1943				
JOMAA	441	116	118	ovca	growth, behav, captiv lamb		1963				
JOMAA	521	242	243	ovca	influence lambing on weigh		1971				
JWMAA	224	444	445	ovca	some weights and measureme	aldous,mc; craig/	1958				
JWMAA	342	451	455	ovca	weigh growth, west alberta	blood,da; flook,/	1970				

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	<u>year</u>
CAFNA	902	157	162	ovda/wt, grow, kluane pk, yukon	bunnell,fl; olsen	1976
JOMAA	224	448	449	ovda the weights of dall's shee	ulmer,fa	1941

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA	123	292	297	o bmo	experim in re-estab, alask	bell,wb	1931
JOMAA	353	456	456	o bmo	muskox longevity	buckley,jl; spen/	1954

CODEN	vo~nu	bepa	enpa	anim	kewo	auth	year
				oram			

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo					auth		year
JWMAA	361	64	79	caca	fact	aff	growth,	body	size	klein,dr;	strandg	1972

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo		auth		year	
BICOB	21	55	62	dada	observa,	biology,	england	chapman,di;	chapm	1969
JZOOA	157-1	125	132	dada	teeth, w	t, antlr,	male age	chaplin,re;	white	1969

CHAPTER 1, WORKSHEET 1.3a

Weights and growth of adult white-tailed deer (odvi)

Maximum and minimum weight curves have been determined for white-tailed deer from three areas of New York State. For males, the power curve provided the best fit, and the equations for maximum weight in kg (MAWK) and minimum weight in kg (MIWK) are:

Central Adirondacks:	MAWK = 3.13 AGDA ^{0.45958} MIWK = 0.99 AGDA ^{0.55035}
Central and Southern Tier:	MAWK = 6.24 AGDA ⁰ .38906 MIWK = 2.23 AGDA ⁰ .47800
Central Catskills:	MAWK = 3.36 AGDA ^{0.45233} MIWK = 0.79 AGDA ^{0.58830}

Plot the curves for males, comparing the weights between these three areas, below.

LITERATURE CITED

Moen, A. N. and C. W. Severinghaus. 1981 [In press.] Annual cycle weight equations and survival of white-tailed deer. N.Y. Fish and Game Journal.

Chapter 1 - Page 16a

For females, logarithmic curves provided the best fit, and the equations for MAWK and MIWK are:

Central Adirondacks: MAWK = 10.97253 1n AGDA - 23.40 MIWK = 9.23499 1n AGDA - 28.85 Central and Southern Tier: MAWK = 12.80383 1n AGDA - 24.23 MIWK = 11.75924 1n AGDA - 33.88 Central Catskills: MAWK = 13.35857 1n AGDA - 38.05 MIWK = 12.25631 1n AGDA - 47.66

Plot the curves for females, comparing the weights between these three areas below.

LITERATURE CITED

Moen, A. N. and C. W. Severinghaus. 1981 [In press.] Annual cycle weight equations and survival of white-tailed deer. N.Y. Fish and Game Journal.

UNIT 1.4: SEASONAL VARIATIONS IN WEIGHTS

Seasonal variations in weights arm characteristic of wild ruminants on ranges with seasonal variations in the quality and quantity of forage. Maximum weights are usually reached near the end of the growing season, and minimum weights in late winter, early spring, or summer, depending on weather, snow conditions, and reproductive demands. An equation for determining calculated live weight in kg (CLWK) permits one to express weight fluctuations between these maxima and minima as indicated below.

AGDA

Seasonal variations are calculated by combining the maximum weight curve, minimum weight curve, and sine functions into a single continuous equation. The sine functions smooth the change from increasing to decreasing and decreasing to increasing weights as maximums and minimums are reached.

An understanding of the basic form of a sine wave is necessary before calculating sinusoidal variations in animal weights from season to season. The sine wave shown below is labeled in degrees on the horizontal axis, beginning with 0 and ending with 360, which is one complete sine wave.

Chapter 1 - Page 17

Using your hand calculator with trig functions, determine the sine of 0, 90, 180, 270, and 360. They are:

 $\sin 0 =$ ____ $\sin 90 =$ ____ $\sin 180 =$ ____ $\sin 270 =$ ____ $\sin 360 =$

Note that the amplitude of the sine wave varies 20 units above and below the mean value of 40, which can be expressed as:

40 + 20, range = 20 to 60

The value of Y at any point along this sine wave can be determined with a simple formula:

 $Y = 40 + \sin X$ [(maximum - minimum)/2].

Substituting numerical values for X, the equations are:

If X = 0: $Y = 40 + \sin 0$ [(60 - 20)/2] = 40 + 0(20) = 40If X = 90: $Y = 40 + \sin 90$ [(60 - 20)/2] = 40 + +1(20) = 60If X = 180: $Y = 40 + \sin 180$ [(60 - 20)/2] = 40 + 0(20) = 40If X = 270: $Y = 40 + \sin 270$ [(60 - 20)/2] = 40 + -1(20) = 20If X = 360: $Y = 40 + \sin 360$ [(60 - 20)/2] = 40 + 0(20) = 40

This basic relationship is used to calculate weights of animals exhibiting one maximum and one minimum weight through one annual cycle. The X axis is the days in the year, where each day is 360/365 = 0.9863, and the Y axis is weight. The range in weights is determined by subtracting the calculated minimum weight for a given date from the calculated maximum weight on that date, using equations derived for maximum and minimum weights. This is comparable to the (60 - 20) component of the equation above. The deviation from the mean is determined by dividing this range by 2. The deviation from the mean is multiplied by the sine function (sign considered), and added to the mean value (40 in the equations above). The relationships are illustrated for three annual cycles below.

The time of occurrence of the maximum and minimum weights throughout the year is an important consideration when deriving the overall equation. Maximum weights may not fall on 90 (when sine = ± 1.0) and minimum weights may not fall on 270 (when sine = -1.0), and they may not be exactly six months apart. Phase corrections are used to represent the time of occurrence of maximum and minimum weights. These involve shifting of the entire sine wave (primary phase correction) and of the maximum and minimum deviations (secondary phase corrections) as illustrated below.

The steps used to make the necessary phase corrections for adjusting the sine components of the weight equation so weights reach maximums and minimums at the appropriate times of the year are shown below.

Step 1	1.	Determine the number of days from maximum to minimum w	eight:						
Step 2	2.	Subtract 182.5 from the answer in Step 1:							
Step 3	3.	Divide the difference in Step 2 by 2 to get the second	ary						
		phase correction, SEPC:	SEPC =						
Step 4	4.	Add (sign considered) the quotient in Step 3 to JDAY f	or						
		maximum weight to get adjusted JDAY for maximum weight:							
		adj.	JDAY =						
Step 5	5.	Determine the primary phase correction by:							
		sin[(adj. JDAY for MAWK)(0.9863) + PRPC] = 1.0							
		Since $\sin 90 = 1.0$,							
		[(adj. JDAY)(0.9863) + PRPC = 90							
		$90 - (\)(0.9863) = PRPC$	PRPC =						

Chapter 1 - Page 19

Primary and secondary phase corrections determined in this way result in sine values that are within 2% when the JDAYs of maximum and minimum weights are greater than 126.5 and less than 238.5 days apart (See Step 1).

The overall formula for calculating live weights through successive annual cycles consists of three parts. They are: one, the average weight, which is the sum of the maximum and minimum divided by 2; two, the sine expressions with both primary and secondary phase corrections; and three, the deviation from the average weight, determined by dividing the difference between maximum and minimum weights by 2. The formula is shown, with parts labeled (the middle line is the sine expression), below.

Average weight

$$CLWK = [MAWK + MIWK]/2 +
sin {(JDAY)(0.9863) + [(sin {[(JDAY)(0.9863) + PRPC] + (SEPC)} + PRPC] +
[MAWK - MIWK]/2
Deviation from average weight$$

Note that there are no biological constants in the formula. Maximum weight equations, minimum weight equations, and phase corrections are all determined from observed data; the formula may be used for any population for whom data are available.

There is one further consideration to be made when calculating the weights of reproducing females. The weight of the pregnant female may be divided into two compartments: maternal tissue, and fetal plus associated reproductive tissues. An immediate weight loss occurs at parturition as fetuses, fluids, and other tissues are expelled; their weight is subtracted from the total live weight at that time. After parturition, maternal weights may remain low during the first part of the lactation period due to the high cost of milk production. As milk production decreases in the last two-thirds of the lactation period, weight gains begin to occur, and the animals reach maximum weights in the fall again. This consideration will be discussed again in later analyses.

The three main components of the overall weight equation are illustrated in the WORKSHEETS that follow, with several examples to provide practice in deriving equations for seasonal variations in weights over successive annual cycles.

REFERENCES, UNIT 1.4

SEASONAL VARIATIONS IN WEIGHTS

SERIALS

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	year
CPSCA	74	217	218	odvi	organ/body wt rel, marylnd	robinson,pf	1966
JOMAA JOMAA	411 472	23 267	29 280	odvi odvi	response bucks, artif ligh *seas chang, sex, age, glan	french,ce; mcewe/ hoffman,ra; robin	1960 1966
JWMAA JWMAA JWMAA	184 203 333	482 221 482	495 232 490	odvi odvi odvi	deer management study: mud nutri req, growth antl dev energy req, winter mainten	<pre>hunt,rw; mangus,l french,ce; mcewan ullrey,de; youat/</pre>	1954 1956 1969
NAWTA NAWTA	22 34	119 137	122 146	odvi odvi	*nutri requirements of deer nutri, climate, south deer	<pre>mcewen,rc; french short,h1; newsom,</pre>	1957 1969
PAABA PAABA PAABA	PR209 600-1 628-1	1	11 50 21	odvi odvi odvi	feed, season, antler devel nutr req, growth, antl dev nutr req, growth, antl dev	<pre>long,ta; cowan,r/ french,ce; mcewa/ magruder,nd; fre/</pre>	1959 1955 1957
PIAIA	61	615	630	odvi	resul, 1st recent iowa sea	sanderson,gc; spe	1954
PCGFA	21	24	32	odvi	seas wt gain, food consump	fowler,jf; newso/	1967
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CAFGA	311	3	11	odhe	conditio, sequoia nat park	dixon,js; herman,	1945
CJZOA	404	59 3	603	odhe*	periodicity of growth, odo	wood,aj; cowan,i/	1962
PMASA	19	72	79	odhe	ann cycl of condit, montan	taber,rd; white,k	1959
SZSLA	21	89	96	odhe	nutrit req, growth, captiv	nordan, hc, cowa/	1968
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
NAWTA	29	237	248	cee1	winter weights, yellowston	greer,kr; howe,r	1964
POASA	47	406	413	ceel	size, wt, wichita mt, okla	halloran,af	1968
ZEJAA	11	92	98	cee1	[weights, red de,germany] u	eckermann,e	1955
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA	562	298	306	alal*	weights, measureme, alaska	franzmann,aw; le/	1978
				alal	continued on the next page		

Chapter 1 - Page 21

CODEN	vo-nu	bepa	enpa	anim kewo	auth	<u>year</u>
JOMAA	512	403	405	alal*charact of captive, michig	verme,1g	1970
JZAMD	64	10	12	alal winch/tripod, weighi moose	arneson,pd; franz	1975
VILTA	2	409 4	416	alal pubert, dentit, wt, sweden	markgren,g	1964
CODEN	vo-nu	bepa	enpa	anim kewo	auth	<u>year</u>
AJVRA	38	308	311	rata fattening, sex, increase	hadwen,s	1942
BJNUA	292	245	259	rata seas variatio, gluc metabo	luick,jrs; perso/	1973
CJZOA CJZOA	465 501	1023 107	1029 116	rata*growth, developm, post-nat rata*seas chang, body h20, flui	mcewan,eh cameron,rd; luick	1968 1972
CWRSB	38	1	71	rata*growth, reprod, ener reser	dauphine,tc jr	1976
JWMAA	362	612	619	rata growth, domest, wild, norw	reimers,e	1972
PASCC	22	12	12	rata wint grow patt, female calv	luick,jr;white;re	1971
TNWSD	28	91	108	rata phys variab, condit, bar g	dauphine,tc,jr	1971
<u>CODEN</u>	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	<u>year</u>
JWMAA JWMAA	342 351	470 76	472 85	anam derivation, whole weights anam measurem, weights, carcass	o'gara,bw mitchell,gj	1970 1971
CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
JWMAA	342	451	455	ovca weigh growth, bigh, albert	blood,da; flook,/	1970
		_				
CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
				ovda		
CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
				obmo		
CODEN	vo-nu	bepa	enpa	anim kewo	auth	year

CHAPTER 1, WORKSHEET 1.4a

Primary and secondary phase corrections

Primary and secondary phase corrections are determined with the five steps listed below.

Step 1.	Determine the number of days from maximum to minimum weight:
Step 2.	Subtract 182.5 from the answer in Step 1:
Step 3.	Divide the difference in Step 2 by 2 to get the secondary
	phase correction, SEPC: SEPC =
Step 4.	Add (sign considered) the quotient in Step 3 to JDAY for
	maximum weight to get adjusted JDAY for maximum weight:
	adj. JDAY =
Step 5.	Determine the primary phase correction by:
	sin[(adj. JDAY for MAWK)(0.9863) + PRPC] = 1.0
	Since $\sin 90 = 1.0$,
	[(adj. JDAY)(0.9863) + PRPC = 90

90 - ()(0.9863) = PRPC PRPC =

Using the JDAYs of MAWK and MIWK given below, determine the primary and secondary phase correctins, verifying the use of the five steps.

Sex	Region	JDAY MAWK	JDAY MIWK*	PRPC	SEPC
М	Central Adirondacks	301	106	-200.71	-6.25
F		301	121	-208.71	+1.25
М	Central and Southern	Tier 301	106	-200.71	-6.25
F		331	106	-215.51	-21.25
М	Central Catskills	301	106	-200.71	-6.25
F		316	106	-208.11	-13.75

*Early spring minimum; further reductions occur at parturition.

These phase corrections, from Moen and Severinghaus (1981), are combined with the MAWK and MIWK equations from WORKSHEET 1.3a to derive the overall weight equation discussed in the next WORKSHEET, 1.4b.

LITERATURE CITED

Moen, A. N. and C. W. Severinghaus. 1981. Annual cycle weight equations and survival of white-tailed deer. N. Y. Fish and Game Journal. [In press].

CHAPTER 1, WORKSHEET 1.4b

Annual cycle weight equations for white-tailed deer (odvi)

The equations for MAWK and MIWK from WORKSHEET 1.3a and the PRPC and SEPC from WORKSHEET 1.4a may now be combined in the overall formula for calculating weights during the annual cycle below.

Average weight

$$CLWK = [MAWK + MIWK]/2 +
sin {(JDAY)(0.9863) + [(sin {(JDAY)(0.9863) + PRPC] + (SEPC)} + PRPC] +
[MAWK - MIWK]/2$$

Deviation from average weight

Calculate the weights and plot the curves for successive annual cycles. Begin with birth on JDAY 151, so an animal reaches AGDA = 105 on JDAY 256, and increment with 15-day intervals as in the JDAY: AGDA pattern below.

AGDA	JDAY	AGDA	JDAY	AGDA	JDAY	AGDA	JDAY
245	31	195	346	150	301	105	256
•	•	210	361	165	316	120	271
	•	230*	16	180	331	135	286
nue to	Cont						
urity	mat						

*Note that five extra days are added to AGDA at the end of the year, resulting in the next JDAY being 16. Fifteen-day intervals could be used throughout, resulting in different JDAYs through each annual cycle. The above format is simpler, requiring one adjustment at the end of the year.

The use of 15-day increments results in very smooth weight curves over several annual cycles. Write out the overall equations for male and female deer by substituting the equations for MAWK, MIWK, PRPC, AND SEPC and begin the calculations. Results will be obtained quickly if programmed computing is used. Plot the data on a full-size sheet of graph paper for five successive annual cycles. The labels are shown below.

LITERATURE CITED

Moen, A. N. and C. W. Severinghaus. 1981. Annual cycle weight equations and survival of white-tailed deer. N. Y. Fish and Game Journal. [In press].

CHAPTER 1, WORKSHEET 1.4c

Seasonal variations in weights of black-tailed deer (odhe)

The weights of several black-tailed deer from birth through four years of age are plotted in Wood et al. (1962), and the equations given for maximum and minimum weights. The patterns of seasonal variations can be easily calculated with the annual cycle weight formula given in WORKSHEET 1.4b. Since equations for both MAWK and MIWK are given by Wood et al., phase corrections are all that remain to be determined. Estimate the JDAYs of MAWK and MIWK from their plotted figures and determine the phase corrections with the steps in WORKSHEET 1.4a. Then, write the equations below, make the calculations, and plot on a full sheet of graph paper using labels given. Average weight

CLWK = [MAWK + MIWK]/2 + $sin {(JDAY)(0.9863) + [(sin {[(JDAY)(0.9863) + PRPC] + (SEPC)} + PRPC] +$ [MAWK - MIWK]/2 +[MAWK - MIWK]/2 +[MAWK

Deviation from average weight

LITERATURE CITED

Wood, A. J., I. McT. Cowan, and H. C. Nordan. 1962. Periodicity of growth in ungulates as shown by deer of the genus <u>Odocoileus</u>. Can. J. Zool. 40(4): 593-603.

CHAPTER 1, WORKSHEET 1.4d

Seasonal variations in weights of deer (odvi) and of caribou (rata) from plotted data

Plots of deer weights in Hoffman and Robinson (1966) and caribou weights in Dauphine (1976) clearly illustrates seasonal variations in weights. Data points may be estimated by laying transparent gridded overlays on the figures and estimating the x and y values. Estimates of MAWK and MIWK may then be tabulated in relation to AGDAs and JDAYs and curvefitting of MAWK and MIWK completed. The equations are:

Derive the equations and plot estimates of CLWK below.

LITERATURE CITED

- Dauphine, T. C., Jr. 1976. Biology of Kaminuriak population of barren-ground caribou. Part 4: Growth, reproduction and energy reserves. Can. Wildl. Serv. Rep., Ser. No. 38.
- Hoffman, R. A. and P. F. Robinson. 1966. Changes in some endocrine glands of white-tailed deer as affected by season, sex and age. J. Mammal. 47(2):267-280.

UNIT 1.5: LIVE WEIGHT, INGESTA-FREE, AND DRESSED WEIGHT RELATIONSHIPS

It is difficult to measure live weights of free-ranging ruminants, and most of the weights available in the literature are for some fractions of live weights. Field dressed weights are often measured at check-stations where hunters bring field-dressed animals. Some data are available in the literature on weights of ingesta and organs of the gastrointestinal tract, and of the heart, lungs, and liver. These data may be used to estimate the weights of ingesta and organs removed in field-dressing and help establish the validity of equations for converting field-dressed weights to liveweights when the weights of ingesta and all organs are removed in fielddressing are summed, the total should be equal to the differences between field-dressed and live weight as determined by equations expressing live weight--field dressed weight relationships.

Some of the references listed contain equations that have been determined for different species in different areas. No single weight conversion equation is applicable everywhere, however, as the weights of body components, especially fat, vary between range, during the year, and from year to year. The best equation for the species in your area or a first approximation based on expected similarities with animals in other areas may be used to convert dressed weights to estimated live weights.

Live weight--field-dressed weight relationships. Field-dressed weights are applied to the carcass with the entrails removed but with the heart, liver, and lungs left in. Estimated live weights in kg (ELWK) from field-dressed weights in kg (FDWK) are useful when weight data on wild ruminants are needed for analyses of ecological relationships.

Gastrointestinal tract weight characteristics. Stomach and intestinal weights in relation to live weights are used when partitioning weight differences between field-dressed weights and live weights. While the organs of the gastrointestinal tract contribute to the total gastrointestinal weight, the weight of the ingesta is a major component of this difference.

Ingesta-free weight. The weight of the ingesta within the gastrointestinal tract should be known when calculating energy metabolism since the ingesta are not part of the animal's metabolic tissue. Direct measurements of heat production are usually completed when the animals are in a post-absorptive condition; the gastrointestinal tracts are essentially empty. This is necessary because the exothermic metabolic processes of many millions of rumen microflora, both bacteria and protozoa, contribute thermal energy to the host that is measured by direct calorimetry. If the host is not in a negative thermal energy balance, this heat must be dissipated to prevent a rise in total body heat content and body temperature. If the host is in a negative thermal energy balance, heat energy released by rumen microflora breaking down the mass of ingesta is a desirable contribution to the total thermal energy balance of the host. Live weight--hog-dressed weight relationships. Hog-dressed weights are applied to the carcass with the entrails, heart, liver, and lungs removed. Weights of the heart, liver and lungs may be subtracted from fielddressed weights to determine hog-dressed weights.

Live weight--field-dressed--edible meat relationships. Edible meat includes the muscle tissue available for consumption. The amount of edible meat on the carcasses of wild ruminants is an obviously important parameter for calculating their economic values. Data are very limited, however; studies are needed on just about every species.

The total live weight of an animal equal to the sum of the weights of all the individual organs and ingesta. The accountability of the separate equations may be evaluated by comparing the sum to the total weight. These live weight: dressed weight equations and the equations for the organs of different body systems given in TOPIC 3 in this CHAPTER may be compiled for such comparisons.

Comparisons of independently-calculated values of parameters of ecological importance is an excercise in "ecological accounting." Such comparisons are important because so many parameters of ecological importance must be measured indirectly or estimated for different animals and species in different areas, and the results compiled. Errors in measurements and differences between animals from different areas may result in unreasonable conclusions. The sum of all calculated organ and ingesta weights might exceed measured live weight, for example, which is biologically unreasonable.

Statistical tests for differences between population characteristics are essential when evaluating the magnitude of differences. Uses of statistical tests are described later in this text. For now, remember the concept of "ecological accounting," keeping in mind that equations from different areas should not be combined without caution.

REFERENCES, UNIT 1.5

LIVE WEIGHT, INGESTA-FREE, AND DRESSED WEIGHT RELATIONSHIPS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA	184	435	442	odvi	mammals of anticostiislan	newsom, wm	1937
JOMAA	311	5	17	odvi,	*weight relation, george re	hamerstrom, fn, jr/	1950
JWMAA	114	349	350	odvi	dressed weights, edible me	hamilton,wj,jr	1947
JWMAA	184	482	495	odvi	deer manage, mud lake wild	hunt, rw; mangus, 1	1954
JWMAA	203	286	302	odví	regional diff, size, produ	gill, j	1956
JWMAA	374	553	555	odvi	weight tape, deer in virgi	smart.cw: giles./	1973
JWMAA	391	48	58	odvi,	morphol charact, crab orch	roseberry. il: kle	1975
						; , j-,	
NYCOA	14	30	31	odvi	big, little d, food is key	<pre>severinghaus,cw;/</pre>	1959
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA	404	5 93	603	odhe	periodicity of growth, odo	wood,aj; cowan,i/	1962
JOMAA	451	48	53	odhe	three morpholog attrib, nm	anderson, ae; fra/	1964
WAEBA	589	1	6	odhe	the mule deer carcass	field, ra; smith, /	1973
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ATRLA	15	253	268	ceel	relat age and size, poland	dzieciolowski,r	1970
JOMAA	274	308	327	ceel	mammals of northern idaho	rust,hj	1946
JWMAA	151	57	62	ceel*	weights, measurem, rock mt	quimby, dc; johnso	1951
JWMAA	241	15	21	ceel*	roosev elk afognak isl. al	trover.wa	1960
JWMAA	301	135	140	ceel	meas, weight relat, manito	blood.da: lovaas.	1966
	•					,,,,	
NAWTA	29	237	248	cee1	weights, north vellowst el	greer.kr: howe re	1964
		,		2201		o-service, noweyre	
WAEBA	594	1	8	ceel	the elk carcass	field ra. smith /	1973
manna	<i></i>	-	0	CCCL	the era carcabo	riciu, ra, omrelly/	1775

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
CAFNA	814	263	269	alal*weights, measurem, alberta	blood,da; mcgilli/	1967
JOMAA JOMAA	271 502	90 302	91 310	alal weights of a minnesota moo alal*odvi, struct adap for snow	breckinridge,wj kelsall,jp	1946 1969

Chapter 1 - Page 25

.

auth

rata

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
JWMAA	342	470	472	anam	derivation of whole weight	o'gara,bw	1970
WAEBA	575	1.	6	anam	pronghorn antelope carcass	field,ra; s	mith,f/1972

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	<u>year</u>
CJZOA	431	173	178	bibi	age criter, dres carc weig	novakowski,ns	1965
JOMAA	381	139	139	bibi'	live, dressed weights	halloran,af	1957
POASA	41	212	218	bibi	weights, measure, oklahoma	halloran,af	1961

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
											11050
JWMAA	224	444	445	ovca*	weights,	measurem,	dese	bh	aldous, mc;	craigh,	1958

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
			C	ovda			

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	 auth	year
			(obmo			
CODEN	vo-nu	bepa	enpa	anim	kewo	 auth	year
			(oram			

CODENvo-nubepaenpaanimkewoauthyearJWMAA 36--16479caca fact aff growth, body size klein,dr; strondg 1972

Chapter 1 - Page 26

year

CHAPTER 1, WORKSHEET 1.5a

Live weight:field dressed weight relationships of white-tailed deer (odvi)

Linear regression equations for live weight:field dressed weight relationships have been determined for "normal" and "acorn" years in Michigan. Published equations in pounds have been converted to new equations for estimated live weight in kg (ELWK). They are (Hamerstrom and Camburn 1950):

Normal year: ELWK = 3.89 + 1.265 (FDWK)
 Acorn year: ELWK = 1.19 + 1.251 (FDWK)

Severinghaus and Cheatum (1956) present an equation for New York deer on "good" range. The equation is:

3. ELWK = 1.89 + 1.249 (FDWK)

An equation by Hesselton and Sauer (unpublished) for the Seneca Army Depot and Dutchess County, New York, is:

4. ELWK = 1.61 + 1.238 (FDWK)

Since all of these equations are linear, it is necessary to calculate only two Y values to determine the line for each equation. Plot and label each of the lines on the graph below.

Chapter 1 - Page 26a

LITERATURE CITED

- Hamerstrom, R and F. L. Camburn. 1950. Weight relationships in the George Reserve Deer Herd. J. Mammal. 31(1):5-17.
- Severinghaus, C. W. and E. L. Cheatum. 1956. Pages 57-186 In Taylor, W. P., Ed., The Deer of North America. The Stackpole Company, Harrisburg, PA.

CHAPTER 1, WORKSHEET 1.5b

Stomach tissue weights of white-tailed deer (odvi)

Weights of stomach tissue by parts given by Short (1964) are:

AGMO	AGDA	Rumen	Reticulum	Omasum	Abomasum	SUMS
0	1	7	2	2	25	36
0.5	15	26	7	5	47	85
1.0	30	47	7	3	32	89
2.0	60	183	27	17	70	297
3.0	90	189	21	11	45	266
4.0	120	321	29	19	48	417
AGYE	AGDA	Rumen	Reticulum	Omasum	Abomasum	SUMS
1.5	548	845	64	58	101	1068
5.5	2008	935	75	102	145	1257

Tissue Weights in grams (TWEG)

Label the x axis, plot the points and curve-fit the data to find the best-fitting equations.

]	1000																	
	900 T	T T T	Ţ	T T T	T T	Ţ		T T T		[] [] []	- T - T	- T - T	Ţ	Ţ	T T T	Ţ	T T	T T
	800 +	ţ	Ŧ	ţ	ţ	Ť		¦ -			- 1 - 1	- +	Ţ		† †	ł	Ť	Ť
	700 +	ţ	Ť	Ţ	Ţ	Ŧ	÷	¦ -			- 1	- + - +		Ţ	ł	Ť	Ť	† T
	600 1	ţ	ţ	ţ	Ť	ţ	Ţ	<u> </u>			- 1	- † - +		÷	Ţ	ţ	Ť	ţ
IWEG	500	Ţ	ţ	Ţ	Ŧ	ţ		+ -			- † - Ŧ	- †	Ť	÷	ţ	Ŧ	ţ	ţ
	400 1	ţ	ţ	Ţ	Ţ	ţ		<u>+</u> -			- 1 - 1	- +	Ţ	ţ	ţ	ţ	Ţ	Ţ
	300 1	Ţ	ţ	Ţ	Ţ	Ţ					- 1	ţ	Ţ	Ţ	Ţ	ţ	Ţ	ţ
	200	Ţ	ţ	Ť		Ţ	+ :	<u> </u>			- -		ţ	Ť	Ţ	Ţ	Ţ	Ţ
	100 +	Ţ	Ţ	Ţ	Ţ	Ţ	<u> </u> 	<u> </u> 					Ţ	<u> </u>	<u> </u>	Ţ	Ţ	Ţ

AGDA =

LITERATURE CITED

Short, H. L. 1964. Postnatal stomach development of white-tailed deer. J. Wildl. Manage. 28(3):448.

Chapter 1 - Page 26b

CHAPTER 1, WORKSHEET 1.5c

Gastrointestinal tract weights of white-tailed deer (odvi)

The weights of the gastrointestinal tract, including the 4-part stomach, small and large intestines, and rectum of white-tailed deer were obtained by Hamerstom and Camburn (1950). The equation expressing these gastrointestinal weights in kg (GIWK) in relation to live weight in kg (LIWK) is:

GIWK = 0.327 + 0.197 LIWK

Calculate 2 points and draw the line below.

LITERATURE CITED

Hamerstrom, F. N. and F. L. Camburn. 1950. Weight relationships in the George Reserve deer. J. Mammal. 31(1):5-17.

CHAPTER 1, WORKSHEET 1.5d

Ingesta-free weights of white-tailed deer (odvi)

Ingesta-free weights in kg (IFWK) have been determined in relation to live weights in kg (LIWK) by Robbins et al. (1974). The exponential equation, rearranged from the published equation, is:

$$IFWK = e^{(0.9928 \ln LIWK - 0.0771)}$$

There is less than 1% error, however, when using the approximation,

IFWK = 0.9 LIWK

Complete the calculations and plot the values for both equations. How much error is involved when using this equation as an approximation for a larger species, such as moose?

LITERATURE CITED

Robbins, C. T., A. N. Moen, and J. T. Reid. 1975. Body composition of white-tailed deer. J. Anim. Sci. 38(4):371-387.

Chapter 1 - Page 26d

CHAPTER 1, WORKSHEET 1.5e

Live weight: field-dressed and gastrointestinal tract weight relationships of white-tailed deer (odvi)

This worksheet illustrates the determination of the contributions of the weight of ingesta and gastrointestinal tract organs to the weight removed in field-dressing a deer.

The live weight of a deer less the field dressed weight = the weight of the ingesta and the organs removed in field-dressing. Equations have been presented for weights of ingesta and organs of the gastrointestinal tract. Subtract gastrointestinal organ ingesta weights as calculated in WORKSHEETS 1.5b and 1.5c from live weights and compare to the live weight: field dressed weight relationships described in WORKSHEET 1.5a. What are the sources of differences?

Chapter 1 - Page 26e

CHAPTER 1, WORKSHEET 1.5f

Live weight: field dressed: hog dressed weight relationships of white-tailed deer (odvi)

Field dressed weights have been used to estimate live weights with regression equations. Field-dressed weights generally include the weight of the carcass with the entrails removed, but with the heart, liver, and lungs left in. Hog-dressed weight refers to carcass weights with the entrails, heart, liver, and lungs removed.

Field dressed weights (FDWK) and hog dressed weights in kg (HDWK) may be used to derive estimated live weight in kg (ELWK) with the equations below, derived from data in the table in Cowan et al. (1968).

ELWK = 4.05 + 1.14 FDWK

LITERATURE CITED

Cowan, R. L., E. W. Hartsook, J. B. Whelan, J. L. Watkins, J. S. Lindzey, R. W. Wetzel, and S. A. Liscinsky. 1968. Weigh your deer with a string. Pennsylvania Game News 39 (11): 17-18.

Chapter 1 - Page 26f

Heart, lung and liver weights in relation to live weight of white-tailed deer (odvi)

Heart, lungs, and liver weights in relation to live weight of whitetailed deer have been determined by Hamerstrom and Camburn (1950) for deer from the George Reserve, Michigan. The equation in kilograms (HLLK) is:

HLLK = 0.114 + 0.0525 LIWK; $r^2 = 0.8$

Plot the relationship below.

LITERATURE CITED

Hamerstrom, R. and F. L. Camburn. 1950. Weight relationships in the George Reserve Deer Herd. J. Mammal. 31(1):5-17.

Chapter 1 -Page 26g

TOPIC 2. GEOMETRY

The geometry of an animal is an important consideration in ecological analyses because it affects so many fundamental relationships, especially physical ones, between the animal and the characteristics of the range. For example, the amounts of accumulated snow affect animals of different sizes differently; a small fawn has shorter legs than a large buck, and this is an important consideration when evaluating the effects of snow on movements. Size differences affect the heights animals can reach for forage, and that determines the upper limit to the range for each individual. Vertical height profiles are of interest to biologists when evaluating thermal relationships in relation to vertical wind profiles in differrent habitats. Further, the amount of thermal exchange between animal and environment is related to the posture and surface areas of animals as illustrated below.

Maximum surface area, standing

Minimum surface area, bedded, curled

One might guess that the surface area of the standing animal on the left is considerably larger than the surface area of the bedded animal on the right. Further considerations of intermediate postures can be made; a bedded animal may have its head up, increasing its surface area exposed to the atmosphere, and it may extend its legs somewhat, increasing its surface area exposed to the substrate. These subtle changes in posture may have very important thermoregulatory functions; they can be evaluated when surface areas of body parts are considered in calculations of thermal exchange.

The effects of geometric differences are of distinct ecological significance when evaluating physical animal: range relationships. The geometric considerations discussed above are objective. Some geometric characteristics are subjective--postures of animals indicate whether an animal is a potential aggressor or a sub-dominant--but these are considered in Part II, Behavior of Wild Ruminants. Surface area and geometric considerations are discussed in the next four UNITS.

UNIT 2.1: LINEAR MEASUREMENTS

Linear measurements, relatively easy to make with inexpensive equipment, may be used for several purposes. Mammalogists often record a rather standard series of measurements, including the body length, tail length, hind foot length, and skeletal lengths. Such measurements have been useful in evaluating taxonomic relationships between populations in different areas. Subspecies are sometimes identified on the basis of linear measurements. Some of these measurements are made on internal skeletal characteristics; these are discussed in TOPIC 3, SYSTEMS CHARACTERISTICS. Linear measurements of fetuses have been made and related to age and sex. These are useful when estimating the time of breeding, and of fetal or maternal mortality.

The heart girth, or circumference of the chest just behind the front legs, may be used to estimate field-dressed and live weights. Then, heart girth in cm (HEGC) is the independent variable and field-dressed weight in kg (FDWK) or estimated live weight in kg (ELWK) the dependent variable. Linear measurements of lengths and diameters of body parts may be used to calculate vertical profiles when animals are in different postures. External linear measurements, easily made with a flexible tape, may be used in calculating surface areas of different parts of the body.

Regression equations for relationships between linear measurements and weights are useful for predicting geometric dimensions over a range of weights. Interspecies comparisons can also be made, and the lack of data may make it necessary to estimate geometric considerations of one species from data on another.

The linear measurements indicated on the silhouette below are used in calculating vertical profiles discussed in UNIT 2.2 and surface areas discussed in UNITS 2.3 and 2.4.

Chapter 1 - Page 28

REFERENCES, UNIT 2.1

LINEAR MEASUREMENTS

SERIALS

CODEN	vo-nu	<u>bepa</u>	enpa	<u>anim</u>	kewo auth yea	ar
JOMAA	13	130	133	od	skull measurem, northern d phillips, jc 192	20
JOMAA	393	347	367	od	mammals of mex state, guer davis, wb; lukens, 19	58

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
AMNAA	433	650	666	odvi	*fetal developme, white-tai	armstrong, ra	1950
JOMAA	91	57	59	odvi	new white-tailed de, louis	miller,fw	1928
JOMAA	171	67	68	odvi	size, weight, adirond deer	schoonmaker,wj	1936
JOMAA	254	370	403	odvi	notes on mexican mammals	davis,wb	1944
JOMAA	324	411	421	odvi	analys reproduc patte, tex	illige,d	1951
JOMAA	401	108	113	odvi	breeding records, captive	haugen, ao	1959
JOMAA	472	266	280	odvi	endocrin glands, seas, sex	hoffman,ra; robin	1966
JWMAA	52	182	190	odvi	study, edwards plat, texas	sanders,e	1941
JWMAA	53	333	336	odvi	trends, kill of wisco buck	schunke,wh; buss,	1941
JWMAA	203	286	292	odvi	reg diff, size prod, w vir	gill,j	1956
JWMAA	223	319	321	odvi	determ age, young fawn whi	haugen, ao; speake	1958
JWMAA	244	364	371	odvi	shelter require, penned wt	robinson,wl	1 9 60
JWMAA	294	699	705	odvi	antlers in female white-ta	donaldson, jc; dou	1965
JWMAA	342	383	388	odvi'	morphol develop, aging, fe	short,c	1970
JWMAA	344	887	903	odvi	repro, grow, resid, dieldr	murphy,da; korsch	1970
JWMAA	374	553	555	odvi	weight tape for w-td, virg	<pre>smart,cw; giles,/</pre>	1973
JWMAA	391	48	58	odvi	morphol charact, crab orch	roseberry,jl; kli	1975
NAWTA	28	431	443	odvi'	nutrition, fetal, fawn gro	verme,1j	1963
PCGFA	19	118	128	odvi/	meas, estima antler volume	rogers,ke; baker,	1965
TNWSD	28	91	108	odvi	phys variables, condit, bg	dauphine,tc,jr	1971
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CJZOA	481	123	132	odhe*	development, fetal period	ommundsen,p; cowa	1970
JOMAA	84	289	291	odhe	horned does	dixon, j	1927
JOMAA	301	76	77	odhe	external measurements of m	halloran,af; kenn	1949
JOMAA	451	48	5 3 .	odhe	comp 3 morph attrib, n mex	anderson,ae; fra/	1964
JWMAA	152	129	157	odhe '	mule deer, nebras nat fore	<pre>mohler,11; wampo/</pre>	1951
JWMAA	233	295	304	odhe	embryonic, fetal developme	hudson,pj; browma	1959
JWMAA	342	383	388	odhe '	morphol develop, aging, fe	short,c	1970

Chapter 1 - Page 29

CODEN	vo~nu	bepa	enpa	anim	kewo	auth	year
ATRLA ATRLA	14 15-17	141 253	151 268	ceel ceel,	growth, developmen, calves relation age, size, poland	dzieciolowski,r dzieciolowski,r	1969 1970
CJZOA	476	1418	1419	cee1	sexual dimorphism, fetuses	retfalvi.l	1968
JOMAA	361	145	145	ceel	fetus in yearling cow elk	saunders,jk, jr	1955
JOMAA	472	332	334	cee1	fetus resorption in elk	haugen,ao	1966
JWMAA	94	295	319	cee1	roosev elk, olymp pen, was	schwartz,je,ii; m	1945
JWMAA	151	57	62	ceel	weights, measurem, rock mt	quimby,dc; johnso	1951
JWMAA	154	396	410	cee1	biology of the elk calf	johnson,de	1951
JWMAA	231	27	34	ceel	breed seas, known-age embr	morrison, ja; tra/	1959
JWMAA	301	135	140	ceel	meas, weight relat, manito	blood, da; lovass,	1966
MAMLA	353	369	383	cee1	body size, fat, demography	caughley,g	1971
POASA	47	406	413	ceel	size, wt, wichita mt, okla	halloran,af	1 9 66

CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
CAFNA	814	263	269	alal weights, measurem, alberta	blood,d; mcgilli/	1967
CJZOA	56 2	298	306	alal*measurements, weight relat	franzmann,aw; len	1978
JOMAA	271	90	91	alal weights, measurem, minneso	breckinridge,wj	1946
JOMAA	502	302	310	alal*odvi struct adapt for snow	kelsall, jp	1969
JOMAA	512	403	405	alal*charact of captive, michig	verme,1g	1970
JOMAA	514	808	808	alal weights, measurme of moose	doutt, jk	1970
JWMAA	232	231	232	alal feeding, growth capti calf	dodds,dg	1959
JWMAA	264	360	365	alal in gravelly, snowcrest mou	peek, jm	1962
VILTA	41	1	42	alal captive, hand-reared calve	markgren,g	1966

. '	CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
	CAFNA	904	449	463	rata	annual antl cycle, newf ca	bergerud,at	1976
	CJZOA	443	401	411	rata	growth, development bar-gr	mcewan,eh; wood,a	1966
	JWMAA JWMAA	281 322	54 350	56 367	rata rata	relat mandible leng to sex introduct, increase, crash	bergerud,at klein,dr	1964 1968
	NJZOA	244	407	417	rata	*morphol, fat stor, org wei	krog,j; wika,m;	1976
	ZOLZA	449	1396	1404	rata	[morphol peculiar, taimyr]	michurin, 1n	1965

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
JWMAA	163	387	389	anam	measurem, hart mt antelope	mason,e	1952
JWMAA	351	76	85	anam,	meas, wts, carc yield, alb	mitchell,gj	1971

CODEN	vo-nu	bepa	enpa	anim	kewo		auth	<u>year</u>
JOMAA	454	630	632	bibi	new data, bi	s bis athabasc	bayrock,la; hille	1964
POASA	41	212	218	bibi	wts, meas, w	ichi mts, okla	halloran,af	1960

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
						_					
JOMAA	441	116	118	ov	growth,	behav,	captive	1am	forrester,dj;	hof	1963

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA	463	524	525	ovca	fetal measurem, milk chara	forrester,dj; sen	1965
JWMAA JWMAA JWMAA	224 292 342	444 387 451	445 391 455	ovca ovca ovca	weight, measurem, deser bh growth, develop, desert bh heights, growth, w alberta	aldous,mc; craig/ hansen,cg blood,da; flook,/	1958 1965 1970

Chapter 1 - Page 31

CODEN vo-nu bepa enpa a	nim kewo	n kewo auth				
		· ·	,			
0	vda			· ·		
			·	· .		
		,				

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
							<u> </u>

obmo

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo auth	year
JWMAA	194	417	429	oram	two-year study, crazy moun lentfer,jw	1955
JWMAA	394	705	708	oram	girth, measurem, estim wei rideout, cb; worth	1975

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo a				auth		<u>year</u>
CJZOA	57-11	2153	2159	many	morph	param,	locomot,	snow	telfer,es;	kelsa	1979
JOMAA	274	308	327	many	mamma]	ls of r	northern	idaho	rust,hj		1946

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo					auth		<u>year</u>
JWMAA	361	64	79	caca	fact	aff	growth.	body	size	klein.dr;	strandg	1972

CHAPTER 1, WORKSHEET 2.1a

Heart girth: Live weight and field-dressed weight relationships of white-tailed deer (odvi)

Heart girth, the circumference of the chest just behind the forelegs, may be used to estimate live weight and field dressed weights of whitetailed deer based on data in Cowan et al. (1968). Thirteen animals, presumably all males, were measured and the results reported in inches and pounds. These have been converted to centimeters and kilograms and exponential equations for estimated live weight in kg (ELWK) and estimated field-dressed weight in kg (EFWK) derived. The equations are:

ELWK = 5.77231 e(HGCM)(0.02664)

EFWK = 3.81850 e(HGCM)(0.02898)

Verify the first equation with HGCM = 50.0, ELWK = 21.87 and the second equation with EFWK = 16.26. Then, complete calculations at 10 cm intervals and complete the graph below. How do ELWK and EFWK estimated here compare to earlier estimates of ELWK from EFWK?

Chapter 1 - Page 32a

LITERATURE CITED

Cowan, R. L., E. W. Hartsook, J. B. Whelan, J. L. Watkins, J. S. Lindzey, R. W. Wetzel, and S. A. Liscinsky. 1968. Weigh your deer with a string. Pennsylvania Game News 39(11):17-19.

Chapter 1 - Page 32aa

1

İ

UNIT 2.2: VERTICAL PROFILES

The vertical dimensions of animals may be used to describe the distribution of body parts in relation to different mechanical characteristics For example, the vertical distribution of the legs, trunks, of the range. neck, and head may be related to the vertical distributions of wind velocities in different cover types. An animal in the open is exposed to a wide range of velocities from the ground up to the height of its head. The legs of an animal standing in vegetation that reaches up to its trunk are in a different range of wind velocities than the trunk, neck and head of the How important are these considerations? animal. Their importance can be evaluated in PART 5 where calculations of heat loss in different habitats are described.

Height profiles may be estimated from the measurements described in UNIT 2.1. Leg lengths, trunk diameters, and neck and head dimensions may be summed to determine the vertical height profiles of different species.

D + L = Height

Belly heights are important considerations when snow becomes a barrier to movement, and are estimated from the linear measurements of the legs illustrated in UNIT 2.1. The sum of the upper and lower leg measurements, considered to be belly height, may be expressed in relation to weight be curve-fitting, with belly height as the depedent variable and weight as the independent variable.

Members of the family <u>Cervidae</u> are similar in body proportions, and equations for white-tailed deer may be used as first approximations for mule deer, elk, and moose if measurements on these species are unavailable. They probably also apply fairly well to caribou. Sheep, goats, muskox, and bison have different proportions--their legs seem to be somewhat shorter in relation to body weight--and the deer equation may result in overestimations of belly heights.

Belly heights may be quite easily determined photographically with captive animals. Simply place a clearly-marked measuring stick alongside the trunk of an animal of kown weight and photograph from a distance great enough to eliminate any need for corrections due to parallax. Belly heights may then be read and related to weight. This photographic technique illustrates how simply and inexpensively one can often get data on characteristics that are used in analyzing ecological relationships. Large numbers of animals are not required either; one animal raised from birth to maturity and weighed and photographed regularly provides the data needed for a first approximation. Two animals measured in the same way provide data for a test of differences in the intercepts and slopes for their weight ranges. It is unfortunate that such measurements have not been made on the many species of wild ruminants that have been raised in captivity.

Larger animals can reach higher for forage than smaller ones, so their range has a greater vertical dimension than that of the smaller animal. This is true within species--large deer can reach higher than small deer-and between species--moose can reach higher than deer for forage. This is an important consideration when quantifying the forage supply; the same forage quantities are not available to all animals in a population.

Estimates of the heights reached may be made from the linear measurements of the hind legs, neck, trunk, and head described in UNIT 2.1, with consideration of the angles of these body parts when an animal is in this height-extending posture. The length of the hypotenuse and angle a may

be used to estimate the length of side A with the formula A = (sin a)(C). The equation, if C = 2.0 m and angle $a = 45^{\circ}$, is:

$$A = (sin 45)(2.0) = (0.71)(2.0) = 1.42m = 142 cm$$

Total height reached is determined by adding side A to the length 1. The overall formula for determining the height of forage reached (HEFR) is then:

$$HEFR = (sin a)(C) + [L]$$

HEFR is the determinant of the upper limit to the availability of forage, which is necessary for determining the total amount of forage on the range. It is much better to use this correct conceptual approach that recognizes differences between the heights reached by animals of different sizes than to use a single arbitrary value for the upper limit of the range. HEFR will be related to the vertical distribution of forage in PART IV.

REFERENCES, UNIT 2.2

VERTICAL PROFILES

BOOKS

type	publ c	ity <u>r</u>	page	anim	kewo	auth	<u>year</u>
aubo	whfr s	fca 4	453	odvi	wildlife ecology	moen,an	1973

SERIALS

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 odvi
 odvi

CODEN	vo-nu	bepa	enpa	anim	kewo			auth	year	
JOMAA	301	76	77	odhe	external	measurement,	mule	halloran,af;	kenn	1949

CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo			auth	year		
ATRLA	14	141	151	cee1	growth,	devel,	red	deer	ca	dzieciolowski,r	1969

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year	
CJZOA	562	298	306	alal*weights, measureme, alaska	franzmann,aw; le/	1978	
JOMAA	502	302	310	alal*odvi,structura adapt, snow	kelsall,jp	1969	
VILTA	41	1	42	alal captiv, hand-reared calves	markgren,g	1966	

CODEN	vo-nu	bepa	enpa	anim kewo			auth		_	year
NJZOA	244	407	417	rata*morphol,	fat stor,	or wei,	krog,j;	wika,m;	/	1976
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	year		
-------	--------------	---------	------	------	----------------	-------------	-------------	-------------		
			8	anam	• 					
CODEN	vo-nu	bepa	епра	anim	kewo		auth	year		
POASA	41	212	218	bibi	weights, measu	re, wich mo	halloran,af	<u>1961</u>		
					-					
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	year		
			Ċ	ovca						
CODEN	vo-nu	ьера	enpa	anim	kewo		auth	vear		
		<u></u>		ovda	· ·	<u> </u>		<u></u>		
CODEN	vo-nu	bepa	enpa	anim	kewo		auth	<u>year</u>		
			c	bmo						
							١			
CODEN	vo-nu	bepa	enpa	anim	kewo		auth	year		
			c	oram						

CHAPTER 1, WORKSHEET 2.2a

Vertical profiles; belly heights of white-tailed deer (odvi)

Belly heights of white-tailed deer of different weights can be calculated with an equation in Moen (1973; p. 399):

BHTC = $12.5 \text{ CLWK}^{0.21} + 8.0 \text{ CLWK}^{0.25}$

where BHTC = belly height in cm and CLWK = calculated live weight in kg.

A 60 kg deer has a predicted belly height of 51.8 cm (just over 20 inches). Results for weights from 20 to 120 kg at intervals of 10 kg should be plotted below.

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 p.

CHAPTER 1, WORKSHEET 2.2b

Vertical profiles; heights of forage reached by white-tailed deer (odvi)

The heights of forage reached by white-tailed deer of different weights have been calculated from the linear measurements discussed earlier in UNIT 2.1. The equation given in Moen (1973; p. 399) is:

HFRC = 145 + 0.792 LIWK

where HFRC = height of forage reached in cm and LIWK = live weight in kg. A deer weighing 60 kg can reach 193 cm, or just over 6.25 feet. Determine HFRC for LIWK = 20 and 120, plot the points and then draw a straight line between them to represent HFRC for any weight between 20 and 120 kg.

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 p.

UNIT 2.3: SURFACE AREAS

Surface areas have been considered by biologists for some time, and some have gone so far as to derive "surface area laws," suggesting that heat loss and therefore metabolism are proportional to surface area for a species. Surface area is altered considerably by changes in posture, however. Bedded animals expose less surface area to the atmosphere than standing ones as some body parts are in contact with other body parts when the animal curls up, and a portion of the trunk is in contact with the substrate. The magnitude of such changes for individuals is great; a surface area:metabolism "law" cannot be taken seriously. Knowledge of surface areas is necessary for the prediction of heat loss from individuals, however, so considerations of different methods of measurement are important.

Surface areas have not been determined for most species of wild ruminants so estimations must often be made from data on other species. The relationships between surface areas and weights of domestic cattle, for example, may be used to derive first approximations for bison and moose, and equations for white-tailed deer may be used to derive first approximations for mule deer and possibly other smaller wild ruminants. When the accuracy of such estimations becomes a limiting factor in analyses of relationships, then measurements on the species being evaluated should be made.

Surface areas may be estimated in several ways. Skins may be removed, laid out flat and measured directly, or indirectly by tracing their outlines on sheets of polyethelene of known weight per unit area and then weighing the polyethelene facsimile. This technique poses a problem with stretching of the skin when it is laid out. Surface areas may be measured with instruments that totalize area as they are rolled across the animal's surface. The instruments may be accurate, but wild animals do not stand still do so the areas measured are not easily defined. Three-dimensional photography has a lot of potential, but the technique is difficult and expensive to use.

A fairly quick way to estimate the surface area of wild ruminants is by considering them as a collection of cylinders, cones, and curved plates, and measuring the dimensions of these. A cylinder, for example, is a fair representation of the trunk. The head is shaped somewhat like the frustum of a cone, and the ears are curved plates. The upper parts of the legs are frustums of cones, and the lower parts may be considered cylinders. These measurements can be made quickly on dead animals lying in a lateral position. Inexpensive plastic-coated metric tapes are readily available in department and variety stores.

The lengths, widths, and circumferences marked on the silhoutte in UNIT 2.1 are used to calculate surface areas of body parts with equations for cylinders, frustums of cones, and curved surfaces by using the formulas given at the end of this UNIT. The areas of body parts may then be considered as dependent variables and weight as the independent variable and equations for surface areas of body parts in relation to weight determined by curve-fitting. The total surface area is the sum the of the surface areas of the parts. Total surface areas may be considered as the dependent variable and weights as the independent variable when determining a single equation by curve-fitting. The formulas from Moen (1973:436) for calculating surface areas in square meters from measurements in cm indicated in UNIT 2.1 are:

Body Parts	Formulas for Surface Areas
Face, muzzle area	AFMM = $[(C_1 + C_2)L_1]/2$
Head	AHEM = $[(C_2 + C_3)L_2]/2$
Neck	ANEM = $[(C_3 + C_4)L_3]/2$
Ear	AEAM = $[3 (W_1 L_4)]/4$
Trunk	ATRM = $[(C_5 + C_6)L_5]/2$
Upper front leg	AUFM = $(C_7 + C_8)L_6$
Lower front leg	$ALFM = (C_8 + C_9)L_7$
Upper hind leg	AUHM = $(C_{10} + C_{11})L_8$
Lower hind leg	ALHM = $(C_{11} + C_{12})L_9$

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman and Company, San Francisco. 458 pp.

REFERENCES, UNIT 2.3

SURFACE AREAS

BOOKS

type	<u>publ</u> city	page	anim	kewo	auth	<u>year</u>
aubo	whfr sfca	453	odvi	wildlife ecology	moen,an	1973

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	<u>year</u>
JAŅSA	243	921	921	odvi/surf area, meas, tissue wt	whelan,jb; harts/	1965
NAWTA	33	224	236	odvi energy balance in winter	moen,an	1968

CODEN	vo-nu	bepa	enpa	<u>anim</u>	kewo	auth	<u>year</u>
				odhe			
CODEN	VO-DU	hena	enna	anim	kewo	auth	vear

ceel

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 alal
 alal

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	<u>year</u>
				rata			

CODEN	vo-nu	bepa	епра	anim	kewo	auth	year

anam

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
				bibi			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				ovca			
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	<u>anim</u>	kewo	auth	year
				ovda			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				obmo	· · · ·		
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	<u>year</u>
				oram			

CHAPTER 1, WORKSHEET 2.3a

Surface areas of body parts of white-tailed deer (odvi)

Twenty-two linear measurements of several hundred white-tailed deer have been made at the Wildlife Ecology Laboratory and the equations given in UNIT 2.3 used to calculate surface areas of nine body parts. The calculated surface areas of each of these body parts have then been related to live weight in kg (LIWK) by curve-fitting (Moen 1973:437). The equations for estimating surface areas of body parts of white-tailed deer are listed below; areas are calculated in square meters (SQME).

Body Part	Equation
face, muzzle area	AFMM = 0.0023 (LIWK ^{0.68})
head, forehead + crown	AHEM = $0.0083 (LIWK^{0.57})$
neck	ANEM = $0.0078 (LIWK^{0.73})$
ears	$AEAM = 0.0092 (LIWK^{0.40})$
trunk*	ATRM = $0.0500 (LIWK^{0.75})$
upper front legs	AUFM = 0.0130 (LIWK ^{0.47})
lower front legs	ALFM = 0.0160 (LIWK ^{0.41})
upper hind legs	AUHM = 0.0220 (LIWK ^{0.51})
lower hind legs	ALHM = 0.0240 (LIWK ^{0.44})

*Plot the area of the trunk in WORKSHEET 2.3b.

Plot and label the areas of each of the body parts on the next page.

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 pp.

Chapter 1 - Page 40aa

CHAPTER 1, WORKSHEET 2.3b

Total surface area of white-tailed deer (odvi)

Surface areas of the nine body parts discussed in WORKSHEET 2.3a have been summed and an equation derived for calculating total surface area in meters (TSAM) in relation to live weight in kg (LIWK).

No significant differences were found between total surface area: weight relationships for male and female deer, so one equation (Moen 1973:437) is used for both sexes.

$TSAM = 0.142 (LIWK^{0.635})$

Verify your use of the equation (with LIWK = 50, TSAM = 1.70 SQME, complete the table, and plot TSAM at intervals of 10 for LIWK on the next page. Also plot the area of the trunk using the equation given in WORKSHEET 2.3a

LIWK	TSAM
10	
20	
30	
40	. <u></u>
50	1.70
60	
70	
80	
90	
100	

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 pp.

CHAPTER 1, WORKSHEET 2.3c

Total surface area of large ruminants

Surface area data are not available for large wild ruminants. The equation for white-tailed deer can be extropolated, or an equation in Brody (1964) derived from holstein and jersey cattle may be used as a first approximation for bison, muskox, moose, and other wild ruminants larger than the white-tailed deer.

The equation, modified from Brody (1964:359) is:

$TSAM = 0.15 LIWK^{0.56}$

Plot the line resulting from the use of this equation, and then calculate TSAM (total surface area in meters) using the deer equation in WORKSHEET 2.3b, extropolating to these weights. The larger surface area calculated with the deer equation may be a reflection of the more angular body of such a small wild ruminant as a white-tailed deer compared to a large one such as a bison. The cattle equation is likely the better representation.

LITERATURE CITED

Brody, S. 1964. Bioenergetics and growth. Hafner Publishing Company, Inc., New York 1023 pp.

UNIT 2.4: BED AREAS

Animals spend parts of each day bedded on different kinds of substrates which may vary from dry leaves to wet snow. Animals assume bedded postures to conserve or dissipate energy;, changes in postures result in changes in surface areas exposed to both the atmosphere and the bed surface. The illustrations below show how different bed areas can be when an animal assumes different postures.

Maximum bed area

Minimum bed area

The bed area, which is part of the total surface area of an animal, is participating in conductive heat transfer to the substrate. The amount of heat dissipated in this way can be quantified when the area of the bed and the thermal characteristics of the animal: substrate interface are known. In the winter, beds are often on snow; analyses of heat loss to the snow are discussed in PART 5.

Areas of beds may be determined by direct measurement. The beds are usually somewhat elliptical, and first approximations can be made by measuring the longest radius (LORA) and shortest radius (SHRA), and calculating the bed area (BEAR) with the formula:

 $BEAR = [(LORA + SHRA)/2]^2$

Beds with irregular shapes, such as those of animals in sprawling postures, are more difficult to measure. Extensions of the legs may be measured for their lengths and widths and the areas added to the bed area occupied by the trunk. Then, the formula for calculating BEAR is:

BEAR =
$$[(LORA + SHRA)/2]^2 + L_1W_1 + ... L_4W_4$$

overhead view

Snow depths also add complexity to determinations of bed areas. Variations in the curvature and other bed irregularities make it difficult to measure bed dimensions precisely, but the dimensions of curved surfaces illustrated below can be measured with flexible tapes.

cross-section of a bed in the snow

Bed areas can be expressed as fractions of total surface areas, or in relation to weight. The surface area calculated may then be used in evaluating heat transfer by conduction as part of the total thermal exchange between animal species and environment. WORKSHEETS provide the format for estimating bed areas in different ways.

REFERENCES, UNIT 2.4

BED AREAS

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				odvi			
CODEN	<u>vo-nu</u>	bepa	епра	<u>anim</u> odhe	kewo	auth	year
CODEN	<u>vo-nu</u>	<u>bepa</u>	<u>enpa</u>	<u>anim</u> ceel	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> alal	kewo	auth	<u>y</u> ear
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> rata	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> anam	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> bibi	kewo	auth	<u>year</u>

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kew	<u> </u>				auth		year
JOMAA	204	440	455	ovca	the	bighorn	sheep	of	texas	davis,wb;	taylor,	1939
CODEN	vo-nu	bepa	enpa	anim	kewo)	<u></u>			auth		<u>year</u>
				ovda								
CODEN	vo-nu	bepa	enpa	anim	kewo)				auth		year
				obmo								
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo)			<u> </u>	auth		year
				~ * ~ m								

oram

CHAPTER 1, WORKSHEET 2.4a

Bed areas of white-tailed deer (odvi)

Published data on bed areas are not available for any species of wild ruminants, yet all of them exhibit thermoregulatory behavior by altering bedded posture. First approximations must be made for bed areas when evaluating relative proportions of heat losses from animals in different bedded postures.

The white-tailed deer ratios of bed area to total surface area may be suitable for other Cervids, and may be less suitable for other wild ruminants. Bison, for example, have quite a different geometry than whitetailed deer, and the ratio of bed area to total surface area may be different. In the absence of data, however, one is forced to use what is available.

Bed areas of white-tailed deer have been estimated at the Wildlife Ecology Laboratory to be about 6.0% of the total surface area when the animal is in an open bedded posture and 4.5% when in a closed bedded posture. Using the calculations of TSAM in WORKSHEET 2.3b, determine the areas of beds of deer in open and closed bedded postures and plot below. (BASM = bed area in square meters.)

TOPIC 3. SYSTEMS CHARACTERISTICS

Systems of the body have specific biological functions, and their physical characteristics are of particular interest when evaluating these functions in the ecological context.

Anatomical measurements become very useful for interpreting functional capabilities of an animal. These interpretations are essential for an understanding of the animal-environment relationships that exist in natural habitats.

Volumes of the different parts of systems are important considerations in the overall ecology of animals because volumetric constraints may limit the availability of some resources. Ingested forage is processed in the gastrointestinal tract where nutrients are released for transport by the cardiovascular system and synthesis into new body tissue. The volume of the stomach limits the amount of food that can be ingested during a feeding period, which limits the amount of nutrients available for processing before the next feeding period. The volume of the heart, considered in relation to the frequency of the heartbeat, limits the amount of nutrient-carrying blood that can be pumped. There is a limit to the amount of blood present in the vascular system of an animal also. Since blood carries both nutrients and oxygen to different tissues for metabolism, characteristics of both gastrointestinal and cardiovascular systems are of interest when calculating metabolic characeristics in different environmental conditions.

There are many general relationships between the sizes and weights of animals and the sizes, weights, and volumes of different organs in the different systems. These relationships change through time as growth occurs and may limit the amounts or rates of biological activities of importance to animals at different times in their life cycles. The relative sizes of the four compartments of the stomach, for example, change as the nursing animal ingests greater amounts of forage. The rumen and reticulum are undeveloped at birth, but end up to be about 85% of the total volume of the stomach as a fully functional ruminant. The capacity of the rumen and reticulum represents an upper limit to the amount of forage that can be ingested, an important consideration when low-quality forage is being ingested that may not contain enough nutrients to supply a growing animal's needs.

Similar evaluations of biological limits can be made for the organs of the cardiovascular system. The capacity of the heart to pump blood and of the lungs to exchange oxygen and carbon dioxide provide upper limits to the intensity and duration of physical activity. Knowledge of the rates of movement of blood through the cardiovascular system and ingesta through the digestive system, as well as transfer rates through absorption membranes, helps one understand the metabolic limits of animals.

The systems characteristics of wild ruminants are of considerable interest because these animals live under very different conditions, ranging from the arid areas of the southwest part of the United States to the cold interior of Alaska and Canada. Some of them--deer for example--are quite similar in weight to humans. Some--bison--are similar in weight to domestic cattle. Are these wild ruminants more hardy than other mammals of similar weights? Do they have cardiovascular adaptations that make them uniquely capable of thriving under varied conditions of climate and altitude? White-tailed deer have a well-developed carciovscular system, with a heart that is generally larger per unit body weight than that of humans which fall in the same weight range. How ecologically significant is this?

Skeletal characteristics are used by mammalogists for comparative purposes in taxonomic studies, and by ecologists and wildlife managers for sex and age determinations in population studies.

Physical characteristics of the systems discussed above plus discussion of the respiratory, endocrine, reproductive, excretory, muscular, and nervous systems follow in the next eight UNITS. Data describing systems characteristics are generally scattered between species and geographical areas. The relationships evaluated in the WORKSHEETS may be used in later analyses when ecological or management-related questions are being considered.

UNIT 3.1: GASTROINTESTINAL SYSTEM CHARACTERISTICS

The alimentary canal of herbivorous animals has a relatively larger capacity than that of carnivorous animals. This increased capacity permits the extensive fermentation necessary for the break-down by microorganisms of bulky, fibrous plant materials ingested by the host. Carnivores, on the other hand, have shorter digestive tracts in which to digest their food. The differences in the sizes of the alimentary canals of herbivores and carnivores are possible because the former ingest mainly plant food with its thick and certainly complex (from a molecular point of view) cell walls. Carnivore diets, on the other hand, include mainly animal tissue with thin cell membranes, resulting in a fairly rapid breakdown of, for example, protein into amino acids.

The main organs of the gastrointestinal tract of wild ruminants (based on Cheatum, undated Information Leaflet, N.Y. State Conservation Department) are the four-part stomach, small intestine, large intestine (colon), and rectum. These are part of the alimentary canal, which also includes the mouth and esophagus. The four-part stomach is unique to ruminants, and includes, in order of food passage, the rumen, reticulum, omasum, and abomasum. The first three develop as diverticula from the embryonic abomasum, or true stomach. The relative sizes and positions of these compartments are not constant throughout the life of a ruminant animal (Short 1964; 454). In the newborn, the abomasum or true stomach is larger than the other three parts, and it is not until the age of 1 to 2 months that the volume relationships between the omasum plus abomasum and the rumen-reticulum is reversed. After that time, the rumen increases in size and eventually comprises over 80% of the total stomach capacity (Moen 1973).

When the newborn ruminant is drinking, the milk or water does not go into the rumen, but is diverted directly to the orifice between the reticulum and the omasum through the esophageal groove (Swenson 1970:430). Thus the milk goes directly into the omasum and then to the abomasum where it is digested and absorbed. This diversion results from a reflex action in the young ruminant that gradually disappears as the animal matures.

Rumen development coincides with the increased ingestion of plant materials. Plant materials, which the newborn ruminant begins to eat a few days after birth, go to the rumen where populations of micro-organisms build up as the rumen develops.

The physical development of the alimentary canal of wild ruminants is important because it represents finite limits to the amount of food that the animal can ingest, and this limit extends to the actual amount of potential or gross energy available for metabolic purposes. Variations in the potential or gross energy of foods will be discussed later. There is also variation in the time it takes for breakdown of the food materials, or i.e., turnover times. Thus the physical characteristics of the ruminant alimentary canal are the structural components of a dynamic system of energy intake and output, accomplished in the ruminant with the assistance of microorganisms who form a metabolic system of their own.

Volume and weight characteristics of the organs of the gastrointestinal tract are considered in this UNIT. Volumes are used to evaluate the amounts of forage that can be needed for digestion each day. Weights are used to evaluate live weight: dressed weight relationships, along with weights of other organs.

Stomach volume: body weight relationships of wild ruminants are important when evaluating energy relationships for growth, maintenance, and survival during winter stress, reproductive capabilities, and other productive functions. Animals with greater rumen capacities may be more likely to survive periods of stress than animals with less capacity. Greater capacity provides a larger reserve of food material in the rumen at the onset of a stress period, such as deep snow in the winter, and animals with larger capacities may be able to regain lost energy more quickly.

Differences in the stomach capacity of age classes within a species are of ecological significance, too. Short (1964) points out that the relatively small stomach capacity of deer fawns may be an important factor in winter mortality. The browse diet characteristic of deer in the winter in forested areas may not be digested rapidly enough to satisfy the metabolic rate necessary to maintain body temperature during periods of cold weather. This relationship and other characteristics of the social and thermal energy relationships of fawns with their environment are discussed in detail in later chapters; there are many factors operating against the smaller deer during times of stress.

The accuracy of predictions of forage intake may be checked by comparing intake with the capacities of parts of the gastrointestial tracts. If it takes two days for ingesta to be processed and pass through the rumen, for example, the capacity of the rumen must be at least two times the volume of daily forage intake. This relationships is so important, especially for animals on poor range, that serious efforts should be made to get good estimates of forage intake, live weight: rumen-reticulum volume relationships, and rates of passage of ingesta through the stomach compartments for all species of wild ruminants.

Rumen and reticulum volumes. Relationships between the live weight of an animal and the volume of its rumen and reticulum is especially important since this volume is the space available for ingesta. Finer particles, masticated and partially digested, are continually moving out of this space to be replaced by more recently-ingested forage. Particularly fibrous ingesta, mechanically resistant to breakdown into smaller particles, accumulates in the rumen, and may depressing appetite and inhibiting further ingestion. Such low quality material may take up more space than it is worth nutritionally, and this definitely affects the well-being of an animal. Such conditions develop most often in late winter when only poorly digested forage is available.

Omasum and abomasum volumes. The bulk of the ingesta has been much reduced by the time it gets to the omasum and abomasum as a result of the physical and chemical action in the rumen and reticulum. Water absorption in the omasum reduces the mass of ingested material to a rather solid mixture of fine particles. Thus, the volumes of these last two compartments may be less than the volumes of the first two. It is not known whether omasum and abomasum volumes limit intake by a "damming up" effect, but that likely does not occur.

Relative volumes of the four compartments of the ruminant stomach change with age as milk makes up a decreasing part and forage makes up an increasing part of the diet. The changing proportions can be expressed with equations and volumes calculated for any AGDA during the suckling period. The best data are available for white-tailed deer; equations may be derived for other species that are based on the assumption that development from birth to weaning is parallel in other speceis over the entire length of the suckling period.

The WORKSHEETS that follow the list of REFERENCES provide opportunities for expressing these important physical relationships numerically, and the equations will be used later when evaluating live weight: field-dressed weight relationships, predictions of forage consumed based on animal requirements, and other relationships of importance ecologically.

LITERATURE CITED

- Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco, pp. 160-161.
- Short, H. L. 1964. Postnatal stomach development of white-tailed deer. J. Wildl. Manage. 28(3): 445-458.

Swenson, M. J., Ed. 1970. Duke's Physilogy of domestic animals. Cornell University Press, Ithaca, N.Y. 1463 pp.

REFERENCES, UNIT 3.1

GASTROINTESTINAL TRACT CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo			auth	year
MAMLA	382	295	314	arti	stomach	evol,	artiodactyla	langer,p	1974

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	<u>year</u>
CPSCA	74	217	218	odvi*organ:body weight relation	robinson,pf	1966
JANSA	384	871	876	odvi*body composition of white-	robbins,ct; moen/	1974
JOMAA	311	5	17	odvi*weight relations, georg re	hamerstrom, fm, jr/	1950
JWMAA	283	445	458	odvi*postnatal stomach developm	short,hl	1964

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	<u>year</u>
JOMAA JOMAA JOMAA	363 462 523	474 196 628	476 199 630	odhe odhe odhe	alimentary canal ph values ruminoreticular characteri tiss, organs, tot body mas	<pre>browman,lg sears, short,hl; medin,/ hakonson,te; whic</pre>	1955 1965 1971
WAEBA	589	1	6	odhe	the mule deer carcass	field,ra; smith,/	1973

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
ATRLA	15	253	268	ceel	relatio, age, size, poland	dzieciolowski,r	197 0
JOMAA	274	308	323	ceel	mammals of northern idaho	rust,hg	1946
JWMAA JWMAA	354 393	673 621	680 624	ceel ceel	rumen characteristi, red d compar digestiv organ size	prins,ra; geelen, nagy,jg; regelin,	1971 1975
WAEBA	594	1	8	ceel	the elk carcass	field,ra; smith,/	1973
ZEJAA	44	169	171	ceel	[capaci, parts of dig tra]	gill,j; jaczewski	1958
ZSAEA	413	167	193	ceel/	[caca forestom mucos anat]	hofmann.rr: geig/	1976

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 alal
 alal

CODEN	vo-nu	bepa	enpa	<u>anim</u>	<u>kewo</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	auth			year
AVSPA	57	1	18	rata	topograph,	internal	organs	engebrei	tsen,rh		1975
NJZOA	244	407	417	rata*	morph,fat	stor,org	wei,win	krog,j;	wika,m;	/	1976

CODEN	vo-nu	bepa	enpa	anim	kewo	0		auth		year
WAEBA	575	1	6	anam	the	pronghorn	carcass	field.ra;	smith./	1972

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 bibi
 bibi
 bibi
 bibi
 bibi
 bibi
 bibi

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 ovca

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
				ovda			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
				obmo			
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	<u>year</u>
				oram		,	
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
ATRLA	13	499	509	bibo	capac, weigh, walls, diges	gill,j	1968
ATRLA	14	349	402	bibo	morphology digestive tract	pytel,sm	1969
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	<u>anim</u>	kewo	auth	year
JWMAA	344	887	903		repro, grow, resid, dieldr	murphy,da; korsch	1 97 0

JWMAA 35--4 673 680 caca rumen characteristi, red d prins,ra; geelen, 1971 JWMAA 39--3 621 624 caca compar digestiv organ size nagy,jg; regelin, 1975

auth

year

CODEN vo-nu bepa enpa anim kewo

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
JWMAA	354	673	680	dada	rumen	characteri	lsti,	red d	prins, ra;	geelen,	1971
JWMAA	393	621	624	dada	compar	digestiv	organ	size	nagy,jg;	regelin,	1975

CHAPTER 1, WORKSHEET 3.1a

Rumen and reticulum volumes of white-tailed deer (odvi)

Rumen and reticulum volumes in cubic centimeters (RRVC) and omasum and abomasum volumes in cubic centimeters (OAVC) are expressed as linear regression equations in Moen (1973; 142) based on data in Short (1964). The equations are:

RRVC = 103.35 CLWK + 304.64

$$OAVC = 11.75 CLWK + 514.64$$

The total volume of all four stomach compartments in cubic centimeters (TVSC) is the sum of these two equations:

TVSC = 115.10 CLWK + 819.28

Calculate these relationships and plot the three lines. Volumes are expressed in cubic centimeters (CUCM).

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 pp.

Short, H. L. 1964. Postnatal stomach development of white-tailed deer. J. Wildl. Manage. 28(3):445-458.

CHAPTER 1, WORKSHEET 3.1b

Relative proportions of the stomach compartments of white-tailed deer (odvi) during the suckling periods

Absolute volumes of the different stomach compartments are unique to each species. If development of the different compartments is proportional for different species, then an equation expressing relative proportions in relation to body weight for one species may be transferred for use with other species. The equation in Moen (1973:143) expressing the percent of the total stomach volume attributed to the rumen and reticulum (PRRT) for white-tailed deer is:

$$PRRT = 37.635 \ln LIWK - 35.666$$

The percent of the total volume attributed to the omasum and abomasum (POAT) = 100 - PRRT.

The percent reaches its biological limit for white-tailed deer when CLWK = 25 kg, which is about weaning weight. Plot these relative relationships below.

LITERATURE CITED

Moen, A. N. 1973. Wildlife Ecology. W. H. Freeman Co., San Francisco. 458 pp.

CHAPTER 1, WORKSHEET 3.1c

Relative proportions of the stomach compartments of wild ruminants during the suckling period

If stomach development of other species of wild ruminants is proportional to that of white-tailed deer from birth to weaning, the equation in WS3.1b can be modified for use with any species if weaning weight in kg (WEWK) and the live weight of the nursing young (LIWK) are known. The equation is:

PRRT = 37.635 ln [(25/WEWK)] LIWK - 35.666

Label the x-axis for LIWK in the graph below to include the range of weights from birth to weaning of the species selected and plot the approximations of PRRT for these species.

•

UNIT 3.2: CARDIOVASCULAR SYSTEM CHARACTERISTICS

The cardiovascular system includes the heart, blood vessels, blood, and spleen. The heart pumps the blood through the blood vessels, the blood carries oxygen and nutrients to body cells and waste metabolites away from the cells, and the spleen is a storage organ for red blood cells.

The physical characteristics of the cardiovascular system are of interest because they limit the amounts of the nutrients and respiratory gas involved in metabolism. Cardiac volumes limit the amount of oxygen- and nutrient-carrying blood that can be pumped to the sites of metabolism. Further, the pumping capacity of the heart has a direct bearing on an animal's ability to escape predators and to withstand stressful thermal conditions. These functions may be rate-limited due to limitations to heart and blood volume which, in turn, place limits on nutrient and oxygen transport. Little is known about cardiovascular anatomy and physiology of wild ruminants, however; such research is technically difficult and very expensive.

Heart volume is an important parameter when evaluating heart rates, because it is the stroke volume, a function of the physical size of the heart, and the beat frequency that determines the circulating blood volume.

Blood volumes are an important consideration when evaluating the capabilities of an animal for reacting to stressful situations. Packed cell volumes are sometimes measured in addition to total blood volumes; red cells have important roles in oxygen transport.

It is useful to express heart weights in relation to live weights, ingesta-free weights, and metabolic weights when evaluating cardiac characteristics of a range of weights in a population. In general, larger animals have larger hearts and slower heart rates, which indicates that stroke volumes must also be greater. There are few data on the cardiovascular characteristics of different species, so first approximations have to be made from general relationships between weight and organ characteristics when evaluating the cardiovascular system of the different species of wild ruminants. For some species, the only data available are for groups of organs removed in field-dressing, such as the heart, lungs, and liver. Weights of individual organs may have to be determined by subtracting single organ weights from combined weights. This can be done using data on individual organs from different species, expressing weights of individual organs in relation to body weights and applying the results to other species on the basis of similar proportions between different species.

The format for tabulating heart weights in gms (HEWG) in relation to live (LIWK), ingesta-free (IFWK), and metabolic weights in kg (MEWK = $IFWK^{0.75}$ is shown below. Curve-fitting of linear, exponential, logarithmic, and power curves results in identification of the best fit for numerical representation of this relationship. Similar tabulations may be made for blood weights in gms (BLWG).

	Indepen	dent vari	ables	Dependent	Dependent variables			
	LIWK	IFWK	MEWK	HEWG	BLWG			
1.		·						
2.								
•								
•								
N.								

Reasonable estimates of blood weights can be used to estimate blood volume by multiplying weight by the specific gravity of the blood. Blood volumes may be used to estimate blood weights too, of course.

Similarities and proportional results are certainly to be expected when body weights and heart and blood weights are determined. Brody (1964:596) noted that "athletic" land animals had relatively larger hearts than non-athletic and marine animals. Since wild ruminants have coexisted with swift carnivorous predators, they must be in the "athletic" group, and larger hearts, proportional to body weights might be expected.

LITERATURE CITED

Brody, S. 1974. Bioenergetics and growth. Hafner Publishing Company, N.Y. 1064 pp.

REFERENCES, UNIT 3.2

CARDIOVASCULAR SYSTEM CHARACTERISTICS

SERIALS

	CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
	ABBIA ABBIA	127 151-2	711 540	717 548	odvi odvi	hemoglobin heterogeneity struct, hemogl alph chains	huisman,thj; doz/ harris,mj; wilso/	1968 1972
	ACBCA	33	335	343	odvi	struct sickl deer type III	<pre>schmidt,wc,jr; g/</pre>	1977
	AHEMA	3	250	261	odvi	maj arteries, shoulder,arm	bisaillon,a	1974
	AJPHA	199	190	192	odvi	tactoid forma, hemoglobin	moon, jh	1960
	AJVRA AJVRA	301 33-12	143 2545	148 2549	odvi odvi	serum prot, normal, arthri blood seru, arthrit reumat	sikes,d; hayes,f/ sikes,d; kistner/	1969 1972
	AKASA	30	50	51	odvi	electroph pattern, 2 subsp	jackman,gs; garne	1976
	ANYAA ANYAA ANYAA	241 241 241	594 614 653	604 622 671	odvi odvi odvi	sickling phenomona of deer compar sickle eryth, human dome,embryo, fetal hemoglo	taylor,wj; easley simpson,cf; taylo kitchen,h; brett,	1974 1974 1974
	BLOOA BLOOA BLOOA	296 436 436	867 899 907	877 906 914	odvi odvi odvi	hemoglobin polymorphism in ultrastruc sickl erythrocy ultrastr sickl erythr pt 2	kitchen,h; putna/ simpson,cf; taylo taylor,wj; simpso	1967 1974 1974
	BUCDA	292	105	105	odvi	geogr dist, hemoglo compon	harris,mjw	1971
•	CBCPA	192	471	473	odvi	red cell life span, w-t de	noyes,wd; kitchen	1966
1	CBPAB CBPAB	304 58a	695 387	713 391	odvi/ odvi	'hemat, bloo chem prot poly short-term chan, corti, in	seal,us; erickson bubenik,ga; bube/	1969 1977
I	CJCMA	341	66	71	odví	ser biochem, hemat par cap	tumbleson,me; cu/	1970
	CJZOA CJZOA	444 536	631 679	647 685	odvi odvi/	odhe var, blood ser, elect amb temp eff, physio trait	van tets,p; cowan holter,jb; urban/	1966 1975
(CPSCA	74	217	218	odvi*	organ:body weight relation	robinson,pf	1966
]	EXMPA	22	173	182	odvi	mechan, sickl erythrocytes	pritchard,wr; ma/	1963
,	JBCHA	247	7320	7324	odvi	heterog, hemogl alpha chai	taylor,wj; easle/	1972

odvi continued on the next page

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA JOMAA JOMAA JOMAA JOMAA	311 392 392 494 541	5 269 309 749 270	17 274 311 754 274	odvi odvi odvi odvi odvi	weight relations, georg re blood composition of w-t d aspects of blood chemistry hematologica volumes, mich geograph dist, hemoglo var	<pre>hamerstrom,fm,jr/ teeri,ae; vircho/ wilbur,cg; robin/ johnson,he; youa/ harris,mj; huism/</pre>	1950 1958 1958 1968 1973
JOPAA	596	1091	1098	odvi	hematol chan, fawns, ticks	barker,rw; hoch,/	1973
JWIDA JWIDA	94 10	342 18	348 24	odvi odvi	combin etorphine, xylazine blood char, free-rang, tex	presidente,pja;/ white,m; cook,rs	1973 1974
JWMAA JWMAA JWMAA JWMAA JWMAA JWMAA JWMAA	291 364 364 384 392 392 392 394 403	79 1034 1041 845 342 346 692 442	84 1040 1052 847 345 354 698 446	odvi odvi odvi odvi odvi odvi odvi odvi	comp blood, nurs doe, fawn eff immobil, blood analyse nutri eff, thyroi act, blo restrain appar, blood samp ser cholest lev chan, mich chan blood prot, ges, suck energ, prot, blood urea ni plas progest, pubert, fawn	youatt,wg; verm/ seal,us; ozoga,/ seal,us; ozoga,/ mautz,ww; davis/ coblentz,be hartsook,ew; wh/ kirkpatrick,rl;/ abler,wa; buckl/	1965 1972 1972 1974 1975 1975 1975 1976
MGQPA	32	113	138	odvi	physiol baselines, hematol	karns,pd	1972
NAWTA	3	890	892	odvi	enlarg spleen, glac nat pa	aiton, jf	1938
PSEBA	117	276	280	odvi	sickling, heteroge, hemogl	weisbergen,as	1964
SCIEA	144	1237	1239	odvi	hemoglob polymor, sickling	kitchen,h; putn/	1964
TJSCA	27	155	161	odvi	var,corr, os cordis, heart	long,ca; smart,d	1976
VJSCA	262	61	61	odvi	immobi drug, pack cell vol	wesson,ja III; s	1975
WDABB	31	32	34	odvi	serolog surv, 2 herds n y	friend,j; halter	1967
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CJZOA CJZOA CJZOA	345 352 475	477 283 1021	484 289 1024	odhe odhe odhe	age, nutrition, blood chem age, nutrition, blood chem observa haematology, races	kitts,wd; bandy/ bandy, pj; kitt/ cowan,imct; band	1956 1957 1969
JANSA JANSA JANSA	331 345 386	244 896 1331	244 896 1332	odhe/ odhe/ odhe	plasma mineral indexes,nev lipid, plas comp lev, neva blood compon, seas, wt, fe	rohwer,gl; lesp/ lesperance,al; / o'brien,jm; les/	1971 1972 1974
JOMAA JOMAA JOMAA	363 523 532	474 628 384	476 630 387	odhe odhe odhe	erythrocyte val, mule deer tiss, organs, tota body ma total serum protein in pop	browman,lg; sear hakonson,te; whi anderson,ae; me/	1955 1971 1972
JWIDA	82	183	190	odhe/	blood serum electrol, colo	anderson,ae; med	1972
JWMAA	342	389	406	odhe odhe	erythrocyte, leukocy, colo continued on the next page	anderson,ae; me/	1970

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
NAWTA	17	482	496	odhe rel hematol, condit, calif	rosen,mnj; bisch	1952
PCZOA	210	46	46	odhe chang, plas lipid thr year	stewart,sf; nor/	1963
WLMOA	39	1	122	odhe*carcas, bone, organ, gland	anderson,ae; me/	1974
CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	<u>year</u>
ATRLA	15	253	268	ceel/relat age and size, poland	dziecioloski,r	1970
CBPAB	43a-3	649	653	ceel blood chemis roosevelt elk	weber,yb; bliss,	1972
JOMAA	274	308	323	ceel mammals of northern idaho	rust.he	1946
JOMAA	494	762	764	ceel physiol stud, rocky mounta	herin.ra	1968
JOMAA	534	917	919	ceel sickling phenom, erythrocy	weber,yb; giacom	1972
ZEJAA	44	171	177	ceel [regulation of blood pres]	jaczewski,z; ja/	1958
CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
ANYAA	971	296	305	alal studi, blood, serum groups	braend,m	1962
CJZOA	53/	1424	1426	alal serum cortic, handl stress	franzmann,aw; f/	1975
HEREA	852	157	162	alal var, red cell enzy, scandi	ryman,n; beckma/	1977
JEBPA	124	347	349	alal/rata, card comp emot stres	roshchevskii,mp/	1976
JOMAA	271	90	91	alal weights of minnesota moose	brechinridge.wi	1946
JOMAA	504	826		alal blood chemis, shiras moose	houston,db	1969
VEZOA	693	13	18	alal [venous evet nector limb]	komarov av	1969
VEZOA	714	31	38	alal [venous syst, pector limb] alal [venous syst, thorac limb]	komarov, av	1971
CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
APSSA	396	96	96	rata blood circulation, finnish	hirvonen,1; jar/	1973
AVSPA	57	1	18	rata tonograph internal organs	engebretsen rh	1975
		-		internationgang	engebreesen, m	1775
CJZOA	442	235	240	rata electroly, red cells, plas	<pre>manery, jf; bar1/</pre>	1966
CJZOA	465	1031	1036	rata hematologi studies, bar-gr	mcewan,eh	1968
CJZOA	474	557	562	rata*changes in blood with age	mcewan,eh; white	1969
CJZOA	501	107	116	rata*seas changes, blood volume	cameron,rd; luic	1972
CNJMA	245	150	15 2	rata haematol val, bar grou car	gibbs,hc	1960
NJZOA	244	407	417	rata/morpho, fat stor, organ wt	krog,j; wika,m	1976
ZOLZA	576	944	948	rata [dev phys char, 1st month]	segal,an	1978
year

auth

anam

CODEN	<u>vo-nu</u>	bepa	епра	anim	kewo auth y	<u>ear</u>
BIGEB	91	1	11	bibi	two hemoglobin phenotypes harris,mj; wils/ 1	973
EVOLA	121	102	110	bibi	studies on blood groups owen,rd; stormon l	958
GENTA	61	823	831	bibi	electroph forms, carb anhy sartore,g; stor/ 1	.969
JWIDA JWIDA	111 121	97 7	100 13	bibi bibi	hematol, blood chemi, kans marler,rj 1 hematolo val, 5 areas, u s mehrer,cf 1	.975 .976

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	year
CBPAB	40Ъ	567	570	ovca	ovda,ovmu trans	sfer, hemogl	nadler,cf; woolf	1971
JAVMA	157-5	647	650	ovca	physiol val, ca	ap, handling	franzmann,aw; th	1970

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		. <u> </u>	auth	year
				ovđa					
CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo			auth	year
JOMAA	394	554	559	obmo	serologica	evid,	relations	moody,pa	1958
CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo			auth	year
				oram					

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
СВРАВ	231	149	157	many	serum proteins, transferri	<pre>nadler,cf; hugh/</pre>	1967
JWMAA	403	517	522	many	iden hemoglob, law enforce	bunch,td; meado/	1976

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo auth ye	<u>ear</u>
ATRLA	12	463	465	bibo	electrocard, experim death nagorski, f; grod 19	967
ATRLA	12	361	365	bibo	curr stat stud blood prope gasparski, j 19	967

CODEN	<u>vo-nu</u>	<u>bepa</u>	<u>enpa</u>	anim	kewo			auth	year	
CBPAB	40ъ	521	530	ovli	transferr,	hemoglobi,	iran	lay,dm;	nadler,c	1971

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
JAVMA	157-5	604	606	many	hematol	val,	arctic	mammal	dieterich,	ra	1970

CODEN	vo-nu	bepa	enpa	anim	kewo					auth		<u>year</u>
JWMAA	374	584	585		serol	tech,	ident	b 10	prot	tempelis,ch	n; rod	1973
NATUA	187	333	334 e	elda	sickli	ing phe	enomeno	on ir	n dee	undritz,e;	betk/	1960

CHAPTER 1, WORKSHEET 3.2a

Heart weight: live weight relationships of white-tailed deer (odvi)

Heart weights of 11 male and 8 female white-tailed deer and the a and b values for a linear regression equation for all 19 animals combined are given by Robinson (1966).

Linear, exponential, logarithmic, and power regression equations for each sex have been determined from the data of Robinson to see if a non-linear curve provides a better fit. The R^2 values are:

	Linear	Exponential	Logarithmic	Power	
male	0.95	0.96	0.88	0.92	
female	0.96	0.92	0.96	0.94	

The linear fit is best when both sexes are considered. The equations for males and females are:

male: HEWG = 8.71(LIWK) - 105.58 female: HEWG = 9.48(LIWK) - 100.70

A t-test shows that the slopes are not different (P = 0.99) for males and females. Thus, a single equation represents the heart weight:live weight relationships for both sexes. The equation is:

HEWG = 8.54 LIWK - 81.27

1000 900 T Т 1 800 T 700 600 T HEWG T 500 400 Ì T Ť T T 300 T Ţ T T Т T T T T T T T Т Т Τ T T T T T Ι T T T 1 T T Τ T T T T T 1 1 T T Ţ 200 T Т T T T Т Τ Ţ Т Ţ Ţ T T T Т Ť Т T Т Т T Ť Ţ T 100 T Т T T T T Ť Ť Ţ Т Τ Т T Ţ T 010 020 030 040 060 070 080 090 120LIWK =0 050 100

LITERATURE CITED Robinson, P. F. 1966. Organ:body weight relationships in the white-tailed deer, Odocoileus virginianus. Cheasapeake Science 7(4):217-218.

Chapter 1 - Page 60a

Blood weight: live weight relationship of white-tailed deer (odvi)

The weight of the blood of white-tailed deer, presumably determined by direct collection and measurement of 13 sacrificed male deer was given in relation to live weight by Cowan et al. (1968).

Direct collection of the blood results in an underestimation of the total blood present because some of the residual blood in the capillaries. The equation, based on the data given, is:

BLWK = 0.498 + 0.045 (LIWK)

Plot the blood weights in relation to live weight in kg (LIWK) below.

LITERATURE CITED

Cowan, R. L, E. W. Hartsook, J. B. Whelan, J. L. Watkins, J. S. Lindzey, R. W. Wetzel, and S. A. Liscinsky. 1968. Weigh your deer with a string. Penn. Game News 39(11):17-18.

CHAPTER 1, WORKSHEET 3.2c

Heart weight: live weight relationship for mature mammals

Brody (1964:596) presents a figure with plotted points and a regression line for the heart weight (kg): body weight (kg) relationship for mature mammals. The equation is:

$HEWG = 0.00588 LIWK^{0.984}$

Compare heart weights with this calculation and from WORKSHEET 3.2a for deer weighing 100 kg. Note that the deer equation results in a larger HEWG than the general equation. Complete the table below for species and weights of your choice. Remember that this general equation may result in an underestimation for wild ruminants in general.

Brody (1964:643) gives the a and b values for another equation for dairy cattle. That equation is:

HEWK = 0.064 LIWK 0.56

Compare the results from this equation to the one for deer.

LITERATURE CITED

Brody, S. 1964. Bioenergetics and growth. Hafner Publishing Company, Inc., New York. 1023 pp.

·

Chapter 1 - Page 60cc

UNIT 3.3: RESPIRATORY SYSTEM CHARACTERISTICS

The major organs of the respiratory system are the lungs and the air passages leading to them. The lungs, surrounded by pleural sacs, are located in the thorax. The air passages are the mouth cavity, pharynx, larynx, trachea, and bronchi. The diaphragm is the major muscle involved in breathing, assisted by muscles of the thorax. The movement of air through the air passages to ventilate the lungs is called <u>external respiration</u>. The exchange of oxygen and carbon dioxide in the process of metabolism is called internal respiration, and is discussed in Part III.

Lung Surface Area. The lungs of mammals are finely divided into tiny sacs or diverticuli which increase the internal surface areas of each lung tremendously compared to their outer surface areas. This structural characteristic provides large amounts of surface areas for ventilation, resulting in efficient 0₂ and CO₂ exchange necessary for continuing internal respiration.

Lung Volumes. Lung volumes of a wide range of weights of mammals (including no wild ruminants, however) were very constant (Gordon 1962;162).

$LUVO = 0.0567 IFWK^{1.02}$

The increase was not quite directly proportional as the equation expressing this relationship includes weight to the power 1.02. This means that lung volumes of larger animals are relatively larger than those of smaller animals, although the increase is slight. The effects of an exponent of 1.02 compared to a direct proportion to weight (1.00) are made in WORKSHEET 3.3a.

<u>Air passages</u>. The structure of the air passages is important for the exchange of heat energy between the animal and the atmosphere. Very cold inhaled air, for example, is warmed as it passes through the respiratory tract, removing heat energy from body tissue. If the air exhaled is warm air, the amount of heat lost could be substantial for a wild ruminant in cold, northern weather conditions.

The air passages of caribou have membranes that are folded over each other, functioning as heat exchanges to warm the inhaled air and cool the air to be exhaled. In this way, heat energy is exchanged within the air passages rather than between the air passages and the atmosphere, resulting in potentially important reductions in respiratory heat loss.

LITERATURE CITED

Gordon, M. S., G. A. Bartholomew, A. O. Grinnell, C. B. Jorgensen, and F. N. White. 1962. Animal Function: Principles and adaptations. The MacMillan Company, New York. 560 pp.

REFERENCES, UNIT 3.3

RESPIRATORY SYSTEM CHARACTERISTICS

SERIALS

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo			auth	<u>year</u>
JOMAA	311	5	17	odvi*	weight	relations,	georg re	hamerstrom,fm,jr/	1950

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo			auth		year
JOMAA	523	628	63 0	odhe*tiss, orga	ans, tota	body ma	hakonson,te;	whic	1971
WLMOA	39	1	122	odhe*carcas, b	one, orga	n, gland	anderson,ae;	med/	1974

CODEN	vo-nu	bepa	enpa	anim	kewo	· · · · · · · · · · · · · · · · · · ·		auth	,	year
JOMAA	274	308	323	ceel	mammals of	E northern	idaho	rust, hg		1946
RSPYA	292	225	230	ceel/	select oxy	vgen trans	p param	mckean,t;	staube/	1977

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	<u>year</u>
JOMAA	271	90	91	alal	weights of minnesota moose	brechinridge.wj	1946

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth		year
AVSPA	57	1	18	rata	topograph, internal o	organs	engebretsen, rh		1975
NJZOA	244	407	417	rata	/morph, fat stor, org	gan wt	krog,j; wika,m;	1	1976

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo			auth		year
				anam						
CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo			auth		year
RSPYA	303	305	310	bibi	blood	respirate	properties	haines,h;	chiche/	1977
CODEN	vo-nu	bepa	enpa	anim	kewo			auth		year
				ovca		· · · · · · · · ·				
CODEN	vo-nu	bepa	enpa	anim	kewo			auth		year
				ovda			•			
CODEN	vo-nu	bepa	enpa	anim	kewo			auth		year
				obmo						
CODEN	vo-nu	bepa	епра	anim	kewo			auth		vear
		<u></u>	<u></u>	oram		<u> </u>	· · · · · · · · · · · · · · · · · · ·			<u></u>
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	<u>anim</u>	kewo	<u> </u>		auth		<u>year</u>
ATRLA	12	349	360	bibo	physic	ological	properties	janusz,g		1967

CHAPTER 1, WORKSHEET 3.3a

Lung volumes in relation to body weights

The lung volumes of a wide range of weights of animals may be expressed with the equation modified from Gordon (1962;162):

$LUVO = 0.0567 LIWK^{1.02}$

No ruminants were included in the data used to derive the above equation. Since there are no other data available on lung volumes of wild ruminants, this equation will serve as a first approximation. Lung volumes get larger as animal weights increase since the exponent 1.02 is greater than 1.00. Evaluate lung volumes for animals weighing 50 kg (deer) to 500 kg (bison) using the equation above. Then, use a direct proportion (exponent = 1.00) and calculate LUVO. Plot the results below. What are the differences at different weights?

LITERATURE CITED

Gordon, M. S., G. A. Bartholomew, A. O. Grinnell, C. B. Jorgensen, and F. N. White. 1962. Animal Function: Principles and adaptation. The MacMillan Company, New York. 560 pp.

UNIT 3.4: REPRODUCTIVE SYSTEM CHARACTERISTICS

The reproductive system of wild ruminants includes the scrotum, testes, and penis of the males and the uterus, ovaries and vagina of the females. Characteristics of the male and female reproductive organs are used to evaluate breeding condition and potentials. Testes volumes increase as the rutting season approaches, with the hormone testosterone having a significant role in stimulating these physical changes. The ovaries of the female serve as indicators of the female's reproductive history. Teat lengths measured on hunter-killed animals are very good indicators of lactation the previous summer in yearling deer, helping to establish the frequency of suckling young born to yearlings, which is a good indicator of animal condition in relation to the range.

Several characteristics of the reproductive system are of distinct ecological importance. The age at reproductive maturity is an important characteristic affecting the ratio of breeding: non-breeding animals in a population. Animals that breed at an earlier age contribute new individuals to the population sooner than late-maturing animals do, resulting in potentially greater variations in number from one breeding season to the next.

Lengths of the gestation periods (LEGP) of the North American wild ruminants are:

		LEGP
white-tailed deer;	odvi	200
mule deer;	odhe	200
elk;	cee1	260
moose;	alal	245
caribou;	rata	220
pronghorn;	anam	240
bison;	bibi	290
big-horn sheep;	ovca	150
Dall sheep;	ovda	150
muskox;	o bmo	270
mountain goat:	oram	180

Reproductive system characteristics are related to those of the endocrine system, of course. Functional relationships between these two systems are discussed in Part III.

LITERATURE CITED

Moen, A. N. 1978. Seasonal changes in heart rates, activity, metabolism, and forage intake of white-tailed deer. J. Wildl. Manage. 42(4): 715-738.

REFERENCES, UNIT 3.4

REPRODUCTIVE SYSTEM CHARACTERISTICS

BOOKS

type	publ ci	<u>lty</u>	page	anim	kewo			auth/edit	year
aubo	coup 1t	tny é	570	mamm	patterns	mammalian	reprodu	asdell,sa	1964

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JOANA	941	1	33	cerv	aspects of placentation	hamilton,wj; har/	1960

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AJANA AJANA AJANA	126-2 127-4 132-2	201 369 189	241 395 205	odvi odvi odvi	morphogen, fetal membranes ultrastr amnion, amni plaq ultrastr corpus lute, preg	sinha,aa; seal,u/ sinha,aa; seal,u/ sinha,aa; seal,u/	1969 1970 1971
AJVRA	396	1053	1056	odvi	antl, long bone mass, andr	brown,rd; cowan,/	1978
BIREB BIREB	163 171	340 78	343 83	odvi odvi	repro ster, fema seas chan repr, proges, estrog, preg	<pre>plotka,ed; seal,/ plotka,ed; seal,/</pre>	1977 1977
CIRIB	62	1053	1056	odvi	collec semen, electro ejac	bierschwal,cj; m/	1968
CJZOA CJZOA	441 561	59 121	62 127	odvi odvi	breeding seasons, manitoba seas var LH,FSH, tes, male	ransom,ab mirarchi,re; how/	1966 1978
CNJNA	542	259	259	odvi	doca, cotyled attach, uter	scanlon,pf	1974
COVEA	393	282	291	odvi	corpora lutea, ovul incide	cheatum,el	1949
CPSCA	74	217	218	odvi*	organ:body weight relation	robinson,pf	1966
ENDOA	944	1034	1040	odvi	annual testos rhyth, adult	mcmillin,jm; sea/	1974
JANSA JANSA JANSA JANSA	311 391 401 421	225 225 185 271	225 225 186 272	odvi/ odvi odvi/ odvi/	sperm reserves of w-t deer dosh, doca, placentomes in andr lev, antl cy, bree se seas var, gonad char, male	lambiase,jt,jr; a scanlon,pf mirarchi,re; sca/ mirarchi,re; sca/	1970 1974 1975 1976
JAVMA	157-5	627	632	odvi	char semen coll, elec ejac	bierschwal,cj; m/	1970
				odvi	continued on the next page		

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA	311	5	17	odvi'	weight relations, georg re	hamerstrom, fm, jr/	1950
JOMAA	324	411	421	odvi	analys reproduc pat, s tex	iilege,d	1951
JOMAA	401	108	113	odvi/	breed record, capt, alabam	haugen,ao	1959
JOMAA	461	107	107	odvi	placen ingest, partur mort	knowlton,ff; mich	1965
JOMAA	472	266	280	odvi	endocrine glands, seas chan	hoffman,ra; robin	1966
JOMAA	534	760	773	odvi/	ovar comp, repr phys, venez	brokx,pa	1972
JRPFA	471	161	163	odvi	chan estro, estradi, pregn	harder,jd; woolfl	1976
JWIDA	94	356	358	odvi	multipl anomali, w-t fetus	wobeser,g; runge,	1973
JWIDA	114	497	501	odvi	congen anom, neonat, alber	barrett, mw; chalm	1975
JWMAA	103	242	248	odví	regi diff, breed poten, ny	moroton,gh; cheat	1946
JWMAA	103	249	263	odvi	breeding season, new york	cheatum,el; morto	1946
JWMAA	143	29 0	295	odvi/	breed rec, upper pen, mich	haugen, ao; davenp	1950
JWMAA	271	142	143	odvi	technique for preser uteri	haugen,ao	1963
JWMAA	281	171	173	odvi	birth of white-tai d fawns	michael,ed	1964
JWMAA	291	53	59	odvi	reproduc cycle, male texas	robinson, rm; tho/	1965
JWMAA	291	74	79	odvi/	reproducti studies, penned	verme,1j	1965
JWMAA	293	487	492	odvi	corpora lutea variation of	trauger, d1; hauge	1965
JWMAA	293	634	636	odvi	fertility in w-t buck fawn	silver,h	1965
JWMAA	304	843	845	odvi	regional diff, fawning tim	weber,aj	1966
JWMAA	311	114	123	odvi	reprodtive biolo, manitoba	ransom, ab	1967
JWMAA	333	708	711	odvi	fertility, male w-t fawns	follmann,eh; klim	1969
JWMAA	334	881	887	odvi/	repro pattern, nutri plane	verme,1j	1969
JWMAA	352	369	374	odvi	accessory corp lute, ovari	mansell.wd	1971
JWMAA	363	868	875	odvi	reproductive physiol, male	lambiase.it.ir: /	1972
JWMAA	373	423	424	odvi	support dev. field laparot	scanlon.pf: lenke	1973
TWMAA	382	183	196	odvi	eff diethvistilbes, reprod	harder, id: peterl	1974
TWMAA	394	684	691	odvi	uterin comp. growth. pregn	robbins.ct: moen.	1975
TWMAA	402	373	374	odvi	initia preg lactating de	scaplon of murp/	1976
TWMAA	404	792	795	odvi	noneff mechan birth contr	matschke.gh	1976
TWMAA	411	87	91	odvi	diethylstilhestr contrace	matschke oh	1977
TWMAA	411	92	99	odvi	ann chang sperm prod. org	mirarchi, re: sca/	1977
Τωμαδ	412	178	183	odvid	androg levels antl develo	mirarchi re: sca/	1977
TUMAA	412	194	196	odvi	antifertil act even proges	matechke oh	1977
ΤΙΙΜΔΔ	414	715	719	odvi	fact aff pack fewning wir	maginnes be down	1977
TUMAA	414	731	735	odvi	farti control steroi impl	matechko ah	1977
JWIIII	71 4	751	133	OUVI	ierci concroi, sceroi impi	matachike, gh	1)//
MALITA	20	225	236	odud	hungangediam in wid taxas	thomas in robin/	1964
NAWIA	29	225	230	00.01	nypogonadism in wid, texas	LIIOMAS, JW, TODIII/	1904
	162	261	261	odud	tuin forme home ? dave one	boggolton ut, wan	1060
NECIA	10	201	201		LWIN TAWNS DOLIN 2 days apa	hesselton, wt, van	1071
NECIA	10 - 1	42,	51 67		Teprod anomali, remale, ny	deskeep law boses	1072
NrGJA	201	40	47	0011	breedi, parturit dates, ny	jackson, iw; nesse	1973
0.1004	70 40	1/	14	. 1 .		1	1070
OJSCA	/8-AP	14	14	00V1	possibi superiera, spontan	lamvermeyer, b1; m	19/0
DOORA	0	100	1 0 1		14m21 4-6	1 F	1055
PUGFA	y	120	131	oavi	DITTH GATES OF ALADAMA dee	Lueth, fX	1075
pugfa	29	040	021	00V1	oral accep, eff, dietnylst	macscnke, gn	19/2
DT 4 T 4	71	0/1	0/7				1000
PIAIA	/1	241	24/	odv1/	struc, cervic regi, uterus	morris, je	1964
				oavi	continued on the next page		

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
POASA	56	24	25	odvi	breeding season, e oklahom	dunbar,mr	1976
TJSCA	26	417	420	odvi	breeding season in s texas	harwell,wf; barro	1975
TNWSD	27	19	38	odvi	photoperiodism, breeding	mcdowell,rd	1970
VJSCA	233	116	116	odvi	a laparotomy technique w-t	scanlon, pf; lenke	1972
VJSCA	233	116	116	odvi	aspects of early pregnancy	<pre>scanlon,pf; murp/</pre>	1972
VJSCA	243	112	112	odvi	ovula, pregnan, lactat dee	<pre>scanlon,pf; murp/</pre>	1973
VJSCA	243	112	112	odvi	spermatozoan reserves in d	<pre>lenker,dk; scanlo</pre>	1973
VJSCA	262	59	59	odvi	plas androg lev, repro char	mirarchi, re; sca/	1975
VJSCA	262	60	60	odvi	seas, age dif, male org wt	russell.md: wess/	1975
VJSCA	272	46	46	odvi	plas progest lev, estr cyc	kirkpatrick,rl; /	1976
WLSBA	34	152	156	odvi	hormon implan, contr repro	bell,rl; peterle,	1975
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ACATA	841	118	128	odhe	anam, morpho, cervix uteri	kanagawa,h; hafez	1973
AMNAA	831	303	304	odhe	accidents, parturient deer	miller,fl	1970
ANREA	122	335	340	odhe	quadruplets in mule deer	sears,hs; browman	1955
APAV D	1976-	208	215	odhe	environ eff on reproductio	sadleir,rmfs	1976
CAFGA	431	91	96	odhe	breedin seas, herds, calif	bischcoff,ai	1957
CAFGA	443	253	259	odhe	productiv, herds californi	bischoff,ai	1958
CJZOA	481	123	132	odhe	odvi, develo, fetal period	ommundsen,p; cowa	1970
CJZOA	54-10	1617	1636	odhe	horm reg, repro, ant1 cyc1	west, no; nordan, h	1976
CJZOA	54–10	1637	1656	odhe	eff methallibure, hormon tr	west,no; nordan,h	1976
JOMAA	381	116	120	odhe	gesta per, breed, fawn beh	golley,fb	1957
JOMAA	52 3	628	630	odhe*	tiss, organs, tota body ma	hakonson, te: whic	1971
JOMAA	532	403	404	odhe	biolog, an antlered female	mierau.gw	1972
JOMAA	541	302	303	odhe	reproductio, b-t deer fawn	thomas, dc; smith,	1973
JRPFA	442	261	272	odhe/	reprod pattern, female b-t	thomas,dc; cowan,	1975
JWTDA	71	67	69	odhe	bilateral testicular decen	murphy.bd: cluest	1971
JWIDA	111	101	106	odhe	testicular atrophy, calif	demartini, jc; con	1975
JWMAA	144	457	469	odhe	bree seas, prod. faw. utah	robinette.wl: gas	1950
JWMAA	172	225	225	odhe	proof fawns breeding, utah	crane, hs: iones.d	1953
JWMAA	211	62	65	odhe	ovarian anal. reprod perfo	gollev.fb	1957
JWMAA	404	795	796	odhe	preg fawn, quintupl mule d	nellis,ch; prent/	1976

odhe continued on the next page

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
MRLTA	501	12	12	odhe	record, multiple ovulation	fowle,ke	1969
SWNAA	151	29	36	odhe	indices repro, surv, n mex	anderson,ae; sny/	1970
THGNB	33	101	106	odhe	early pubert, female b-t d	mueller,cc; sadle	1975
WLMOA	39	1	122	odhe	carcas, bone, organ, gland	anderson,ae; med/	1974

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
BEHAA	16	84	92	ceel	charact of estrus, captive	morrison,ja	1960
CIRIB	84	994	997	cee1	freezi red d semen, polan	jaczewski,z; mor/	1976
JOMAA JOMAA JOMAA	361 472 514	145 332 812	145 334 813	ceel ceel ceel	fetus in yearling cow elk fetus resorption in elk precoci antl dev, sex matu	saunders,jk jr haugen,ao moran,rj	1955 1966 1970
JRPFA JRPFA	251 273	41 427	54 438	ceel, ceel,	/puberty, seas breedin male /female reprodu cycl, scotl	lincoln,ga guiness,f; linco/	1971 1971
JWMAA JWMAA JWMAA JWMAA JWMAA JWMAA JWMAA	163 172 231 243 311 322	313 177 223 27 297 145 368	315 184 223 34 307 149 376	ceel ceel ceel ceel ceel ceel	age at sex maturity, male reproduction, yellowstone pregnant yearling cow elk breed seas, known-age embr ovarian char, breed histor determ preg, rectal palpat exper studies, contr repro	<pre>conoway,cf kittans,wh coffin,al; reming morrison,ja; tra/ morrison,ja greer,kr; hawkins greer,kr; hawkin/</pre>	1952 1953 1953 1959 1960 1967 1968
JZOOA JZOOA JZOOA	163-1 172-3 185-1	105 363 105	123 367 114	ceel, ceel ceel	/seas reprodu changes, stag timing, reproduc, latitude calving times, red d, scot	lincoln,ga fletcher,tj guiness,fe; gibs/	1971 1974 1978
MAMLA	352	204	219	ceel	ruru, season, births, n z	caughley,g	1971
NAWTA	21	545	554	ceel	postconcept ovulation, elk	halazon,gc; buech	1956
OIKSA	231	142	144	ceel	field measu, organ volumes	langvain,r	1972
ZEJAA ZEJAA ZEJAA	11 43 214	69 105 238	75 130 242	ceel ceel ceel	caca, dada [time of birth] [reproductive phenomena] l sided testicle shrinkage	rieck,w valentincic,si wurster,k; hofma/	1955 1958 1975

.

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
AVSPA	141	81	91	alal	morph, ultrastr, spermatoz	andersen, k	1973
JOMAA JOMAA	271 372	90 300	91 300	alal alal	weights of minnesota moose late breeding, moose, alce	brechinridge,wj moisan,g	1946 1956
JWMAA JWMAA	264 392	360 450	365 451	alal alal	in gravelly, snowcrest mou aerial sexing, wh vulv pat	peek,jm roussel,ye	1962 1975
VILTA	63	1	299	alal/	reproductio, moose, sweden/	markgren,g	1969
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AVSPA	57	1	18	rata	topograph, internal organs	engebretsen, rh	1975
CAFNA CAFNA	904 904	449 498	463 499	rata rata	annual antler cycle, newfo twin fetuses, woodland car	bergerud,at shoesmith,mw	1976 1976
CJZOA CJZOA CJZOA	501 539 568	43 1213 1684	46 1221 1696	rata rata/ rata/	reprodu, female reind, car repro seas, carib, newfoun morphol, b-g caribou ovary	mcewan,eh; whiteh bergerud,at dauphine,tc,jr	1972 1975 1978
JOMAA JOMAA JOMAA	494 522 543	778 479 781	778 479 781	rata rata rata	placental remnants, rumens twinning in caribou twinning in reindeer, nwt	miller,fl; parker mcewan,eh nowosad,rf	1968 1971 1973
JWMAA JWMAA JWMAA JWMAA	252 283 351 381	205 477 175 54	205 480 177 66	rata rata rata rata/	sex determi caribou calves field meth, parturiti rate antl shedd, parturi, reind synchronous mating, b gr c	bergerud,at bergerud.at espmark,y dauphine,tc,jr: m	1961 1964 1971 1974
JZOOA JZOOA	164-4 170-4	419 505	424 508	rata rata	collec, exam, reinde semen artific insemina, reindeer	dott,hm; utsi,mnp dott,hm; utsi,mnp	1971 1973
NCANA	97- - 1	61	66	rata	calving dates, carib, queb	desmeules,p; sim	1970
NJZOA	244	407	417	rata	morpho, fat stor, organ wt	krog,j; wika,m	1976
PASCC	22	17	17	rata	repro patter, reind, carib	mcewan,eh; whiteh	1971
ZOLZA	46-12	1837	1841	rata	[reproduc, wild, taimyr p]	michurin,1n	1968

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	<u>year</u>
WMBAA	16	17	23	bibi	biol, manage, national par	fuller,wa	1962
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA	465	899	944	ovca	social, physical maturatio	geist,v	1968
JWMAA JWMAA	92 301	155 207	156 209	ovca ovca	non-breeding in bighorn sh twinning in bighorn sheep	pulling,avs spalding,dj	1945 1966
SWNAA	22	153		ovca	minimum breeding age, utah	mccutchen, he	1977
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
				ovđa			
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
FUNAA FUNAA	24 24	96 101	100 103	o bmo o bmo	early matur, fecund, norwa gestation period of muskox	alendal,e alendal,e	1971 1971
JWMAA	194	417	429	oram	two-year study, crazy moun	lentfer,jw	1955
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JRPFA	211	1	8	dada	reproductive cycle, male	chapman,di; chapm	1970
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
ATRLA ATRLA	12 12	333 407	334 444	bibo bibo	breeding, zool garden, pol reprod biol, reserve, free	landowski,j; woli krasinski,z; racz	1967 1967
CBCPA	43A	673	679	mamm	gestation period, body wt	kihlstrom, je	1972
JZOOA	170-2	150	151 *	mure	breed rec, muntjac d, capt	chaplin,re; dange	1973
ZSAEA	334	193	214	many/	[developm antlers, reprod]	lau,d	1968
*mure	= Munt	:iacua	s reev	resi =	= muntjac deer		

UNIT 3.5: EXCRETORY SYSTEM CHARACTERISTICS

The excretory system includes the kidney, bladder, tubular channels, and the rectum. The first three are connected anatomically, with the kidney being associated with the circulatory system where it acts as a physiological filter for the separation of wastes from the blood. The product of this filtration process, urine, is stored in the bladder between periodic urinations.

The rectum is associated with the digestive system. It is a storage area for undigested food materials, or feces, along with spent metabolic tissue. Feces are eliminated by defecation at periodic intervals.

The defecation rate per day is one of the practical characteristics of the excretory system. Number of defecations per day and the resistance of the feces to breakdown are importyant considerations when using pellet-group census methods. Feces, as undigested food materials, persist on the ground for varying lengths of time, depending on their characteristics and on weather conditions that affect both mechanical breakdown and decomposition by lower organisms.

Fecal materials change seasonally in number and resistance to breakdown, depending on the diet, range phenology, and physical condition of the animals. Diets with lower digestible forage result in fecal groups with higher resistance to breakdown, and these can persist for several years, especially in dry weather conditions. These several considerations of factors surrounding fecal characteristics indicate how interrelated ecological considerations can be when evaluating animal range relationships.

REFERENCES, UNIT 3.5

EXCRETORY SYSTEM CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo auth y	ear
JWMAA	261	50	55	od	rain, count of pellet grou wallmo,oc; jacks/ 1	962
JWMAA	333	506	510	od	qual ident forage remnants zyznar,e: urness, 1	969

CODEN	vo-nu	bepa	enpa	anim kewo	auth	year
CPSCA	74	217	218	odvi*organ:body weight relation	robinson,pf	1966
JOMAA	311	5	17	odvi*weight relations, georg re	hamerstrom,fm,jr/	1950
JWMAA JWMAA	201 294	70 723	74 729	odvi eval pell gr count, census odvi sourc of error, pell group	eberhardt,1; van van etten,rc; ben	1956 1965
NFGJA	71	80	82	odvi persist, wint pelle gr, ny	patric,ef; bernha	1960

CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo	auth	year
JOMAA	523	628	630	odhe	tiss, organ, tota body mas	hakonson,te; whic	1971
JWMAA	283	435	444	odhe	defacation rates of mule d	smith,ad	1964
JWMAA	311	1 9 0	191	odhe	anam, id fecal gr, pH anal	howard,vw,jr	1967
JWMAA	341	29	36	odhe	ceel, freq dist, pellet gr	<pre>mcconell,br; smit</pre>	1970
JWMAA	362	579	594	odhe	indices of carc fat, color	anderson, ae; med/	1972
NAWTA	8	369	380	odhe	census math, management of	rasmussen,di; dom	1943
UASPA	32	59	64	odhe	weathering, persist pel gr	ferguson,rb	1955
WLMOA	39	1	122	odhe	carcas, bone, organ, gland	anderson,ae; med/	1974
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
ATRLA	15	253	268	ceel	relat age and size, poland	dzieliolowski,r	1970
JWMAA	244	429	429	ceel	dyes to mark ruminan feces	kindel,f	1960
JWMAA	292	406	407	ceel	determ defeca rate for elk	<pre>neff,dj; wallmo,/</pre>	1965
NZJSA	134	663	668	cee1	kidney wt, kidne fat index	<pre>batcheler,cl; cl/</pre>	1970
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA	271	90	91	alal	weights of minnesota moose	brechinridge,wj	1946

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo					auth		year
JWMAA	402	374	375	alal	daily	wint	pell	gr,bed,	al	franzmann,aw; ar	/	1976
NCANA	955	1153	1157	alal	[numb	pelle	et-gro	each d	ay]	desmeules,p		1968

CODEN	<u>vo-nu</u>	bepa	enpa	anim kewo	auth	year
AVSPA	57	1	18	rata topograph, internal organs	engebretsen, rh	1975
JWMAA	392	379	386	rata*kidney wt fluct, fat index	dauphine,tc,jr	1975
NJZOA	244	407	417	rata/morpho, fat stor, organ wt	krog,j; wika,m	1976

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 anam
 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 bibi
 bibi

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		<u>year</u>
ANREA	169-2	343	343	ovca	observ	kidney,	desert	bigh	horst,r;	langwort	1971
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo				auth		<u>year</u>
				ovda							
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo				auth	· · · · - · · · · · · · · · · · · · · ·	year
				obmo							

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 oram
 oram

CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo			,	auth	year
JOMAA	274	308	323	many	mammals	of	northern	idaho	rust,hg	1946

1

UNIT 3.6: SKELETAL SYSTEM CHARACTERISTICS

The vertebrate skeleton includes an axial portion and an appendicular portion. The axial portion includes the backbone which provides the main line of internal support for the rest of the body. Bones in the axial portion of the skeleton have restricted articulation, and some are fused together tightly. Bones in the appendicular portion articulate freely with other bones. The skeleton serves as a reserve of minerals, nutrients, and blood cells for use by other systems of the body.

Bone is very definitely living tissue, and skeletal growth is essentially positive from birth to death. At birth, the bones are far from mineralized, and as a result they are rather cartilaginous and flexible. They quickly gain more rigidity, and the rapidity of the growth in the dimensions of long bones (legs), flat bones (ribs), and the rest of the skeleton is truly remarkable in wild ruminants.

Maximum skeleton dimensions are generally reached after reproductive maturity. Reproducing females will continue to grow after bearing their first offspring, and males are capable of breeding before they are physically mature.

The skeleton is composed of minerals, primarily calcium and phosphorous, that accumulate during growth, and of water. Horns and antlers, characteristic of the males of all species and the females of some species of ruminants, are extensions of the skeletal system, and represent annual recurrent growth in some species. The minimum amounts of minerals required for horn and antler growth can be estimated by analyzing the quantities deposited. The demand for minerals exceeds the amounts ingested during rapid stages of antler growth, and minerals are mobilized from the long bones and ribs to meet this demand.

Ash contents of white-tailed deer in October were determined by Robbins et al. (1974). Further measurements of chemical composition of deer carcasses throughout the year are being completed at the Wildlife Ecology Laboratory, and the time-dependent equation for ash determined. Data on the ash and specific mineral contents of other species are very limited.

LITERATURE CITED

Robbins, C. T., A. N. Moen, and J. T. Reid. 1974. Body composition of white-tailed deer. J. Anim. Sci. 38(4):871-876.

REFERENCES, UNIT 3.6

SKELETAL SYSTEM CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim kewo	auth	<u>year</u>
EVOLA	241	220	229	odvi anal div skull morph, mich	rees,jw	1970
JOMAA	312	5	17	odvi*weight relations, georg re	hamerstrom, fm, jr/	1950
JOMAA	502	302	310	odvi/alal, stuctur adapta, snow	kelsall, jp	1969
JOMAA	521	223	226	odvi mandible variati, sex, age	rees, jw	1971
JOMAA	524	724	731	odvi odhe, anal diver mandi mor	rees, jw	1971
JOMOA	128	95	112	odvi morph var, cranium, mandib	rees,jw	1969
JOMOA	128	113	130	odvi morph var, mandibl, skelet	rees,jw	1969
JWMAA	292	397	398	odvi kidney, marrow fat, condit	ransom, ab	1965
NYCOA	35	19	22	odvi bone marrow, malnutr index	cheatum,el	1949

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim kewo	auth	<u>year</u>
CJZOA	414	629	636	odhe age determ, ossif, long bo	lewall,ef; cowan,	1963
CAFGA CAFGA	414 421	327 15	346 21	odhe dosh, dogo, skeletal diffe odhe/odvi, pelv girdl, rel, sex	hildebrand,m taber,rd	1955 1956
JOMAA JOMAA	452 523	226 628	235 630	odhe/rang-rel gro dif, sk ratio odhe*tiss, organ, tota body mas	klein,dr hakonson,te; whic	1964 1971
MVPRA	524	50	50	odhe spont repair, comminu frac	dinesen,hl; cliff	1971
WLMOA	39	1	122	odhe*carcas, bone, organ, gland	anderson,ae; med/	1974

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ATRLA	11- - 5	129	194	ceel	morph varib, skull, body w	mystkowska,ec	1966
CJESA	14	963	986	ceel	postglac ungulates, albert	shackleton,dm; hi	1977
JOMAA	371	129	129	ceel	healing, fractured leg bon	gilbert, pf; hill	1956
JWMAA JWMAA	301 302	135 369	140 374	ceel* ceel	measurements, weight relat bone char assoc with aging	blood,da; lovaas, knight,rr	1966 1966

CODEN	vo-nu	bepa	enpa	<u>anim</u>	kewo	auth	<u>year</u>
NZJSA	144	993	1008	ceel	hybrid red de, wapiti, n z	caughley,g	1971
PZESA	24	57	75	ceel	cran stud, adap, hybr, nz	batcheler,cl; mcl	1977
PZSLA	166-3	303	311	ceel	var mandib length, body wt	lowe,vpw	1972
ZEJAA	232	92	94	cee1	[anomaly, nasal bones,]	meyer,p	1977

CODEN	vo-nu	bepa	епра	anim	kewo				auth	<u>year</u>
						_				
JOMAA	271	90	91	alal	weights	of	minnesota	moose	brechinridge,wj	1946

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ATICA	192	111	113	rata	functn brow tine, caribou	pruitt,wo	1967
AVSPA	57	1	18	rata	topograph, internal organs	engebretsen, rh	1975
JWMAA	281	54	56	rata*	relatio mandi length, sex	bergerud, at	1964
NJZOA	244	407	417	rata/	morpho, fat stor, organ wt	krog,j; wika,m	1976

CODEN	vo-nu	bepa	enpa	anim	kewo		auth	year
				anam				

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA JOMAA	454 564	630 871	632 887	bibi bibi	new data, b. bison, athaba var cranial char, alberta	bayrock,la; hill shackleton,dm; /	1964 1975
PLNAA	18-60	132	139	bi bi	agin, sexi post crani skel	duffield,1f	1973

CODEN	vo-nu	bepa	enpa	anim	kewo	•				auth		year
FLDZA	611	1	88	ov	co-evo	soc	beh,	cran	morph	<pre>schaffer,wm;</pre>	ree	1972

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				ovca			
CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	<u>anim</u>	kewo	auth	year
				ovda			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				obmo			
				0.000			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
.TOMAA	511	60	73	oram	variation in the mt goat	cowan imet: meero	1970
U OF MAL	51 1	00	/ 3	orum	variation in the me goat	cowarry meet, meeto	1770
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AMNTA	113	103	122	mamm	scal, skel mass, body mass	prange.hd: ander/	1979
	. – •				,,,,,	[

,

,

CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo				auth	year
JOMAA	274	308	323	many	mammals	of	northern	idaho	rust,hg	1946

CHAPTER 1, WORKSHEET 3.6a

Bone weight: live weight relationships of white-tailed deer (odvi)

Bone weights in relation to live weights and field dressed weights are given by Cowan et al. (1968). The equations derived from these data are:

BOWK = 1.215 + 0.108 LIWK

BOWK = 1.650 + 0.122 FDWK

Plot the bone weight in relation to live weight and field dressed weights in kg below.

LITERATURE CITED

Cowan, R.L, E. W. Hartsook, J. B. Whelan, J. L. Watkins, J. S. Lindzey, R. W. Wetzel, and S. A. Liscinsky. 1968. Weigh your deer with a string. Penn. Game News 39(11): 17-18.

Chapter 1 - Page 80aa

UNIT 3.7: MUSCULAR SYSTEM CHARACTERISTICS

The muscular system of wild ruminants includes both involuntarilycontrolled muscles and voluntarily-controlled ones. Muscles involved in breathing heart muscles, and those of the gastrointestinal tract are the major involuntary muscles. Those involved in movement of the skeletal system are under voluntary control.

The voluntary muscles function primarily in the maintenance of body posture and in locomotion. Wild ruminants are generally more alert than domestic ones, and a larger proportion of maintenance energy may go for maintenance of posture in wild than in domestic ruminants. Wild ruminants also have more highly developed locomotor skills than domestic ones; they run to escape potential danger, and are capable of fast rates of speed.

Muscle characteristics that relate to these functions have not been studied in wild ruminants. Carcass characteristics, including the fraction of whole body weight that is muscle, have been measured, and meat characteristics used for identifying meats for law enforcement purposes have been described for some species.

Carcass characteristics are of interest when evaluating the amount of food provided by a wild ruminant when taken by predators. Muscle makes up a large part of the animal's body, and provides large amounts of nutrients because it is very digestible.

Changing proportions of muscle and other body components in relation to whole body weights are of interest in detailed energy flow studies. Data on muscle weights and chemical composition data, are useful for this purpose. In general, physically mature wild ruminants increase in body weight in the fall, but the function of the body weight that is in muscle remains quite constant. Increases in body weight reflect changing proportions of fat and water rather than muscle tissue. This is discussed further in CHAPTER 2.

REFERENCES, UNIT 3.7

MUSCULAR SYSTEM CHARACTERISTICS

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ANANA	137-4	381	394	odvi	musculature of hip, thigh b	oisaillon,a	1974
JOMAA	311	5	17	odvi*	weight relations, georg re	hamerstrom,fm,jr/	1950

CODEN	vo-nu	bepa	епра	anim	kewo				auth			<u>year</u>
HILGA	19	265	284	odhe	anam acce	p, foc	od val,	meat	cook,bb;	with	am/	1949
JOMAA	523	628	630	odhe*	tiss, org	an, to	ta bod	y mas	hakonson,	,te;	whic	1971
WAEBA	589	1	6	odhe	the mule	deer o	arcass	1	field, ra	; smi	th,/	1973
WLMOA	39	1	122	odhe'	*carcas, b	one, c	rgan,	gland	anderson,	,ae;	med/	1974

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth		year
WAEBA	594	1	8	ceel	the el	k carcass	field,ra;	smith,/	1973

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		<u>year</u>
JEBPA	132	133	136	alal	ceel,	rata,	compar	myoglob	<pre>sukhomlinov,bf;</pre>	/	1977
JOMAA	271	90	91	alal	weigh	ts of	minnesot	a moose	brechinridge,wj		1946

CODEN	vo-nu	bepa	enpa	anim	kewo			auth	<u>year</u>
AVSPA	57	1	18	rata	topograph,	internal	organs	engebretsen, rh	1975

rata continued on the next page

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
HLTPA HLTPA	182 206	127 585	134 591	rata rata	lead-210,polonium-210, ala cesium-137, seas pat, alas	blanchard,rl; moo hanson,wc	1970 1971
MNLHA	48-21	1	26	rata	[varia carcass wt, norway]	movinkel,h; prest	1969
NJZOA	244	407	417	rata	morpho, fat stor, organ wt	krog,j wika,m	1976
PASCC	14	69	69	rata	influence rut, meat palati	winters,rl	1963
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JANSA	366	1195	1195	anam	collagen charact of muscle	kruggel,wg; field	1973
JFDSA	393	639	640	anam	collagen character, muscle	kruggel,wg; field	1974
WAEBA	575	1	6	anam	the pronghorn carcass	field,ra; smith,/	1972
CODEN	vo-nu	bepa	enpa	anim bibi	kewo	auth	year
CODEN	<u>vo-nu</u>	bepa	епра	<u>anim</u> ovca	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> ovda	kewo	auth	<u>year</u>
CODEN	vo-nu	<u>bepa</u>	епра	<u>anim</u> obmo	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u> oram	kewo	auth	<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JANSA	366	1195	1195	many	quality, quantity of meat	smith,fc field,r	1973
JOMAA	274	308	323	many	mammals of northern idaho	rust, hg	1946
JWMAA JWMAA	202 344	169 917	172 921	many many	identif, game, precip reac id game meat, electrophore	<pre>keiss,rw; morriso dilworth,tg; mcke</pre>	1956 1970

CHAPTER 1, WORKSHEET 3.7a

Edible meat in relation to live weights and dressed weights of white-tailed deer (odvi)

Ratios of calculated live weights and dressed weights to edible meat were published for nine deer by Hamilton (1947). Linear regression equations have been determined from the data in the abbreviated table below. Original data were given in pounds; values in kg are:

Calculated	Hog dressed	Weight of	
live weight	weight	edible meat	
(LIWK)	(HDWK)	(WEMK)	
69.4	54.4	40.4	
67.1	52.6	34.0	
88.9	69.9	53.5	
86.6	68.9	53.5	
80.3	63.0	44.0	
100.2	78.9	60.8	
51.3	40.4	28.6	
63.5	49.9	35.8	
64.0	50.3	37.6	

Using a linear regression curve-fitting program, the equations are:

WEMK = 0.68 LIWK - 7.61; $R^2 = 0.96$ WEMK = 0.86 HDWK - 7.33; $R^2 = 0.97$

Verify your linear regression curve-fitting program if you wish, and then plot the data using the equations derived.

LITERATURE CITED

Hamilton, W. J., Jr. 1947. Dressed weights of some game mammals. J. Wildl. Manage. 11(4):349-350.

Chapter 1 - Page 84a
Live weight:edible lean meat relationships in white-tailed deer (odvi)

Live weight:edible lean meat data are given by Cowan et al. (1968). The linear regression equation derived from their table, is:

where WEMK = weight of edible meat in kg and LIWK = live weight in kg.

Plot the data below and compare the results with those on the previous WORKSHEET.

LITERATURE CITED

Hamilton, W. J., Jr. 1947. Dressed weights of some game mammals. J. Wildl. Manage. 11(4):349-350.

UNIT 3.8: NERVOUS SYSTEM CHARACTERISTICS

The nervous system of wild ruminants includes the brain, spinal cord, peripheral nerves, and receptors. These major anatomic divisions include billions of cells, all interacting in a coordinated control system that enables various body parts to function well together.

The brain is composed of a medulla oblongata, which connects to the spinal cord, cerebral hemispheres, and cerebellum. Each of these contain different centers for regulating visceral functions such as respiration, blood pressure, and heart rate, and sensory and motor functions. The brain itself contains many parts that perform different functions, though the parts themselves are not necessarily discernible as physical entities. Detailed drawings are available in such books as Swenson (1970) and Weichert (1970).

The spinal cord contains many nerve tracts which connect the brain with spinal nerves (Swenson 1970:866). Tracts for sensory and motor neurons are largely separated; there are tracts for both ascending and descending transmissions between the brain and the peripheral nerves.

Peripheral nerves contain many axons, or connecting fibers between the receptors and the central nervous system. There are also collections of neurons called ganglia outside of the central nervous system. These function as coordinating centers for viscera, glands and muscle tissues, without involving the central nervous system.

Receptors are cells that initiate an impulse to the rest of the nervous system in response to environmental stimuli. Several kinds of receptors are found in wild ruminants, including mechanoreceptors (touch or pressure), chemoreceptors (taste, smell, and blood composition), thermoreceptors (temperatuare changes), light receptors, sound receptors, and gravity and motion receptors. In addition, pain is elicited from different kinds of receptors, and from stimulation of nerve endings in tissues.

There is a dearth of published information on the nervous system characteristics of wild ruminants, so the distribution and capabilities of different receptors is not well known for the different species.

One of the most interesting and challenging characteristics of wild ruminants is their altertness and ability to escape danger, a direct function of the nervous system. We can only assume that the general anatomy is similar to other closely related vertebrates, and generalities are necessary if information is needed on the nervous system characteristics of wild ruminants.

- Swenson, M. J., Ed. 1970. Dukes' physiology of domestic animals. Cornell University Press, Ithaca, N.Y. 1463 pp.
- Weichert, C. K. 1970. Anatomy of the chordates. McGraw-Hill Book Company, New York. 814 pp.

REFERENCES, UNIT 3.8

NERVOUS SYSTEM CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	<u>year</u>
AJVRA	394	699	702	odvi	cone, rod photo receptors w	witzel,da; sprin/	1978
CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	year
				odhe			
CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	<u>year</u>
RVTSA	10	448	45 2	ceel	distr nerves, skin, red	jenkinson,dm;malo	1969
CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	year
				alal			
CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	year
AVCSA	18	152	158	rata	alal, caca cornea structur 1	rehbinder,c; winq	1977
AVSPA	57	1	18	rata	topograph, internal organs e	engebretsen, rh	1975
CODEN	vo-nu	bepa	enpa	anim	kewo a	auth	year

anam

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo				<u>au</u>	th		year
ANREA	184-2	187	201	bibi	a mac	roscopic	: stud	y, brai	in ha	rper,jw;	maser,	1976
CODEN	<u>vo-nu</u>	bepa	enpa	anim ovca	kewo				<u>au</u>	th		year
CODEN	vo-nu	bepa	enpa	anim	kewo			. <u>.</u>	<u>au</u>	th		year
CODEN	vo-nu	bepa	епра	ovda anim	kewo				<u>au</u>	th		year
				obmo								
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	<u>anim</u> oram	kewo				<u>au</u>	th		<u>year</u>
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		, 		au	th		year
BIJOA	119	47p	47p	many	fatty	acids,	evol :	nerv sy	ys cr	awford,m	a	1970

CLOSING COMMENTS

Physical characteristics of wild ruminants have been introduced in CHAPTER 1. Weights and seasonal variations in weights, geometry, and system characteristics are used in analyses of behavior, metabolism, heat loss, and population structures in later PARTS and CHAPTERS.

The next chapter (CHAPTER 2) contains more detailed information on various body parts. Some of these details are important for understanding biological functions, and some are useful management indicators. These relationships will be evaluated in remaining CHAPTERS.

GLOSSARY OF SYMBOLS USED - CHAPTER ONE

AEAM = Area of the ear in meters AFMM = Area of the face, muzzle in meters AGDA = Age in daysAGMO = Age in months AGYE = Age class in years AHEM = Area of the head in meters ALFM = Area of the lower front leg in meters ALHM = Area of the lower hind leg in meters ANEM = Area of the neck in meters ANWG = Antler weight in gms ANWK = Antler weight in kg ATRM = Area of the trunk in meters AUFM = Area upper front leg in meters AUHM = Area upper hind leg in meters BASM = Bed area in square meters BEAR = Bed areaBHTC = Belly height in cm BIWK = Birth weight in kg BLWG = Blood weight in gms BLWK = Blood weight in kg BOWK = Bone weight in kg CLWK = Calculated live weight in kg CUCM = Cubic centimeters (volumes) DIGE = Days into gestation EFWK = Estimated field-dressed weight in kg ELWK = Estimated live weight in kg FATK = Fat in kg FDWK = Field-dressed weight in kg FEWK = Fetal weight in kg FWAB = Fetal weight at birth GIWK = Gastrointestinal weight in kg HAWG = Hair weight in gms HDWK = Hog dressed weight in kgHEFR = Height of forage reached HEGC = Heart girth in cms HEWG = Heart weight in grams HEWK = Heart weight in kg HFRC = Height of forage reached in cm HFRM = Height of forage reached in m HLLK = Heart, lung, liver weights in kg IFWK = Ingesta-free weight in kg

JDAY = Julian day LEGP = Length of gestation period LIWK = Live weight in kg LORA = Longest radius LUVO = Lung volume MAWK = Maximum weight in kg MEWK = Metabolic weight in kg MIWK = Minimum weight in kg OAVC = Omasum and abomasum volumes in cubic cms POAT = Percent of omasum and abomasum of total volume PRPC = Primary phase correction PRRT = Percent of rumen and reticulum total volume RRVC = Rumen and reticulum volumes in cubic cm SEPC = Secondary phase correction SHRA = Shortest radius . SQCM = Square cmTSAM = Total surface are in meters TVSC = Total volume of stomach in cubic cms

WEMK = Weight of edible meat in kg WEWK = Weaning weight in kg

Chapter 1 - Page 92

ŧ

CODEN

ABBIA	Archives of Biochemistry and Biophysics
ACATA	Acta Anatomica
ACBCA	Acta Crystallographica Section B Structural Crystallography and
	Crystal Chemistry
AHEMA	Anatomia Histologia Embryologia
AJANA	American Journal of Anatomy
АЈРНА	American Journal of Physiology
AJVRA	American Journal of Veterinary Research
AKASA	Arkansas Academy of Science Proceedings
AMNAA	American Midland Naturalist
AMNTA	American Naturalist
ANANA	Anatomischer Anzieger
ANREA	Anatomical Record
ANYAA	Annals of the New York Academy of Sciences
APAVD	American Association Zoo Veterinarian Annual Proceedings
APSSA	Acta Physiologica Scandinavica Supplementum
ATICA	Arctic
ATRLA	Acta Theriologica
AVCSA	Acta Veterinaria Scandinavica
AVSPA	Acta Veteinaria Scandinavica Supplementum
AZWBA	Arizona Game and Fish Department Wildlife Bulletin
BEHAA	Behaviour
BICOB	Biological Conservation
BIGEB	Biochemical Genetics
BIJOA	Biochemical Journal
BIREB	Biology of Reproduction
BJNUA	British Journal of Nutrition
BLOOA	Blood
BPURD	Biological Papers of the University of Alaska Special Reports
BUCDA	Bulletin of the Georgia Academy of Sciences
BUFOA	Beaufortia
BVJOA	British Veterinary Journal
CAFGA	California Fish and Game
CAFNA	Canadian Field Naturalist
CBCPA	Comparative Biochemistry and Physiology
CBPAB	Comparative Biochemistry and Physiology - A comparative
CFGGA	California Department of Fish and Game. Game Bulletin
CGFPA	Colorado Division of Game. Fish. and Parks Special Report
CIRIB	Congres International de Reproduction Animale et
	Insemination Artificielle
CJCMA	Canadian Journal of Comparative Medicine
CJESA	Canadian Journal of Earth Science
CJZOA	Canadian Journal of Zoology
CNJMA	Canadian Journal of Comparative Medicine and Veterinary Science
CNJNA	Canadian Journal of Animal Science

COVEA	Cornell Veterinarian
CPSCA	Chesapeake Science
CWRSB	Canadian Wildlife Service Report Series
ENDOA	Endocrinology
EVOLA	Evolution
EXMPA	Experimental and Molecular Pathology
FLDZA	Fieldiana Zoology
FUNAA	Fauna
GENTA	Genetics
GROWA	Growth
HEREA	Hereditas
HILGA	Hilgardia
HLTPA	Health Physics
JANSA	Journal of Animal Science
JAVMA	Journal of the American Veterinary Medical Association
JBCHA	Journal of Biological Chemistry
JEBPA	Journal of Evolutionary Biochemistry and Physiology
JFDSA	Journal of Food Science
JOANA	Journal of Anatomy
JOMAA	Journal of Mammalogy
JOMOA	Journal of Morphology
JOPAA	Journal of Parasitology
IPHYA	Journal of Physiology
IRPFA	Journal of Reproduction and Fertility
JWTDA	Journal of Wildlife Diseases
TWMAA	Journal of Wildlife Management
	Journal of Zoo Animal Medicine
17004	Journal of Zoology
5200A	Southal of 20010gy
LBASA	Laboratory Animal Science
MAMLA	Mammalia
MDCBA	Minnesota Deptartment of Conservation Technical Bulletin
MDCRA	Michigan Department of Conservation Game Division Report
MGQPA	Minnesota Department of Natural Resources Game Research Project
MNLHA	Meldinger fra Norges Landbrukshogskole
MRLTA	Murrelet, The
MVPRA	Modern Veterinary Practice
NATUA	Nature
NAWTA	North American Wildlife and Natural Resources Conference, Transactions of the,
NCANA	Naturaliste Canadien, Le
NFGJA	New York Fish and Game Journal
NJZOA	Norwegian Journal of Zoology
NYCOA	New York State Conservationist
NZJSA	New Zealand Journal of Science

Chapter 1 - Page 94

OIKSA Oikos Ohio Journal of Science OJSCA PAABA Pennsylvania Agricultural Experiment Station Bulletin PASCC Proceedings of the Alaskan Scientific Conference PCGFA Proceedings of the Southeastern Association of Game and Fish Commissioners PCZOA Proceedings of the International Congress of Zoology Proceedings of the Iowa Academy of Science PIAIA PLNAA Plains Anthropologist Proceedings of the Montana Academy of Sciences PMASA Proceedings of the Oklahoma Academy of Science POASA PSEBA Proceedings of the Society for Experimental Biology and Medicine PZESA Proceedings of the New Zealand Ecological Society PZSLA Proceedings of the Zoological Society of London RSPYA Respiration Physiology RVTSA Research in Veterinary Science SCIEA Science SWNAA Southwestern Naturalist Symposia of the Zoological Society of London SZSLA Theriogenology THGNB TJSCA Texas Journal of Science TNWSD Transactions of the Northeast Section, The Wildlife Society UAABB University of Alberta Agriculture Bulletin UABPA Biological Papers of the University of Alaska UASPA Proceedings of the Utah Academy of Sciences, Arts and Letters UCPZA University of California Publications in Zoology VEZOA Vestnik Zoologii VILTA Viltrevy VIWIA Virginia Wildlife VJSCA Virginia Journal of Science WAEBA Wyoming Agricultural Experiment Station Bulletin WCDBA Wisconsin Department of Natural Resources Technical Bulletin WDABB Bulletin of the Wildlife Disease Association WGFBA Wyoming Game and Fish Commission Bulletin WLMOA Wildlife Monographs Wildlife Society Bulletin WLSBA WMBAA Wildlife Management Bulletin Series 1 WSCBA Wisconsin Conservation Bulletin XNFSA U S National Park Service Fauna of the National Parks of the U.S., Fauna Series ZEJAA Zeitschrift fuer Jagdwissenschaft ZOGAA Zoologische Garten ZOLZA Zoologicheskii Zhurnal ZSAEA Zeitschrift fuer Saeugetierkunde

Chapter 1 - Page 95

LIST OF PUBLISHERS - CHAPTER ONE

coup Cornell University Press

Ithaca, NY

itny

whfr W. H. Freeman Co.

San Francisco, CA sfca

LIST OF WORKSHEETS IN CHAPTER ONE

1.la	Fetal growth of white-tailed deer (odvi) 6a
1.1b	Fetal weights and growth (odvi) 6b
1.1c	Fetal weights and growth of all wild ruminant species 6c
1.2a	Suckling weights and growth of white-tailed deer (odvi) 10a
1.2b	Linear approximations of suckling weights and growth 10b
1.2c	Suckling weights and growth of different subspecies of
	mule deer (odhe)
1.2d	Exponential approximations of suckling weights and growth 10d
1.3a	Weights and growth of adult white-tailed deer (odvi) 16a
1.4a	Primary and secondary phase corrections
1.4b	Annual cycle weight equations for white-tailed deer (odvi) 22b
1.4c	Seasonal variations in weights of black-tailed deer (odhe) 22c
1.4d	Seasonal variations in weights of deer (odvi) and of
	caribou (rata) from plotted data
1.5a	Live weight:field dressed weight relationships of
	white-tailed deer (odvi)
1.5b	Stomach tissue weights of white-tailed deer (odvi) 26b
1.5c	Gastrointestinal tract weights of white-tailed deer (odvi) 26c
1.5d	Ingesta-free weights of white-tailed deer (odvi)
1.5e	Live weight: field dressed, and gastrointestinal tract
	weight relationships of white-tailed deer (odvi) 26e
1.5f	Live weight: field dressed: hog dressed weight relationships of
1 5 0	white-tailed deer $(0dV1)$
1.5g	white-tailed deer (odwi)
2.1a	Heart girth: live weight and field-dressed weight
	relationships of white-tailed deer (odvi)
2.2a	Vertical profiles; belly heights of white-tailed deer (odvi) 36a
2.2Ъ	Vertical profiles; heights of forage reached by
	white-tailed deer (odvi)
2 2 2	Surface areas of body parts of white-tailed door (aduit)
2.Ja	Total surface areas of white tailed deer (odvi) 40a
2.3D	Total surface area of white-tailed deer (odvi) · · · · · · · · · · · · · · · · · · ·
2.30	TOTAL SUITACE AREAS OF LARGE FUMINANTS
2.42	Bed areas of white-tailed deer (odvi)

Chapter 1 - Page 97

LIST OF WORKSHEETS IN CHAPTER ONE (CONTINUED)

3.1a	Rumen and reticulum volumes of white-tailed deer (odvi) 52a
3.10	Relative proportions of the stomach compartments of white-tailed deer (odvi) during the suckling periods 52b
3.1c	Relative proportions of the stomach compartments of wild ruminants during the suckling period
3.2a	Heart weight:live weight relationships of white-tailed deer (odvi)
3.2Ъ	Blood weight: live weight relationships of white-tailed deer (odvi)
3.2c	Heart weight: live weight relationships for mature mammals 60c
3.3a	Lung volumes in relation to body weights 64a
3.6a	Bone weight:live weight relationships of white-tailed deer (odvi)
3.7a	Edible meat in relation to live weights and dressed weights of
3.7Ъ	white-tailed deer (odv1)
	white-tailed deer (odvi)

THE BIOLOGY AND MANAGEMENT OF WILD RUMINANTS

CHAPTER TWO

ORGANS, GLANDS, CHEMICAL COMPOSITION AND GENETIC CHARACTERISTICS

Ъy

Aaron N. Moen

Professor of Wildlife Ecology

Department of Natural Resources

College of Agriculture and Life Sciences

Cornell University

Ithaca, N.Y. 14853

and

Certified Wildlife Biologist

(The Wildlife Society)

Published by

CornerBrook Press Box 106 Lansing, N.Y. 14882

Copyright © 1980 by Aaron N. Moen

No part of this book may be reproduced by any mechanical, photographic or electronic process, or in the form of a phonograph recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use without written permission of Aaron N. Moen

CONTENTS OF CHAPTER TWO

TOPIC 1. CHARAC	CTERISTICS C	OF ORGANS AN	D GLANDS	• •	• •	• •	•	• •	•	• •	•	2
UNIT 1.1:	ANTLER CHA	RACTERISTIC	s			• •	•			• •		3
UNIT 1.1:	REFERENCES					• •	•		•		•	4
UNIT 1.2:	HORN CHARA	CTERISTICS			• • •	• •	•				•	9
UNIT 1.2:	REFERENCES			•••			•				•	9
UNIT 1.3:	PELAGE CHA	RACTERISTIC	s		•••	• •	•				•	11
UNIT 1.3:	REFERENCES			• •			•		•		•	12
UNIT 1.4:	DENTITION	CHARACTERIS	TICS .		•••		•				•	15
UNIT 1.4:	REFERENCES			•••		• •	•		•		•	17
UNIT 1.5:	EYE LENS C	HARACTERIST	ICS		•••	• •	•		•		•	23
UNIT 1.5:	REFERENCES			• •	•••		•		•		•	23
UNIT 1.6:	SKIN GLAND	s			•••		•				•	25
UNIT 1.6:	REFERENCES			••			•		•			26
UNIT 1.7:	ENDOCRINE	GLANDS					•				•	29
UNIT 1.7:	REFERENCES			•••			•		•		•	30
TOPIC 2. CHEMIC	CAL CHARACTE	RISTICS .					•		•		•	33
UNIT 2.1:	BODY COMPO	SITION					•				•	35
UNIT 2.1:	REFERENCES	• • • • •			••		•	• •	•		•	37
UNIT 2.2:	CHEMICAL C	OMPOSITION (OF MILK .	•••			•				•	41
UNIT 2.2:	REFERENCES			• •			•		•			43
TOPIC 3. GENETI	C CHARACTER	ISTICS					•		•		•	47
TOPIC 3. REFERE	ENCES						•				•	48
UNIT 3.1:	INDIVIDUAL	CHARACTERI	STICS			• •						49
UNIT 3.1:	REFERENCES			• •			•					50
UNIT 3.2:	POPULATION	CHARACTERI	STICS		• •		•	• •				53
UNIT 3.2:	REFERENCES						•	• •	•		•	53
CLOSING COMMENTS				• •			•				•	57
GLOSSARY OF SYME	SOLS USED .	• • • • •				• •	•				•	59
GLOSSARY OF CODE	INS				• •		•		•			61
LIST OF PUBLISHE	RS					• •	•	• •	•	• •	•	64
LIST OF WORKSHEE	тѕ			• •			•		•		•	65

CHAPTER 2. ORGANS, GLANDS, CHEMICAL COMPOSITION, AND GENETIC CHARACTERISTICS

This chapter includes descriptions of many of the organs and glands that perform specific functions in the lives of wild ruminants, and of the chemical and genetic characteristics that are both the building blocks of each individual animal and the potential framework for future generations. The three TOPICS include UNITS that pertain to several different systems and biological functions that are discussed in other CHAPTERS. Antlers, for example, are not only secondary sexual characteristics but also partial determinants of nutrient requirements for mineral metabolism. Further, their growth and maturation affects the behavior of the male through the annual cycle.

The roles of other organs and glands are discussed in later CHAPTERS that contain discussions of the appropriate ecological functions under consideration. The descriptions of organs and glands in this CHAPTER may then be used to interpret adaptations for survival and production. Gastrointestinal tract characteristics are important when evaluating TOPIC 1: Gastrointestinal Support Functions in CHAPTER 6.

The chemicals composing wild ruminants are the end-products of metabolism. Organs, glands, and body tissues are physical entities representing the organization of chemicals ingested, metabolized, and synthesized. Some of these chemicals are deposited in particular tissues that serve as nutrient reservoirs for later use. Fat tissue, for example, is deposited during summer and fall and mobilized later, depending on hormone balances, range conditions, and the availability of forage.

The genetic characteristics of wild ruminants form the potential framework for future generations. The genetics of either individuals or populations cannot be controlled as directly in herds of wild ruminants as in herds of domestic ones because individuals are not selected for mating, but an understanding of basic genetic characteristics may be of value in explaining survival and productivity differences between populations in different areas.

TOPIC 1. CHARACTERISTICS OF ORGANS AND GLANDS

This topic includes descriptions of characteristics and lists of references for specific organs and glands that have particular physiological and ecological functions.

Many measurements of some of the organs of wild ruminants have been made by wildlife biologists. Antler dimensions, for example, have been recorded in many areas because there is an interest in trophies, and the antlers also indicate something about range conditions. Horns are considered in a unit separate from antlers because they are anatomically and physiologically quite different.

Pelage is described because seasonal changes in pelage represent adaptations to changing weather conditions, thermal exchange, and climatic patterns. Detailed measurements of hair lengths and angles over animal surfaces have not been made for most species, however, even though these physical characteristics are very important in determining the effectiveness of the hair as insulation. The pelage is also an example of biological tissue that functions as a reservoir of nutrients. The amount of hair in the winter coat, for example, represents protein costs that were met during the growth of the coat. Once completed, the hair is a static reservoir of protein that cannot be mobilized. Minerals deposited in the skeletal system -the long bones and ribs, for example -- can be mobilized to meet the high demands of antler and horn growth. Minerals deposited in antlers and horns are not available for later mobilization, however, as antlers are shed annually and horns are not resorbed.

Dentition characteristics are considered because of the use of tooth wear and annuli in aging wild ruminants; there are many references in the literature on this important technique used in evaluating population ecology. Eye lens characteristics have been evaluated as criteria for age too; a short discussion of the references listed is included in one of the units.

Skin glands and endocrine glands are important considerations when chemical communications and the internal evaluating chemical en-These glands may have far more important roles than we humans vironment. realize, simply because we cannot detect the odors or the presence of the chemical regulators called hormones easily, or without special analytical techniques. It is easier to offer explanations for ecological functions on the basis of what we can readily perceive than on the detection of very low concentrations of molecules in the air or the presence of complex chemicals in minute quantities in the blood. Nevertheless, these detailed characteristics are likely to be very important in the overall ecology of free-ranging wild ruminants and we should develop a body of literature for use in ecological interpretations.

UNIT 1.1: ANTLER CHARACTERISTICS

Antlers, organs composed of solid bone that grows for 5-6 months of the year, are characteristic of the family CERVIDAE. They are retained for several months, and then shed annually. Only the males normally have antlers except in the genus <u>Rangifer</u>; both male and female caribou and reindeer have antlers. There are some populations, however, in which very few of the females have antlers.

Antlers are of interest to laymen as trophies, and to biologists as indicators of range conditions. Antlers are larger on animals living on a range with adequate nutrients, and smaller on animals living on range with rather low quantities or poor quality forage. Trophy antlers develop on individuals that are in excellent physical condition and have the appropriate genetic make-up. The number of antler points was once thought to be anindicator of age, but both the number of points and overall antler size are poor indicators of age because of the importance of range conditions.

Genetic characteristics control the general pattern of antler branching. White-tailed and mule deer exhibit species differences in the branching. White-tail antlers have a single main beam with points arising from the main beam. Mule deer antlers are forked, with the points representing equal divisions at the junctions. Moose in North America usually have very definitely palmated antlers. Moose in Scandinavia often have antlers with little or no palmation, resembling elk or red deer (ceel) antlers.

Growing antlers are covered with a highly-vascularized tissue called velvet, which carries blood and metabolites to the antlers. Velvet-covered antlers are subject to damage and subsequent malformation, and males are generally rather docile when the antlers are growing. The large amount of blood flow makes velvet-covered antlers warm to the touch. The amount of heat loss from growing antlers needs to be evaluated in relation to the total thermal exchange before conclusions are reached on the importance of antlers in thermoregulation, however. Certainly they cannot be "necessary" in thermoregulation because then both males and females of all species would have them.

Antler dimensions and weights are of interest when evaluating the cost of antler growth in relation to other production costs. Antlers represent mineral accumulations that cannot be mobilized for other uses since there are no vascular beds in mature antlers.

Antlers are shed each year at a time dependent on several factors, including nutritional relationships between animal and range. In general, they are shed earlier on poor range. Antler shedding by deer may occur as early as December when breeding may still be in progress, and as late as March, when new antler growth begins.

Antler size and geometry, along with body size, are important factors in establishing social relationships within a group. In general, the more dominant animals have larger antlers, and a larger body size. Antlers that have a large spread appear more impressive, but a narrow spread offers more protection to animals while fighting.

REFERENCES, UNIT 1.1

ANTLER CHARACTERISTICS

SERIALS

CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo	auth	year
FOBGA	91	47	99	cerv	regenera, transplanta antl	jaczewski,z	1961
MMLRA	54	121	172	cerv	antlers, contention	chapman,di	1975
NATUA	182	1294	1294	cerv	fall-out radioact, antlers	hawthorn,j; duckw	1958
PMASA PMASA	18 18	27 29	28 31	cerv cerv	developm, late winter cond det antl wt, linear measmn	taber,rd white,kl	1958 1958
ZEJAA	23	136	141	cerv	[antler formation]	bubenik, aj; pav/	1956
ZSAEA	334	193	214	cerv	[developm ant1, reproduct]	lau,d	1968
CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	year
CAFGA	223	247	367	od	distr,var, pacif coast reg	cowan,imt	1936
JOMAA	451	61	68	od	tissu rel dev pedunc, antl	goss,rj; severin/	1964
NAWTA	2	446	457	od	wt, antl meas, pop density	johnson,fw	1937
SOVEA	202	93	98	od	abnorm ant shed, hypogonad	robinson,rm; tho/	1967
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
ANREA	117-3	353	376	odvi	histol changes, shedd antl	wislocki,gb; wald	1957
CATRB	142	121	130	odvi	testos in growing antl, his	bubenik,ga; brow/	1974
CATRB	144	257	274	odvi	ossfctn process,dev antler	banks,wj	1974
CJPPA	535	787	792	odvi	gro hormone, cortisol level	bubenik,ga; bube/	1975
CJZOA	561	121	129	odvi	seas var LH,FSH, tes, male	mirarchi,re; how/	1978
FEPRA	342	337	337	odvi	chelatn, parathyroid, antl	<pre>brown,rd; griel,/</pre>	1975
FEPRA	353	500	500	odvi	antl, 1ng bone mass, androgn	brown, rd; cowan, r	1976
JANSA	472	435	440	odvi	pinealectmy, antl, androgn	brown,rd; cowan,/	1978
JE Z OA	194-2	349	358	odvi	sex hormns,antlr bone tiss	bubenik,ga; bube/	1975
JOMAA	311	5	17	odvi*	weight relations, georg re	hamerstrom, fm, jr/	1950
JOMAA	354	486	495	odvi	odhe, antlr in female deer	wislocki,gb	1954
JOMAA	354	599	600	odvi	dichotomous forking, antle	leopold,as	1954

odvi continued on the next page

Chapter 2 - Page 4

,

CODEN vo-nubepaenpaanimkewoauth	year
IOMAA $37 - 2$ 231 235 odvi odbe notes antl female d wislocki ob	1956
10MAA 38-2 277 278 odvi odhe 3 antiered female de buechner bk	1950
10MAA / 0 = -2 230 236 odvi odvi done, 5 anciered remare de Duechner, no	1057
10MAA 41 = 1.23 20 odvi anci uče, masculiniz tumor douct, jk, do	$\frac{11}{100} \frac{11}{100}$
JONAA 41 1 25 29 Odvi responses bucks artii iigh irench, ce; m	cewa/ 1960
JOMAA 414 521 525 odvi veivet-antira pregnant doe naugen, ao; m	usta/ 1960
JUMAA 441 /9 98 odvi occurn certh anomali, mich ryei, la	1963
JOMAA 493 522 523 odvi antler develop & loss, ill hawkins,re;	schw/ 1968
JOMAA 501 156 156 odvi unusual antl-drop schedule glazener, wc	1969
JOMAA 553 656 659 odvi antler shedding in midwest zagata, md; mo	oen,a 1974
JWIDA 84 311 314 odvi antl malform by leg injury marburger, rg	; ro/ 1972
JWMAA 203 221 232 odvi/nutr req, growth, ant1 dev french, ce; m	cewa/ 1956
JWMAA 203 286 292 odvi reg diff, siz, prod, w vir gill,j	1956
JWMAA 313 588 590 odvi antler shedding, connectic behrend, df;	mcdo/ 1967
JWMAA 292 376 380 odvi char shed antlers, s texas michael, ed	1965
JWMAA 294 699 705 odvi/antlers in females.4-vr st donaldson, ic	: do/ 1965
JWMAA 371 106 108 odvi biopsy tool, sampl antlers mazur.pe: co	wan.r 1973
JWMAA 372 187 194 odvi calcium requi, weaped fawn ullrev de: vo	ouat/ 1973
.IWMAA 391 48 58 odvi*morphol charact crab orch roseberry il	· k1+ 1975
IWMAA (1-2) 178 183 odvi androg levels antir devel mirarchi re-	Rea/ 1977
owink 41 2 170 105 ouvi androg revers, andri dever mitarchi,re,	sca/ 17/1
NAWTA 2 446 457 odvi weigh, antl meas, pop dens johnson,f	1937
NAWTA 3 261 279 odvi weigh, meas, allegh nat fo park, bc	1938
NAWTA 15 551 570 odvi*age, ant1 bea diam range c severinghaus	.cw 1950
NAWTA 22 119 132 odvi nutrient requireme wt deer mcewan, 1c; fi	renc/ 1957
NICOA 43 4 5 odvi growth of the deer antier aub, jc; wisic	SCK1/ 1949
NYCOA 104 4 5 odvi growth of the deer antler tatt, cb; hal.	1,tc/ 1956
PAABA 600 1 50 odvi nutrit reg. grow, antl dev french.ce: mo	cewa/ 1955
PAABA 628 1 21 odvi nutr reg. growth, anti dev magruder.nd:	fre/ 1957
,,, _,	110, 100.
PAARA 209 1 11 odvi feed restriction, antl dev long,ta; cowa	an,r/ 1959
PSEBA 129 733 737 odvi calcium stront, age, antlr cowan,rl; har	rtso/ 1968
PCGFA 19 118 128 odvi/measurmnt estim antlr volu rogers,ke; ba	aker, 1965
SAGCA 171 3 3 odvi antlr growth, bone metabol cowan,rl; har	rtso/ 1969
SWNAA 222 278 280 odvi obsrvns,antler velvet loss hirth,dh	1977
VIWIA 169 5 7 odvi report on the glades deer davey, sp	1955
VISCA 243 112 112 odvi shedi antir oberu virgini egenion of	nira/ 1072
ACCOUNTER OTAL SHEAT GHEAT GHEAT ANDIA' ATTKINT DEGHTANI'DI' L	штта/ т <i>)</i> /Ј
VISCA 262 58 58 odvi antlar shod timos vivainis miranshi ma	$r_{10}/1075$
VJSCA 262 58 58 odvi antler shed times, virginia mirarchi, re;	rus/ 1975
VJSCA 262 58 58 odvi antler shed times, virginia mirarchi, re;	rus/ 1975

CODEN vo-nu bepa enpa anim kewo auth CJZOA 41---4 629 636 odhe age det, ossif, long bones lewall, ef; cowan, 1963 CJZOA 54--10 1617 1636 odhe/horm reg, repro, antl cycl west, no; nordan, 1976 GCENA 16---2 268 280 odhe leydig cells, antl gro, hist markwald, rr; da/ 1971 JCOQA 7 69 69 odhe cyclc trabeculr bone chngs mcintosh, je 1972 JDREA 55 b218 b218 odhe current stim, growng antler lake, f; davis, r/ 1976 JOMAA 8----4 289 291 odhe horned does dixon, j 1927 JOMAA 36---2 202 205 odhe antlerless mule deer bucks robinette,wl; ga 1955 JOMAA 40---1 96 108 odhe antler anomalies of mule d robinette, wl; jo 1959 JOMAA 40---2 252 253 odhe another antlered female de buss, io 1959 JOMAA 52---3 628 odhe*tiss, organs, tota body ma hakonson, te; whi 1971 630 JOMAA 53---2 403 404 odhe biolog, an antlered female mierau,gw 1972 JWMAA 15---2 129 odhe mule deer, neraska nat for mohler,11; wamp/ 1951 157 JWMAA 22---4 449 449 odhe fertile antlered doe diem, kl 1958 JWMAA 33---3 520 533 odhe/antlr morphometry, colorad anderson, ae; me/ 1969 JWMAA 37---3 312 326 odhe/eff nutrit change, captive robinette,w1; b/ 1973 12 MRLTA 52---1 10 odhe examples of antl variation rieck, ca; brown, 1971 SWNAA 15---4 485 494 odhe ant1r phenol, pop, colorad anderson, ae; med 1971 TISAA 63---2 189 197 odhe/regnl diffs, wt, antl, ill richie, wf 1970 WLMOA 39---- 1 122 odhe*carcas, bone, organ, gland anderson, ae; me/ 1974 ZZAHA 115--3 314 326 odhe/pituitary, photoper, antlr nicolls, ke 1971

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ATRLA ATRLA	14–10 19–32	141 509	151 514	ceel ceel	grwth, dev, red d calv, po antl role, det herd hierar	dzieciolowski,r topinski,p	1969 1974
BAPBA	221	67	72	cee1	castra, pub, induc antl gr	jaczewski,z; kr/	1974
BJNUA	383	301	312	ceel,	var wt, sp grav, comp,antl	hyvarinen,h; ka/	1977
FOBGA	243	299	308	cee1	castra, testos, antlr grow	jaczewski,z; do/	1976
JEEMA	292	431	437	ceel	antl pedicl, early fetal li	lincoln,ga	1973

ceel continued on the next page

Chapter 2 - Page 6

year

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JEZOA	195-2	247	251	ceel	antlr grwth, congen polled	lincoln,ga; flet/	1976
JOMAA JOMAA	402 514	252 812	252 813	ceel ceel	record of antlered female precoc antl dev, sex matur	buss,io; solf,jd moran,rj	1959 1970
JRPFA	421	159	161	cee1	efct epididymis, antlr gro	lincoln,ga	1975
JWIDA	84	319	319	ceel	injurious antler anomoly	<pre>schlegel,mw; lee/</pre>	1972
JWMAA JWMAA	241 301	15 135	21 140	ceel ceel*	on afognak island, alaska measurements, weight relat	troyer,aw blood,da; lovaas,	1960 1966
PZSLA		819	864	ceel/	caca, relativ size, antlrs	huxley,j	1931
RIJUA	30	303	308	ceel	eff adm test prop on antlr	jaczewski,z; galk	1970
VESMA	4	199	201	ceel	antl develop, intern secre	frankenberger,z	1955
ZASMA	34-19	285	300	cee1	[statisti anal shed beams]	<pre>ludwig,j; lembck/</pre>	1978

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA	271	9 0	91	ala1	weights of minnesota moose	brechinridge,wj	1946
OFWRA	10	11	18	alal	antlers, age	timmerman,hr	1971

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CAFNA	904	449	463	rata	annual antler cycle, newfo	bergerud,at	1976
CJZOA	433	553	558	rata	antl shed, female b-g cari	lent,pc	1965
FMFUB	64	373	381	rata	antl asymmetr, reind, cari	davis,ta	1973
JOMAA	382	275	277	rata	disappearance, shed antler	mccabe,ra	1957
NATUA NATUA	223 224	99 1036	100 1037	rata rata	vasomotr respon, growi ant antlers, bones of contentn	krog,j; reite,ob/ henshaw,j	1969 1969
NJZOA	244	407	417	rata	morph, fat stor, org weigh	krog,j; wika,m	1976
ZEJAA	21	21	24	rata	[peculiar antler developm]	bubenik,ab	1956

.

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA	274	308	323	many	mammals of northern idaho	rust,hg	1946
NATUA NATUA	220 231	813 469	814 469	many many	horns, antlers, thermoreg antlers, unbrittle bones	geist,v henshaw,j	1968 1971
SCAMA	220-4	14	122	many	horns and antlers	model1,w	1969
ZSAEA	334	193	214	many,	[developm antlers, reprod]	lau,d	1968
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ZEJAA	42	57	69	caca	[familial relations, antl]	kleinschmit,r	1958
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	<u>year</u>
JZOOA	157-1	125	132	dada	agng, wt, tooth erup, antl	chaplin,re; white	1969
TRNZA	822	569	578	dada	antl grwth, shed, capt, nz	riney,t	1954
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JEZOA JEZOA	170 -3 171-2	311 223	324 234	ceni ceni	photoper control antl cycl photopr contrl antl cycl 2	goss,rj goss,rj	1969 1969
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JBOMA	633	629	734	axax	the axis deer in hawaii	graf,w; nichols,1	1967

Chapter 2 - Page 8

,

CHAPTER 2, WORKSHEET 1.1a

Body weight: antler characteristics relationships of white-tailed deeer (odvi)

Antler characteristics of white-tailed deer may be predicted in relation to October live weights from data presented by Magruder et al. (1957). The data used are:

Ration	Deer	LIWK	LMBC	NUPO	ANWG
Complete	106	110.9	54.6	11	1244
Complete	120	90.0	43.2	12	690
Complete	130	85.9	43.2	9	526
Low energy	105	63.2	27.9	4	271
Low enerby	115	70.9	36.8	9	384
Low calcium	111	84.6	45.7	8	828
Medium Ca and P	144	45.9	12.7	2	96
Low Ca and P	122	71.8	26.7	6	196
Low Ca and P	143	71.4	27.9	4	231
Low Protein	139	81.8	43.2	9	50 3
Low Protein	117	75.0	38.1	7	805
Low Protein	109	72.3	38.1	4	368

Equations derived from the data are:

NUPO = 0.170 LIWK - 5.66; $r^2 = 0.71$ LMBC = 0.655 LIWK - 13.96; $r^2 = 0.87$

ANWG = $9.66 \times 10^{-4} \text{ LIWK}^{3.0}$; $r^2 = 0.79$

A yearling buck weighing 65 to 70 kg is predicted to have a total of six points on both antlers. Length of the main beam is predicted to be 27 to 32 cm, and the antlers should weight a total of about 265 to 330 gms.

Label the y-axis on the graph on the next page and plot LMBC, NUPO, and ANWG.

Note that the individual data points fit the general patterns quite well, even though they are derived from deer on different experimental diets. How much evidence is there from other experiments on the role of diet constituents on antler growth? Is the biological relationship between diet and body growth similar to that of diet and antler growth, resulting in good relationships between body growth and antler growth?

LITERATURE CITED

Magruder, N. P., C. E. French, L. C. McEwan, and R. W. Swift. 1957. Nutritional requirements of white-tailed deer for growth and antler development. II. Experimental results of the third year. Bull. 628. The Pennsylvania State University, Coll. of Agric., Agric. Exp. Sta., University Park, PA 21 pp.

CHAPTER 2, WORKSHEET 1.1b.

Age:antler weight relationships of elk (ceel)

Ages and antler weights of 12 Manitoba elk have been given by Blood and Lovaas (1966). There is a general increase in weight with age, but with variations between years. Individual average weights for each age class in years (AGYE) are given below. Regression equations have been calculated. The a and b values for predicting antler weight in kg (ANWK) from AGYE are given below; the trend toward increasing antler weights with increases in age is best expressed with the exponential equation :

ANWK = $a e^{b} AGYE = 1.34589 e^{0.24488} AGYE$

Complete the calculations and plot the results.

		MEAN				
AGYE	ANWK	ANWK	LINE	EXPO	LOGA	POWE
2.5	1.77		$r^2 = 0.74$	0.87	0.70	0.84
2.5	2.34		a = -1.30	1.34589	-4.63667	0.79286
2.5	2.82	2.31	b = 1.42	0.24488	6.84604	1.21051
3.5	2.93					
3.5	3.48	3.21				
4.5	6.11					
4.5	7.27	6.69				
5.5	6.25	6.25				
6.5	6.48					
6.5	9.09	7.79				
[7.5]	6.07	6.07				
8.5	13.30	13.30				
			15			
				· · · · · ·	T T T T	~ ~ ~

LITERATURE CITED

Blood, D. A. and A. L. Lovaas. 1966. Measurements and weight relationships in Manitoba elk. J. Wildl. Manage. 30(1):135-140.

CHAPTER 2, WORKSHEET 1.1c.

Antler weight: main beam length relationships of elk (ceel)

The 12 pairs of data for antler weight:main beam length relationships given by Blood and Lovaas (1966) are listed below, with the sum of the left and right main beam lengths in cm (LBLC and RBLC) = main beam lengths in cm (MBLC) as the independet variable and antler weight in kg (ANWK) as the dependent variable. Such a relationship, if it is close enough to have predictive value, can be used to estimate antler weight simply by measuring the length of the main beams with a tape. The data are:

MBLC		MBLC		TOTA			
LEFT		RIGHT		MBLC	ANWK	LINE	EXPO
47.63	+	71.76	=	119.39	1.77		
74.30	+	73.96	=	148.26	2.34	$R^2 = 0.86$	0.91
80.01	+	85.09	z	165.10	2.82	a = -7.56	0.39882
76.20	+	72.69	=	148.89	2.93	b = 0.07	0.01294
85.09	+	84.46	=	169.55	3.48		
95.25	+	94.62	=	189.87	6.11	LOGA	POWE
107.95	+	108.59	=	216.54	7.27		
109.52	+	109.86	=	219.38	6.25	$R^2 = 0.81$	0.92
119.68	+	122.22	=	241.90	6.48	a = -59.49203	0.00001
115.24	+	115.87	=	231.11	9.09	b = 12.44577	2.42660
100.33	+	89.20	=	189.53	6.07		
134.92	+	136.19	=	271.11	13.30		

The best fit is with the power curve; the equation is:

ANWK = a MBLC^b = $0.00001 \text{ MBLC}^{2.42660}$

The r^2 for the exponential curve is very close to the r^2 for the power curve, however. The exponential equation is:

ANWK = $a e b MBLC = 0.39882 e^{0.01294} MBLC$

WS 1.1c is continued on the next page

Plot the data below for both of these equations and note how different the predictions are:

This illustrates how one fit needs to be checked over the entire range of values before determining if a particular equation is useful or not.

LITERATURE CITED

Blood, D. A. and A. L. Lovaas. 1966. Measurements and weight relationships in Manitoba elk. J. Wildl. Manage. 30(1):135-140.

UNIT 1.2: HORN CHARACTERISTICS

Horns are permanent organs that grow from their base each year adding annual increments which may be used in estimating the individual's age. horns are not solid like antlers, but have an outer sheath which is permanent except in the pronghorn, which casts the sheath annually. Both sexes of horned species usually have horns, with the males usually having larger horns than the females.

Differences in horns may be used to identify populations or subspecies. Rocky Mountain bighorn and desert bighorn, both Ovis canadensis, have horn differences, with the horn of the desert bighorn ram more flared than those of the Rocky Mountain bighorn.

The name "pronghorn" is attributed to the forward-located prong on the horns of the "antelope."

REFERENCES, UNIT 1.2

HORN CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA JOMAA	502 564	373 829	375 846	anam anam	horn casting, female prong growth, casting horns, exf	ogara,b o'gara,bw; matson	1969 1975
JWMAA	163	387	389	anam	measurements, hart mt ante	mason,e	1952
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA	454	630	632	bibi	new data, b. bison, athaba	bayrock,la; hille	1964
JWMAA	233	342	344	bibi	horns, teeth, indicati age	fuller,wa	1959
POASA	41	212	218	bibi	weigh, meas, wichita mount	halloran,af	1961
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
EVOLA	204	558	566	ov	evolutionary signif, horns	geist,v	1966
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA JWMAA	304 342	634 451	635 455	ovca ovca	validity, horn segm, aging wt, growth, rcky mt, alber	geist,v blood,da; flook,/	1966 1970
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA	333	552	558	ovda	horn develop, aging	hemming, je	1969

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				obmo			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				oram			

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	<u>year</u>
JOMAA	274	308	323	many	mammals of northern idaho	rust,hg	1946
NATUA	220	813	814	many	horns, antlers, thermoregu	geist,v	1968
SCAMA	220-4	114	122	many	horns and antlers	modell,w	1969

UNIT 1.3: PELAGE CHARACTERISTICS

The pelage of wild ruminants is an important characteristic ecologically as the sesonal molts and growth of winter and summer coats represent adaptations for survival in the changing rigorous climates of the northern regions. There are structural differences in the winter and summer coats, with the winter coat being considerably longer and thicker than the summer one. The winter guard hairs of the cervids are rather stiff, crinkly, and even hollow, while the guard hairs of the other wild ruminants are much finer. Underfur is present in varying amounts, and molting cervids sometimes have a "woolly" appearance as the underfur extends beyond the growing guard hairs.

Molting animals often have a very rugged appearance, especially in the spring when the dense winter coat is being replaced by the short and thin summer coat. Patches of winter hair, especially of the finer haired species like mountain goats, are found caught on twigs as the animals brush against shrubs and trees.

The hides of different species have different thicknesses, and vary in their softness when tanned. Deer hides are thin and very soft, white moose hides are much thicker and yet very soft. Bison hides are thick and rather stiff.

The amount of hair on an individual is of interest because hair represents a production cost that must be met during the growth periods of the summer and winter coats. The amounts of protein, energy, and minerals in the hair represent the lower limits to the energy, protein, and mineral costs of hair growth since the growth had to cost at least as much as the amounts deposited in the hair. These amounts represent the cost of the product itself. There is also an "overhead" associated with the production of hair, just as there is with milk production and other productive functions. The overhead, or cost of production, plus the quantities of energy, protein, and minerals in the hair gives one a realistic estimate of the metabolic costs of hair growth.

The relationship between the weight of a wild ruminant and the weight of its hair coats may be used to estimate the relative cost of hair production in the total metabolism. The heavier winter coat has a higher production cost than the lighter summer coat, of course. It is necessary to determine the total cost in relation to the length of the growth period in order to calculate the cost per day.

Few measurements of hair depth have been made as summer and winter coats grow. In white-tailed deer, the winter coat begins growing in late August or early September, and linear growth may not be complete until December. Shedding of the winter coat begins in April, and the summer coat appears in May and June. The timing is hard to discern in the wild, and there are variations between individuals, locations, and years.
Mathematical representations of hair growth as continuous functions are needed for determining metabolic costs of living, so estimates must be made with few data. The timing of coat changes--both molting periods and growth periods--are important characteristics of the biochronology of an animal in relation to the phenology of the range, and are estimated in the derivation of hair growth equations. WORKSHEETS follow with illustrations equations for predicting hair weights during the annual cycle.

REFERENCES, UNIT 1.3

PELAGE CHARACTERISTICS

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo			auth ·		year
FUNAA	25	277	280	cerv	identifica	species	by hair	birkeland,k;	myh/	1972
VCSZA	334	300	312	cerv	[course of	molting,	deer]	dobroruka,1j		1969

CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo	auth	year
CAFGA	223	247	367	od	distr,var, pacif coast reg	cowan,imt	1936
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JANSA	384	871	876	odvi	body composition of w-t de	robbins,ct; moen/	1974
JOMAA JOMAA JOMAA	311 441 471	5 79 154	17 98 155	odvi* odvi odvi	weight relations, georg re occurn certn anomali, mich wooly-coated deer, new yor	hamerstrom,fm,jr/ ryel,la friend,m; hesselt	1950 1963 1966
PAARA	209	1	11	odvi	feed, season, antler devel	long,ta; cowan,r/	1958
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
CJZOA	505	639	647	odhe	pelage and molt, bl-tld dr	cowan,imt; raddi,	1972
WAEBA	589	1	6	odhe	the mule deer carcass	field,ra; smith,/	1973

WLMOA 39--- 1 122 odhe*carcas, bone, organ, gland anderson, ae; med/ 1974

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
ATRLA	14	141	151	ceel	growth, devel, reindeer ca	dzieciolowski,r	1969
JZOOA JZOOA JZOOA	170-1 181-2 185-4	69 137 505	77 143 510	ceel, ceel, ceel,	/coat struct, seasnl change /seas coat changes, grazing /coat grwth,day length cycl	ryder,ml; kay,rnb ryder,ml kay,rnb; ryder,ml	1973 1977 1978
WAE BA	594	1	8	ceel	the elk carcass	field,ra; smith,/	1973
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
JANSA	413	906	910	alal	hair indicator, mineraliza	flynn,a; franzma/	1975
JOMAA	271	90	91	ala1	weights of minnesota moose	brechinridge,wj	1946
					•		
CODEN	vo-nu	Бера	enpa	anim	kewo	auth	<u>year</u>
NJZOA	244	407	417	rata	*morphol, fat stor, org wei	krog,j; wika,m; /	1976
CODEN	<u>vo-</u> nu	hena	enna	anim	kewo	auth	vear
	<u></u>	<u>bepu</u>	<u>enpu</u>	<u></u>			<u>, , , , , , , , , , , , , , , , , , , </u>
WAEBA	575	1	6	anam	pronghorn antelope carcass	field,ra; smith,/	1972
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ZETIA	491	71	76	bibi	hair display loss, male bi	lott,df	1979
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
				ovca			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
CAFNA	863	288	289	ovda	color variation, e alaska	guthrie,rd	1972
CODEN	vo-nu	рера	enpa	anim	kewo	auth	vear
							<u>,</u>
BJLSB	62	127	141	obmo	wool shedding in muskoxen	wilkinson,pf	1974
JZOOA	177-3	363	375	o bmo	length, diamtr coat fibers	wilkinson,pf	1975

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	<u>year</u>
JWMAA	311	1 92	194	oram	fight injuries, derm	n shiel	geist,v	1967
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	year
VCSZA	39	94	103	many	molting		dobroruda,1j	1975
CODEN	vo-nu	bepa	enpa	anim	kewo		auth	year
JBLPA	4	57	64	caca	investigations, skin		pavlovic,m	1966
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		auth	year
PAANA	5	138	140	dosh	effct lactatn, wool	growth	corbett,j1	1964

1

Live weight: hide weight relationships for white-tailed deer (odvi)

Estimates of hide weights, presumably with the hair on, in relation to live and field-dressed weights are given by Cowan et al. (1968). The weights are based on measurements of 13 deer.

The linear regression equation for hide weight in kg (HIWK) based on live weight in kg (LIWK) is:

HIWK = 0.11 LIWK - 1.57

The relationship may be plotted below.

LITERATURE CITED

Cowan, R. L., E. W. Hartsook, J. B. Whelan, J. L. Watkins, J. S. Lindzey, R. W. Wetzel, and S. A. Liscinsky. 1968. Weigh your deer with a string. Pennsylvania Game News 39(11):17-19.

CHAPTER 2, WORKSHEET 1.3b

Hair weight: live weight relationships for white-tailed deer (odvi)

The weights of the hair on 16 white-tailed deer, sacrificed from October 24-27 when the winter coat was about 2/3 completed, were measured by Robbins, Moen, and Reid (1974). The equation for the dry weight of the hair in grams (HAWG) in relation to ingesta-free body weight in kg (IFWK) is:

$$HAWG = 542.33 \ln (IFWK) - 1406.51$$

This equation can be combined into a sequence with the equation for ingesta-free weight in relation to live weight, and live weight in relation to age in days (AGDA) and Julian day (JDAY). The sequence is:

AGDA and JDAY
$$\rightarrow$$
 CLWK \rightarrow IFWK \rightarrow HAWG

Hair weight may be calculated in relation to age and day of the year then by assembling a series of equations. The sequence illustrates how inputs generate outputs, which in turn become inputs for a new equation.

Since the equation given for HAWG was derived from data on deer sacrificed between October 24-27 (JDAY = 297 to 300), a fawn of the year, born on the last day of May (JDAY = 151) would have an AGDA = 300 - 151 =149. A 1 1/2 year deer would have an AGDA 365 - 149 = 514, a 2 1/2 year deer would have an AGDA = 2(365) - 149 = 879, and so on. Using the two initial inputs (JDAY = 300, AGDA = 149) in the sequence to generate CLWK, determine CLWK, IFWK, and HAWG with the equations given thus far for whitetailed deer. Since the final output, HAWG, is for a winter coat that is 2/3completed, the answer can be multiplied by 1.5 to give an estimate of the final weight of the winter hair.

Four equations have been determined for white-tailed deer. They are:

1.	344 < JDAY < 365 1 < JDAY < 121	HAWG = 1.5 [-1406.51 + 542.33] ln (IFWK)
2.	121 < JDAY < 161	HAWG = $\frac{\text{JDAY} - 121}{50}$ (1.5) [-1406.51 + 542.33] · ln(IFWK)
3.	161 < JDAY < 264	HAWG = 0.3 [-1406.51 + 542.33] 1n (IFWK)
4.	264 < JDAX < 344	HAWG = $\frac{\text{JDAY} - 244}{100}$ (1.5) [-1406.51 + 542.33] · ln(IFWK)

Where JDAY = Julian date HAWG = hair weight in grams IFWK = ingesta-free weight in kg

The use of four separate equations provides a means to calculate estimates of the cost of hair growth through the year.

LITERATURE CITED

Robbins, C. T., A. N. Moen, and J. T. Reid. 1974. Body composition of white-tailed deer. J. Anim. Sci. 38(4):871-876.

UNIT 1.4: DENTITION CHARACTERISTICS

One of the dentition characteristics of interest to mammalogists and taxonomists is the arrangement of the teeth or dental formulas. The formulas are expressed in relation to the order of teeth from front to back, with upper and lower teeth designated. The four kinds of teeth are incisor, canine, premolar and molar, and the formula I:0/4 C:0/0 P:3/3 M:3/3 indicates there are 0 top and 4 bottom incisors, 0 canines, and 3 premolars and 3 molars, both top and bottom. This is the general dental formula for ruminants, with some variations between genera and between sexes of the same species. The dental formulas listed by Gilbert (1979) and Palmer (1949)* for different ruminants are:

	male	female
odvi	0/3 + 0/1 + 3/3 + 3/3	0/3 + 0/1 + 3/3 + 3/3
odhe	0/3 + 0/1 + 3/3 + 3/3	0/3 + 0/1 + 3/3 + 3/3
cee1	0/3 + 1/1 + 3/3 + 3/3	0/3 + (1)/1 + 3/3 + 3/3
alal	0/3 + 0/1 + 3/3 + 3/3	0/3 + 0/1 + 3/3 + 3/3
rata	$0/4 + 0/0 + 3/3 + 3/3^*$	
anam	0/4 + 0/0 + 3/3 + 3/3	0/4 + 0/0 + 3/3 + 3/3
bibi	0/4 + 0/0 + 3/3 + 3/3*	
ovca	$0/4 + 0/0 + 3/3 + 3/3^*$	
ovda		
obmo	$0/4 + 0/0 + 3/3 + 3/3^*$	
oram	$0/4 + 0/0 + 3/3 + 3/3^*$	

Two dentition characteristics of interest to population biologists and managers are tooth wear and annual rings, both of value as indicators of age. Aging by tooth wear has been a useful and relatively easy-to-use technique. Wear rates differ between areas, however, with more wear expected in dryer, dustier climates where more abrasive material is found on the forage and less wear in areas with more moisture and succulent forage. Diet differences can also cause difference in tooth wear, of course.

Examination of cementum annuli for estimating ages is a more recent technique than estimating by tooth wear. Different teeth have been used for aging purposes; these are sometimes indicated in the key words of the titles in the reference lists. The annual-ring aging technique requires that tooth sections be prepared for microscopic interpretation, so there is a delay between the initial field collections and the results. Aging by counting annual rings is more accurate than by tooth wear, since the annual rings reflect metabolic changes between seasons of the year. In general, aging by tooth wear has resulted in underestimating agescompared to the annual ring technique when known-age wild deer have been studied. Over 50% of white-tailed deer thought to be two years old when aged by tooth-wear were three-years or older when aged by cementum annuli (Moen and Sauer 1977).

Comparisons of these two methods involve several years of field work as large numbers of neonates must be captured and marked for later re-examination as adults of different ages. As a result, few animals have been aged by both methods.

LITERATURE CITED

- Gilbert, D. L. 1979. Evolution and taxonomy, Chapter 1. In Big Game of North America, J. S. Schmidt and D. L. Gilbert, Ed. The Stackpole Company, Harrisburg, PA. 494 pp.
- Moen, A. N. and P Sauer. 1977. Population predictions and harvest simulations. A paper presented at the Joint Northeast-Southeast Deer Study Group Meeting, Blackstone, VA. In proc. 36pp.
- Palmer, E. L. 1949. Fieldbook of natural history. McGraw-Hill Book Company, Inc., New York. 664 p.

REFERENCES, UNIT 1.4

DENTITION CHARACTERISTICS

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA	532	359	366	cerv	superior canines of deer	brokx,pa	1972
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AIPAD	5	182	188	od	eruption, replcmnt of teet	texera,wa	1974
CAFGA CAFGA	221 223	43 247	44 367	od od	replacem teeth, age determ distr,var, pacif coast reg	mclean,dd cowan,imt	1936 1936
JOMAA	452	319	321	od	mandibular malformations	short,hl	1964
JWMAA JWMAA	151 224	99 442	101 443	od od	standard terminolog, teeth tooth impressn, age determ	riney,t flyger,vf	1951 1958
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JAASA	40	128	128	odvi	cement ann vs tooth wear a	boozer,rb	1971
JOMAA JOMAA JOMAA JOMAA	441 514 521 553	79 804 223 656	98 806 226 659	odvi odvi odvi odvi	occurn certn anomali, mich mandib dentl anomali, minn mandible variati, sex, age antler shedding in midwest	ryel,la mech,ld; frenzel/ rees,jw zagata,md: moen,a	1963 1970 1971 1974
JOMOA JOMOA	128-1 128-1	95 E 113	3112 130	odvi odvi	morphol varia, cran, mandi morphol varia, mandi, skel	rees,jw rees,jw	1969 1969
JWIDA	111	76	78	odvi	4th pair mandibular molars	abler,wa; scanlon	1975
JWMAA JWMAA JWMAA JWMAA JWMAA JWMAA	132 144 224 301 301 343	195 382 442 197 200 532	216 384 443 199 202 535	odvi odvi odvi odvi odvi odvi	tooth developme, wear, age conditn teeth, 16.5 years tooth impressi, determ age determ age, cement, molars aging, annuli, cement, inc variabi, aging, tooth wear	<pre>severinghaus,cw severinghous,cw;/ flyger,vf ransom,ab gilbert,ff gilbert,ff: stolt</pre>	1949 1950 1958 1966 1966 1970
					, , , , , , , , , , , , , , , , , , , ,		

odvi continued on the next page

CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	year
JWMAA JWMAA	361 364	46 1060	55 1067	odvi odvi	studi, dental annuli,aging age determ venezuelan wh-t	lockard,gr brokx,pa	1972 1972
JWMAA	441	266	268	odvi	odhe, irreg cemen layr, agng	rice,la	1980
NCANA	103-2	73	76	odvi	comparison 2 meth estm age	lapierre,le	1976
NFGJA	181	66	67	odvi	maxillary canine teeth, ny	bergstrom, as; pa/	1971
NFGJA	191	32	46	odvi	mandibular, dental anomali	free,sl; bergstr/	1972
NFGJA	222	156	158	odvi	romanowsky stains, aging	stone, wb; clauso/	1975
NYCOA	52	8	10	odvi	aging a deerhow to do it	severinghaus,cw	19 50
PCGFA	17	31	37	odvi	compar aging techn, alabam	lueth,fx	1963
PCGFA	18	137	140	odvi	tech, remov trophy mandibl	marshall.cm; smi/	1964
PCGFA	20	69	74	odvi	mandib cavity tiss, condit	baker, mf; lueth, f	1966
PIAIA	74	72	77	odvi	eval, dent annu, agng,iowa	sohn,aj	1967
PLNAA	1 9- 65	224	227	odvi	dental annuli age determin	kay,m	1974
					· · · · ·		
PMACA	47	289	316	odvi	validity age determ, mich	ryel,da; fay,ld;	1961
SWNAA	172	211	213	odvi	maxil canin, supernu incis	watkins.rk: urnes	1972
SWNAA	184	468	469	odvi	anomalous 3rd molars, texa	horejsi,rg; mont/	1974
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CJZOA	516	663	664	odhe	cryosat,tool for game biol	child,kn	1973
JOMAA	452	315	315	odhe	abnormal dentition, colora	short, hl; short, c	1964
JOMAA	474	640	654	odhe,	histol, embry, morph denti	rees, jw: kainer./	1966
JOMAA	523	628	630	odhe	tiss, organs, tota body ma	hakonson,te; whic	1971
JWMAA	212	134	153	odhe	tooth development and wear	robinette.wl; jo/	1957
JWMAA	242	224	226	odhe	tech, dental impres. restr	barnes.rd: longhu	1960
JWMAA	273	466	471	odhe	age determ, annular struct	low.wa: cowan.i m	1963

JWMAA 2/--3 466 4/1 odhe age determ, annular struct low,wa; cowan,i m 1963 JWMAA 30--3 629 631 odhe chron mineral, erupt teeth rees,jw; kainer,/ 1966 JWMAA 33--2 384 388 odhe effic sectng incisor, agng erickson,ja; sel/ 1969 JWMAA 34--3 523 531 odhe estimating ages, accuracy erickson,ja; and/ 1970 JWMAA 37--2 232 235 odhe age determ, dental annulat thomas,dc; bandy, 1973 JWMAA 39--4 674 678 odhe accuracy dent wear estimat thomas,dc; bandy, 1975

WLMOA 39--- 1 122 odhe*carcas, bone, organ, gland anderson, ae; med/ 1974

Chapter 2 - Page 18

.

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ATRLA	15-30	523	525	ceel	addtnl molar, red d, polan	zurowski,w	1970
BGTEA	3	34	5 2	ceel	age determination of red d	de crombrugge,sa/	1968
JAECA	362	279	293	ceel	gr layrs, dent cement, age	mitchell,b	1967
JOMAA JOMAA	473 502	514 350	514 355	ceel ceel	vestig first premolar, mich histology, anatomy, canine	<pre>moran,rj; fairba l seliger,wg; eri/ l</pre>	1966 1969
JWMAA JWMAA JWMAA JWMAA JWMAA	214 273 301 313 331	435 466 135 408 175	451 471 140 417 180	ceel odhe ceel ceel ceel	mandibular dent, age indic age det, ann struc dent ce measurements, weight relat sex, age, upper cani teeth erupt-wear pat, cem annuli	quimby,dc; gaab, low,wa: cowan,imc blood,da; lovaas, greer,kr; yeager keiss,re	1957 1963 1966 1967 1969
JZOOA	152-2	137	153	ceel	teeth, age indicat, scotla	lowe,vpw	1967
MRLTA	321	19	22	ceel	techniq, age determination	swanson,cv	1951
NATUA	198	350	351	ceel	age det, growth layr,scotl	mitchell,b	1963
NZJSA	133	352	358	ceel	dental cement layers, agng	douglas,mjw	1970
ZEJAA ZEJAA ZEJAA ZEJAA ZOLZA	162 222 241 495	49 65 45 778	55 74 47 780	ceel ceel ceel ceel	<pre>[tooth struct, agng,red d] [agng,lst molar,lst incsr] [tooth malform,stag red d] [age determ, layer cement]</pre>	almasan,ha rieck ueckermann,e; sch meyer,p baleisis,r	1970 1976 1978 1978

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	year
ATRLA	21-23	307	310	alal	age appraisl, moose, polan	dzieciolowski,r	1976
JOMAA	271	90	91	alal	weights of minnesota moose	brechinridge,wj	1946
JWMAA JWMAA	233 332	315 428	321 431	alal alal	age determ, sectioned inci age determ, cementum layer	sergeant,de; piml wolfe,ml	1959 1969
VILTA	27	40 9	417	alal	puberty, denti, wt, sweden	markgren,g	1964
ZOLZA	525	757	765	alal	[tooth,bone tis layrs,age]	klevezal,ga	1973

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
CJZOA	411	111	113	rata	seasonal annuli, cementum	mcewan,eh	1963
JOMAA	521	164	174	rata	dental anomalies in caribo	miller,fl; tessie	1971
JWMAA JWMAA JWMAA	281 304 324	54 842 957	56 843 961	rata rata rata	relatio mandi length, sex extraction of incisors of relat age tooth cement lay	<pre>bergerud,at bergerud,at; rus/ reimers,e; nordby</pre>	1964 1966 1968

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JWMAA JWMAA JWMAA	344 362 381	962 606 47	963 612 53	rata rata rata	eruption molars, premolar eruption, mandibular age det, cementu annulatns	bergerud,at miller,fl miller,fl	1970 1972 1974
NJZOA	24	407	417	rata	storage, organ weight	krog,j; wika,m	1976
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA JWMAA JWMAA	261 331 354	1 172 743	18 175 747	anam anam anam	changes mandib dentit, age age determ, incisor cement validity age wear techniqu	dow,sa jr; wright mccutchen,he kerwin,ml; mitche	1962 1969 1971
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CJZOA	431	173	178	bibi	cemental depos, age criter	novakowski,ns	1965
JOMAA	353	454	456	bibi	first premol, canine tooth	fuller,wa	1954
JWMAA	233	342	344	bibi	horns, teeth, indicato age	fuller,wa	1959
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
CAFGA	384	523	5 29	ovca	tooth develop, nelson bigh	deming,ov	1952
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CAFNA	882	227	229	ovda	abnormal dentition, dall s	hoefs,m	1974
JWMAA	333	552	558	ovda	cement dep, tooth, horn de	hemming, je	1969

ODEN vo-nu bepa enpa	anim	kewo	auth	year

obmo

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo auth	<u>year</u>
				oram		
CODEN	<u>vo-nu</u>	bepa	епра	anim	kewoauth	year
JZOOA	155-2	141	144	caca	occurence upp canine teeth chaplin, re; atkin	1968
CODEN	vo-nu	bepa	enpa	anim	kewo auth	year
ATRLA	157	111	131	dada	developmn teeth, mandibles chapman,di; chapm	1970
JZOOA	157-1	125	132	dada	tooth eruptn, wear, aging chaplin, re; white	1969
CODEN	vo-nu	bepa	enpa	anim	kewo auth	<u>year</u>
JBOMA	633	629	734	axax	the axis deer in hawaii graf,w; nichols,1	1967

CODEN	vo-nu	bepa	enpa	anim	kewo	· · · ·			auth	<u>year</u>
ATRLA	12-32	459	462	bibo	incisor	wear.	natu.	reserv	wasilewski.w	1967

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA	274	308	323	many	mammals of northern idaho	rust,hg	1946
JWMAA	412	207	210	many	metachrom stain, age deter	thomas,dc	1977
ZOBIA	344	594	604	mama	[ann layr dentl tiss,bone]	klevezal,ga; min	a 1973

UNIT 1.5: EYE CHARACTERISTICS

The dimensions and weights of the eye lens have been evaluated in relation to fetal and adult ages, with the expectation that an organ such as the eye lens should be less susceptible to variations in range conditions than many other organs. The relationship is fairly good, but it is inferior to that of annuli evaluations in teeth as an aging technique.

Weights of both eye lens and eyeballs of fetuses of white-tailed deer have been presented by Short (1970) as a possible basis for aging fetuses. The R^2 values are high (0.99, 0.97); WORKSHEET 1.5a includes the equations for calculations.

LITERATURE CITED

Short, C. 1970. Morphological development and aging of mule and white-tailed deer fetuses. J. Wildl. Manage. 34(2):383-388.

REFERENCES, UNIT 1.5

EYE CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim kewo	auth	<u>year</u>
JOMAA JOMAA	311 472	5 266	17 280	odvi*weight relations, georg re odvi*endocrine glands, seas,sex	namerstrom,fm,jr/ hoffman,ra; robin	1950 1966
JWMAA JWMAA JWMAA	342 364 412	383 1060 327	388 1067 329	odvi*morphol develop, aging,fe odvi age determ venezuelan wh-t odvi insolu lens prot, estm age	short,c brokx,pa ludwig,jr; dapson	1970 1972 1977
NFGJA	142	166	175	odvi/eff nutrit, eye-lens weigh	friend,m; severin	1967
PCGFA	18	17	20	odvi eyelens wts, mangmnt tools	downing,rl; whitt	1964
TKASA	373	98	102	odvi/eye lens weight age indica	keller,cj; landry	1976
CODEN	vo-nu	bepa	enpa	anim kewo	auth	year

CAFNA	881	78	80	odhe growth eye lens, age index child, kn; hagmei/	1974
JWMAA JWMAA JWMAA JWMAA	284 302 333 343	773 417 701 523	784 419 704 531	odhe evalu eye lens tech, aging longhurst,wm odhe lens weights of fetuses nellis,ch odhe/age-lens weight regression connolly,ge; dud/ odhe/estim age, techni accuracy erickson,ja; and/	1964 1966 1969 1970
WLMOA	39	1	122	odhe*carcas, bone, organ, gland anderson, ae; med/	1974

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
ZEJAA	244	178	182	cee1	[caca,age det,lens dry wt]	maringgele,fj	1978
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AVCSA	182	159	167	alal	lens lesions, elk, sweden	<pre>kronevi,t; holmb/</pre>	1977
CODEN	<u>vo-nu</u>	bepa	епра	<u>anim</u>	kewo	auth	year
				rata			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA	26-1	112	113	anam	growth of lens of pronghor	kolenosky,gb; mil	1962
60DEX							
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
CJZOA	43-1	173	178	bibi	incisor, eye-lens, dres we	novakowski,ns	1965
CODEN	Voenu	hong	67774	antm	kawa	auth	voor
CODEN	<u>vo-nu</u>	Depa	enpa	ovca	Kewo		year
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
				ovda			
CODEN	vo-nu	hena	еппа	anim	kewo	auth	vear
		<u></u>	<u>pu</u>	obmo			<u>,</u>
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				oram			

CHAPTER 2, WORKSHEET 1.5a

Fetal eye weights as a predictor of fetal age in white-tailed deer (odvi)

Weights of eyeballs and eyelenses of 21 white-tailed deer fetuses 58-180 days of age were evaluated in relation to fetal age. The fetuses used were from does in "good-to-excellent" condition (Short 1970:384).

The equations for fetal age in days (FAGD) in relation to paired eyelens weight in grams (ELWG) is:

FAGD = 64.98 + 521.11 ELWG ($R^2 = 0.99$)

The equation for fetal age in days (FAGD) in relation to paired eyeballs weight in grams (EBWG) is:

$$FAGD = 61.85 + 13.42 EBWG (R^2 = 0.97)$$

Measured weights of these organs are not given by Short, so trials of different weights (X values) that result in FAGD up to 200 days should be made to complete the labeling of the X-axis below.

LITERATURE CITED

Short, C. 1970. Morphological development and aging of mule and white-tailed deer fetuses. J. Wildl. Manage. 34(2):383-388.

CHAPTER 2, WORKSHEET 1.5b

Dry weight of the lenses of white-tailed deer as a function of age (odvi)

Changes in dry weight (mg) of the lenses of white-tailed deer as a function of age are given by Hoffman and Robinson (1966), with linear regression equations expressing the relationship between lens weight and fetal age, a linear regression equation in the first year, and a parabolic equation for ages 2 months to 7 years. The equations are:

Fetal: Y = 165.5 + 33.6X, where Y = lens weight and X = age in months

First year: Y = 205.8 + 31.4X, where Y = lens weight and X = age in 2-month increments

Ages 2 months to 7 years: $Y = 205.8 + 31.4X - 0.6 X^2$, where Y = 1ens weight and X = age

The disjointed and overlapping lines (second and third equations) representing lens weights over these 3 time periods do not represent the continuous increase in lens weights characteristic of an individual. These data provide a good opportunity for converting 3 separate equations to a single equation by tabulating calculated values and curve-fitting with logarithmic, power, and exponential regression equations and then choosing the best fit.

WORKSHEET 1.5b is continued on the next page

Tabulate the AGDA and LWMG (lens weight in milligrams) below. Note that fetal ages are represented by negative values, where FAGD = LEGP - DIGE.

LITERATURE CITED

Hoffman, R., A. and Paul F. Robinson. 1966. Changes in some endocrine glands of white-tailed deer affected by season, sex, and age. J. of Mama1. 47(2):266-279.

Chapter 2 - Page 24bb

UNIT 1.6: SKIN GLANDS

Wild ruminants have scent-producing skin glands that are likely important in communications between individuals of a population. Four specialized skin glands are listed by Cowan (1956; 549) for the mule deer. They are the preorbital glands, located in a shallow pit in the lacrimal bone just in front of the eye; the tarsal gland, located in the inside of the heel joint; the metatarsal gland located on the outside of the hind shank; and the interdigital glands, located between the hooves of each foot.

Preorbital gland. This gland, also called the lachrymal gland, is well-developed in elk (Murie 1951; 108) and mule deer, but reduced or absent in white-tailed deer (Cowan 1956). Cowan reports that the gland is actively opened and shut by female [mule] deer advancing to attack another individual, but not by males.

Tarsal glands. These glands, present in both white-tailed and mule deer, are marked by tufts of hair on the inside of the heel joints. It may be quite odoriferous, especially because deer of all ages and both sexes sometimes urinate on the glands. This is called rub-urinating. This has been observed in white-tailed fawns at the Wildlife Ecology Laboratory, where a buck, a doe, and two fawns occupy a 2.5 hectare enclosure. On one occasion, the fawns, a male and a female, were standing within twenty feet of each other when the male began to rub-urinate. The female began rub-urinating shortly after the male finished. Muller-Schwarze (1971) observed rub-urinating in orphan black-tail fawns in captivity but not in wild fawns with dams. He believes that the tarsal scent identifies sex, age, or type of individual. The tarsal gland is absent in elk (Murie 1951; 108).

Metatarsal glands. These glands, located on the outside of the hind shanks, are present in mule deer (Cowan 1956), elk (Murie 1951), and whitetailed deer. Its scent serves as an alarm pheromone in black-tailed deer over moderately large distances (Muller-Schwarze 1971).

Interdigital glands. These glands, located between the hooves of each foot, have hairs projecting away from the openings of these glands to carry the secretions between the hooves (Cowan 1956; 550). The scent may then be left in each hoof-print. Elk do not have interdigital glands (Murie 1951).

Other skin glands. A glandular brownish mass, somewhat divided into two lobes, one on each side of the tail, is described by Murie (1951; 108) for elk. Quay and Muller-Schwarze (1971) describe the condal glands of mule deer and black-tailed deer. Muller-Schwarze (1971) refers to forehead glands in black-tailed deer. Glands are undoubtedly present on other species that have not been studied well yet; some of these anatomical characteristics are taken for granted and not described in the literature yet.

LITERATURE CITED

- Cowan, I. M. 1956. In The deer of North America, W. P. Taylor, Ed. The Stackpole Company, Harrisburg, PA. 668 p.
- Muller-Schwarze, S. D. 1971. Pheromones in black-tailed deer (<u>Odocoileus</u> hemionus columbionus). Anim. Behav. 19:141-152.
- Murie, O. J. 1951. The elk of North America. The Stackpole Company, Harrisburg, PA. 376 p.
- Quay, W. B. and D. Muller-Schwarze. 1971. Relations of age and sex to integumentary glandular regions in Rocky Mountain mule deer (Odocoileus hemionus hemionus). J. Mammal 52(4):670-685.

REFERENCES, UNIT 1.6

SKIN GLANDS

SERIALS

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
SSBLA	7 - 3	401	407	cerv	morph chng glandular appar	katsy,gd	1972
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CAFGA	223	247	367	ođ	distr,var, pacif coast reg	cowan,imt	1936
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	<u>anim</u>	kewo	auth	year
JOMAA JOMAA	401 521	114 1	128 11	odvi odvi	micr struct, var, cutan gl geogr var, metatarsal glan	quay,wb quay,wb	1959 1971
MAMLA	224	537	546	odvi	metatars glands, neotropic	hershkovitz,p	1958
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AMZOA AMZOA	7 9	807 570	807 570	odhe odhe	soc odors, young mule deer pheromone func, deer urine	muller-schwarze, muller-schwarze	1967 1967

odhe continued on the next page

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
ANBEA ANBEA	191 204	141 788	152 797	odhe [:] odhe	*pheromones in black-tailed soc signif,forehead rubbng	mueller-schwarze, mueller-schwarze,	1971 1972
JOMAA JOMAA JOMAA JOMAA	301 451 514 524	76 48 675 670	77 53 694 685	odhe odhe odhe odhe	external measurements, mul comp 3 morph attrib, n mex funct histol integu gl reg rel age, sex, integ gl reg	halloran,af; kenn anderson,ae; frav quay,wb; mueller quay,wb; mueller	1949 1964 1970 1971
JULRA	593	223	230	odhe	specialized scent hair, dr	mueller-schwarze	1972
NATUA	223	525	526	odhe	complexity, specificity,	mueller-schwarze	1969
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
ACATA	991	116	116	cee1	adreno, mela pituitar cell	simic,m; pantic,v	1971
AJPHA	223-3	604	607	ceel	sweat gland functn, red de	johnson,kg; malo/	1972
CODEN	<u>vo-nu</u>	<u>bepa</u>	<u>enpa</u>	anim	kewo	auth	<u>year</u>
CODEN		hone		arar	kana	auth	
CODEN	<u>vo-nu</u>	вера	enpa		kewo		year
JOMAA	362	187	201	rata	histol, cytochem, skin gla	quay,wb	1955
JCECD JCECD	12 35	275 591	281 601	rata rata	volat comp from tarsal scl caudal gland, histol, chem	andersson, q;/ mueller-schwarze/	1975 1977
KPSUA	5	644	645	rata	chem comp, interdigi gland	sokolv, ve; brun/	1974
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AJANA	129	65	88	anam	histol subauric, rumpgland	may, rf	1970
JOMAA	522	441	446	anam	histol interdig, median gl	moy,rf	1971
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				bibi			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				ovca			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				ovda			

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo					auth		<u>year</u>
				o bmo								
CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo					auth		year
				oram								
CODEN	vo-nu	bepa	enpa	anim	kewo					auth		<u>year</u>
ZOOLA	582	55	57	maam	scent	mark:	ing,	red	brocket	volkman	,n; ralls	1973
CODEN	vo-nu	bepa	enpa	anim	kewo					auth		year
JBOMA	633	629	734	axax	the	axis	deer	in	hawaii	graf,w;	nichols,1	1967

UNIT 1.7: ENDOCRINE GLANDS

Endocrine glands are organs of secretion, releasing hormones into the blood stream via the vascular beds in the glands themselves. Hormones are chemical "messengers" which have specific effects on other cell types. Many of the several endocrine glands scattered through the body have specific target organs which respond in predictable ways to particular hormones. Some function directly with a clearly-defined system (ovaries with reproduction, for example) and some have more diffuse effects, functioning as general regulators of body functions (thyroid of metabolism, for example) (McCauley 1971; 379). A list of the endocrine glands and synopses of their roles summarized from detailed information in McCauley (1971) and Romer and Parsons (1977) follows.

<u>Hypophysis</u> (Pituitary gland): regulates water balance, renal function, and protein synthesis, stimulates the thyroid gland, influences naturation of the gonads and production of sex hormones, and is involved in storing and releasing hormones synthesized elsewhere.

<u>Thyroid gland</u>: very important in regulating the metabolic rate, also influences development of the nervous system, behavior, and has roles in growth and reproductive functions.

Parathyroid glands: regulates the metabolism of calcium and phosphorous.

Islets of Langerhans: partial regulator of carbohydrate metabolism.

Adrenal glands: aid the body in meeting environmental stresses.

Testes: produce male sex hormones called androgens.

Ovaries: produce female sex hormones called estrogens.

The endocrine gland functions listed indicate that they are very important regulators of critical body functions such as metabolism, growth, and reproduction. Understanding of their roles in the ecology of freeranging animals has not yet been achieved. Recent books on several species of wild ruminants do not even mention endocrine glands, even though they, as regulators of body functions, probably play more important roles in the ecology of these animals than any other single group of organs.

LITERATURE CITED

McCauley, W. J. 1971. Vertebrate physiology. W. B. Saunders Company, Philadelphia. 422 p.

Romer, A. S. and T. S. Parsons. 1977. The vertebrate body. W. B. Saunders Company, Philadelphia. 624 p.

REFERENCES, UNIT 1.7

ENDOCRINE SYSTEM CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JBLPA	4	31	41	cerv	[endocr gl, antlr develop]	[pantic,v	1966
CODEN	vo-nu	<u>bepa</u>	enpa	anim	kewo	auth	year
HLTPA	9	1235	1239	od	n amer, thyroid radioiodin	hanson,wc; dahl,/	1963
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CPSCA	74	217	218	odvi	organ:body weight relation	robinson,pf	1966
JOMAA JOMAA JOMAA JOMAA	311 411 472 553	5 23 266 656	17 29 280 659	odvi odvi odvi odvi	weight relations, georg re respon bucks, artifi light endocrine glands,seas chan antler shedding in midwest	<pre>hamerstrom,fm,j/ french,ce; mcew/ hoffman,ra; robi zagata,md; moen,</pre>	1950 1960 1966 1974
JWMAA JWMAA	344 364	407 1041	417 1052	odvi odvi	reprod, grow, resid, dield nutrit effec, thyroid acti	murphy, da; kors seal,us; verme /	1970 1972
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ANREA	169-2	387	387	odhe	morpho acidophils, hypophy	nicolls,ke	1971
CAFGA	442	191	196	odhe	relat adren cortex, condit	hughes,e; mall,r	1958
CJZOA	54-11	1969	1978	odhe	cytolgy anterior pituitary	west,no; nordan	1976
JOMAA JOMAA	523 524	628 670	630 685	odhe odhe	tiss, organs, tota body ma integumentary glandul regi	hakonson,te; whic quay,wb; Muller-s	1971 1971
JWMAA JWMAA JWMAA	304 353 354	781 461 689	785 468 697	odhe odhe odhe/	ceel,radioiodine, thyroids radio iodine uptake, reten adrenal wt in popula, colo	whicker,fw; farr/ gist,cs; whicker anderson,ae; med/	1966 1971 1971
PAARA	209	1	11	odvi	feed, season, antler devel	long,ta; cowan,c/	1959
PNDAA	301	35	35	odhe	pituatary, photoper, antlr	nicolls,ke	1976
PSEBA	931	161	162	odhe	cyclic var, thymus, mule d	browman,lg; sears	1956
SCIEA	140	801	802	odhe	odvi,rata, iodin-132, n am	hanson,wc; whick/	1963
WLMOA	39	1	122	odhe*	carcas, bone, organ, gland	anderson,ae; med/	1974
ZZAHA	115-3	314	326	odhe/	pituitar glnd, photoperiod	nicolls,ke	1971

CODEN	vo-nu	bepa	enpa	anim	kewo	· · ·		<u> </u>	auth		<u>year</u>
ACATA	634	580	5 9 0	cee1	caca,	invest	igatn,	thyroid	pantic,v;	stosic,	1966
VESMA	4	199	201	ceel	[ant1	devel,	inter	secre]	frankenber	rge, z	1955
CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
JOMAA	271	90	91	alal	weight	ts of m	innesot	a moose	brechinrid	lge,wj	1946

CODEN	vo-nu	bepa	епра	anim	kewo	auth	year
ANANA	119-1	99	103	rata	subcommissural organ, secr	talanti,s	1966
AZOSA	582	61	63	rata	testost level, neck muscle	lund-larsen,tr	1977
CAFNA	904	449	463	rata	annual antler cycle, newfo	bergerud,at	1976
CBPAB CBPAB	40a-2 40a	495 789	501 795	rata rata	seas chang, hydro-corti se thyroxi, sex, age seas	<pre>yousef,mk; camer/ yousef,mk; luick,</pre>	1971 1971
CJZOA CJZOA	516 55/	651 1692	658 1697	rata rata	seas varia, plasma testost produc,testos,time of year	whitehead,pe; mce whitehead,pe; wes	1973 1977
FMFUB	64	373	381	rata	antlers, asymmetry, reinde	davis,ta	1973
JANSA	331	260	260	rata	thyroxine secre rate, calv	luick,jr; white,/	1971
PASCC	19	71	72	rata	thyroxine secretion rate	yousef,mk	1968

CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
TOWAA	E ()	000	044				1				1075
JUMAA	204	829	846	anam	growth,	casting	norns,	exr	o'gara,bw;	matso	19/5

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
				bibi			

 CODEN
 vo-nu
 bepa
 enpa
 anim
 kewo
 auth
 year

 ovca
 ovca

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				odva			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				obmo			
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa	anim	kewo	auth	<u>year</u>
				oram			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				dada			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JOMAA	274	308	323	many	mammals of northern idaho	rust,hg	1946

Seasonal changes in thyroid gland weights of white-tailed deer (odvi)

The graphic display of seasonal changes in relative weights of the thyroid glands, in grams per kg body weight, shows increases in thyroid weights when animals are gaining weight and decreases when they are losing (Hoffman and Robinson 1966). The increases and decreases also coincide with the increases and decreases in metabolism (Moen 1978).

The high relative weight shown in Hoffman and Robinson (1966) is about 0.08 and the low about 0.04 gms/kg. The high occurs in May-June and the low in January-February. The graphed data may be smoothed out by fitting a sine wave as described in CHAPTER 1, UNIT 1.4, using the example of 40 ± 20 . In the data above, it is 0.06 ± 0.02 . Primary and secondary phase corrections are necessary since the time periods between May-June (use JDAY 151) and January-February (use JDAY 30) are not equal. These too are discussed in CHAPTER 1, UNIT 1.4. Derive the equation for thyroid weight/kg and plot the results below. Then, multiply these results by LIWK over the annual cycle to predict thyroid weights in gms (THWG).

Chapter 2 - Page 32a

LITERATURE CITED

- Hoffman, R. A. and P. F. Robinson. 1966. Changes in some endocrine glands of white-tailed deer as affected by season, sex and age. J. of Mammal. 47(2):266-279.
- Moen, A. N. 1978. Seasonal changes in heart rates, activity, metabolism, and forage intake of white-tailed deer. J. Wildl. Manage. 42(4):715-738.

TOPIC 2. CHEMICAL CHARACTERISTICS

The chemical composition of an animal is an important consideration when determining nutrient requirements, since requirements are equal to the sum of nutrients deposted plus the nutrients necessary for metabolism but not incorporated into body tissue. If, for example, each kg of fat in a ruminant's body has an energy content of 9000 kcal kg⁻¹, then at least 9000 kcal of energy were ingested chemically in a kg of tissue. Since the deposition of fat or any other tissue is not a 100% efficient process, the energy required to deposit a kg of fat with an energy content of 9000 kcal is 9000 plus the energy for nutrient metabolism. The energy required for this deposition is analogous to overhead, or operating costs in a business.

Some of the tissue energy, especially fat, serves as a reservoir of stored energy that may be critical for survival. Fat tissue can be almost totally depleted before death occurs, but other tissues, such as protein, cannot be mobilized to a large extent without causing weakness and deterioration of life functions. Some tissues, such as bones, contain minerals that may be mobilized for antler growth, and the amount of antler growth is dependent on the amount of minerals mobilized plus the amount ingested, within the framework of genetic limitations, of course. The former is indicative of the nutrient quality of the range over a time span of a year or more, the latter of the quality of the range during the period of antlerogenesis.

Chemical composition varies through the year in relation to growth and reproduction. It is a function of several variables through time, and may be expressed in relation to live or ingesta-free weight. Weight varies seasonally however; calculations of seasonal variations in chemical composition in relation to seasonally-variable weights result in estimates of the absolute quantities of different chemical components of the body.

The chemical composition of milk varies through lactation as the nutrient requirements of the suckling young change, and their diet includes relatively less milk and more forage as the rumen and reticulum develops. Changes in milk composition through the lactation period are not well documented in most species, nor are seasonal changes in overall body composition. The UNITS that follow provide some insights into the ecological roles of chemical changes, indicating the usefulness of this information in evaluating survival and production potentials.

UNIT 2.1: BODY COMPOSITION

Knowledge of the body composition of an animal is essential for understanding and predicting energy, protein, and mineral requirements for maintenance and growth. The net requirements for these three categories of nutrients are dependent on the energy content and composition of the tissue replaced and new tissue deposited. Relationships between chemical composition and nutrition in cattle were studied many years ago (See Reid et al. 1955), and general relationships between animal condition and visible fat have been observed for wild ruminants for years. Published data on the chemical composition of whole animals and on some body parts are available for domesstic ruminants. Few data are available on wild ruminants paper s on body composition have been more descriptive than quantitative, with emphases on "fat condition indexes" and similar approaches.

Fat tissue indices have been derived for some species of wild ruminants because they provide indications of the status of individuals through the winter for general comparisons between ranges and between winters. Such indices are not useful for quantifying the metabolic contributions of stored fat for survival, however, and the expediency with which they may be determined should not replace basic investigations of the chemical composition of the body. Basic investigations result in the background knowledge and understanding necessary for quantifying animal-range relationships, resulting in better interpretation of condition indices based on fat and other tissue characteristics.

Fat. Fat is a high-energy reservoir-one gram of fat contains 9.0 to 9.5 calories of energy-that is mobilized when energy intake falls below energy requirements. It is necessary to know what metabolically-available quantities are present in the body throughout the year in order to analyze the ecological contributions of fat to seasonally-variable metabolic energy requirements. Then, weight changes and body composition can be combined to derive an equation for calculating the fat contribution to daily metabolism. This is done in Chapter 7.

Protein. The total energy content of an animal is equal to the actual amounts of protein and fat times the caloric values of each. The estimated caloric contents of body protein and fat were 5.413 and 9.490 kcal/g, respectively (Robbins et al. 1974). Protein tissue, while containing stored energy in the chemical bonds holding protein molecules together (about 5 calories per gram), cannot be mobilized to a large extent without the loss of body condition. When the fat reserve is gone and protein is catabolized to maintain the energy balance, the animal is in a very precarious state of existence. This is characteristic of animals that die in a long winter. Protein deficiencies may occur in the summer too; nursing females must supply a relatively large amount of protein via milk for their rapidly-growing offspring. Lactating wild ruminants are often quite thin, especially through the first half of the lactation period. The high protein requirement at that time should be mostly met by the high-quality forage on the range, but protein in maternal tissue may supplement that ingested in the forage.

Minerals. Minerals are essential components of most body tissue, and the major component of the skelton. The minerals that are a part of the whole body composition are not known for wild ruminants, however. Ash--the solid residue left after complete tissue combustion--has been measured for both domestic and wild species, but this general category does not reveal the amounts of specific minerals present or required. Feeding trials with various levels of different minerals in the diets are used to determine requirements, but interpretations of the results are often difficult to make because of interactions between minerals, and especially trace elements.

Water. There is a water component of living tissue that, for whole organisms, represents about 2/3 of the mass of most species. Water is a required nutrient that is "turned over," and thus needs to be replenished regularly. Some African species of wild ruminants have special adaptations for conserving water, with different physiological and behavioral adaptive strategies. North American ruminants are, for the most part, not particularly specialized in their use and conservation of water, and most species live in habitats that are not water-limited.

The amount of body water in adult ruminants is quite closely related to their fat content. Fat tissue contains only about 10% water, much less than the average of all body tissue, so as the adult ruminant puts on large quantities of fat in the fall, the water fraction goes down. Body composition of white-tailed deer show this clearly as fat and water were inversely related, with protein remaining fairly constant and ash being a minor component of the total body (Robbins et al. 1974).

The total body composition, expressed as decimal fractions, is:

FATF + WATF + PROF + ASHR = 1.00

where the ..F is fraction of the preceeding chemical group. This illustrates the fact that only four major chemical groups make up the body composition, yet there are few data even on these four major groups for wild ruminants.

The most ideal kind of data on chemical composition of wild ruminants would include variations due to sex, age, and time of year. Such data would provide the background material for interpreting the changes in weights and nutrient requirements over the annual cycle. Body composition analyses are being done on white-tailed deer at the Wildlife Ecology Laboratory, but results are not yet available.

LITERATURE CITED

Reid, J. T., G. H. Wellington, and H. D. Dunn. 1955. Some relationships among the major chemical components of the bovine body and their application to nutritional investigations. J. Dairy Sci. 38:1344.

Robbins, C. T., A. N. Moen, and J. T. Reid. 1974. Body composition of white-tailed deer. J. Anim. Sci. 38(4):871-876.

REFERENCES, UNIT 2.1

BODY COMPOSITION

BOOKS

type	<u>publ</u>	<u>city page</u>	anim	kewo	auth	year
edbo	acpr	nyny 1		mineral metabolism, vol. 2	comar,cl; bronner	1964
edbo	acpr	nyny		compar nutrit, wild animal	crawford, ma, ed	1968
aubo	nasc	wadc 19	anim	bdy comp in animls and man	reid, jt; bensado/	1968
edbo	erda	spva 536	odvi	min cyclng in se ecosystem	howell, fg; gentr/	1975
edbo	erda	spva 542	odvi	min cyclng in se ecosystem	<pre>howell,fg; gentr/</pre>	1975

SERIAL PUBLICATIONS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA	498	1159	1162	cerv	composition adipose tissue	garton,ga; dunca/	1971
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JANSA	384	871	876	odvi	body composition, white-ta	robbins,ct; moen	1974
JWMAA JWMAA JWMAA JWMAA	292 294 371 392	397 717 103 346	398 723 105 354	odvi odvi odvi odvi/	kidney, marrow fat, condit naturl vari blood proteins reag dry assay, marrow fat chng blood prot, gest, suc	<pre>ransom,ab miller,wj; hauge/ verme,lj; holland hartsook,ew; whel</pre>	1965 1965 1973 1975
NFGJA	211	67	72	odvi/	riney vs kidney fat techni	monson,ra; stone/	1974
NYCOA	3 5	19	22	odvi	bone marrw index of malnut	cheatum,el	1949
PAABA PAABA	600-1 628-1		50 21	odvi odvi	nutri req, growth, ant dev nutri req, growth, ant dev	<pre>french,ce; mcewa/ magruder,nd; fre/</pre>	1955 1957
PCGFA	26	57	68	odvi	var fat levl, mandib cavit	nichols,rg; pelt	1972
WSCBA	56	42	42	odvi	chemi anal of deer antlers	chaddock,tt	1 9 40
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
AJVRA	314	673	677	odhe	total body water, turnover	longurst,wm; bak/	1970
JANSA	366	1201	1201	odhe	plasma prot, lipid lev,nev	hunter,ve; lespe/	1973
JOMAA	452	252	259	odhe	density studies, body fat	whicker,fw	1964
				odhe	continued on the next page		
CODEN	<u>vo-nu</u>	bepa	enpa	<u>anim</u>	kewo	auth	year
-------------------------	-------------------	------------------	------------------	------------------------	---	--	----------------------
JWMAA JWMAA JWMAA	332 362 411	389 579 81	393 594 86	odhe/ odhe/ odhe	water turnover in mule dee /indice, carc fat, colo pop exp starva, recovery, does	knox,kl; nagy,jg/ anderson,ae; me/ decalesta,ds; na/	1969 1972 1977
PCZOA	16	46	46	odhe	chang, plasma lipids, th y	<pre>stewart,sf; nord/</pre>	1963
WAEBA	589	1	6	odhe	the mule deer carcass	field,ra; smith,/	1973
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JSFAA	221	29	33	ceel	fatty-acid compos, adipose	garton,ga; dunca	1971
JWMAA JWMAA	324	747	751	ceel ceel	fat content, femur marrow milk comp and consump,capt	greer,kr robbins,ct; podb/	1968 inpr
MAMLA	353	369	383	ceel	demog,fat res,body size,nz	caughley,g	1971
WAEBA	594	1	8	ceel	the elk carcass	<pre>field,ra; smith,/</pre>	1973
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
AZOFA	122	148	155	alal	fatty-acid compos, org fat	tanhuanpaa,e; pul	1975
CBPAB	573	299	306	alal,	/hair elemnt val,var, alask	franzmann,aw; fl/	1977
JWMAA	402	336	339	alal	marrow fat, mortali, alask	franzmann,aw; arn	1976
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CBCPA	301	187	191	rata	fatty acid comp bone marow	meng,ms; west,gc/	1969
CBPAB CBPAB	552 563	187 337	193 341	rata, rata	/serum enz, blood constitue liver, bone, bone marrow	bjarghov,rs; fje/ bjarghov,rs; jac/	1976 1977
CJZOA CJZOA	501 546	107 857	116 862	rata rata	seas, body h2o, blood volu tritium wat dilut wat flux	<pre>cameron,rd; luic cameron,rd; whit/</pre>	1972 1976
FUNAA	23	106	107	rata	fat deposits, svalbard dee	oritsland, na	1971
JWMAA	344	904	907	rata	wt, dried marrow,femur fat	neilans, ka	1970
NJZOA	244	407	417	rata;	*morph, fat stor, org weigh	krog,j; wika,m; /	1976
PASCC PASCC	19 22	17 14	18 14	rata rata	total body water, turnover water flux, climate, nutri	cameron,rd cameron,rd; luic/	1968 1971
TNWSD	28	91	108	rata	phys var, condit, b g cari	dauphine.tc.ir	1971

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
JANSA JANSA	331 366	309 1195	309 1195	anam anam	carbonyl analysis of fat collagen character,muscle	<pre>booren,a; field,/ kruggel,wg; field</pre>	1971 1973
JDSCA	38	1344	1344	anam	maj chem comp bovine	reid, jt; wellin/	1955
JOMAA	523	583	589	anam	*seas tren in fat lev, colo	bear,gd	1971
JWMAÁ	344	908	912	anam	energy flux, water kinetic	wesley,de; knox,/	1970
WAEBA	575	1	6	anam	pronghorn antelope carcass	field,ra; smith,/	1972
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMAA	362	3 05	308	bibi	the lipids in bison bison	wilbur,dg; gorski	1955
CODEN		h		ante	have	auth	
CODEN	vo-nu	bepa	enpa		Kewo		year
AJBSA	243	515	524	ovca	ovmu, sp diff hair protein	darskus,rl; gille	1971
BECTA	191	23	31	ovca	chlor hydrocarb resid, fat	turner,jc	1978
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
CBCPA	50Ъ-4	599	601	ovda	fatty acid comp bone marrw	west,gc; shaw,dl	1975
CODEN		L			h	* h	
CODEN	<u>vo-nu</u>	<u>bepa</u>	enpa		<u>kewo</u>		year
				obmo			
CODEN	vo-nu	bepa	епра	anim	kewo	auth	year
				oram			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CJZOA	498	1159	1162	many	comp, adipose tiss triglyc	garton,ga; dunca/	1971
VEZOA	715	60	64	many	hyaluronic acid, synovi fl	kuprikova,vm	1971
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
ATRLA	18-11	209	222	caca	drssng %, body comp, calor	weiner, j	1973

CHAPTER 2, WORKSHEET 2.1a

Body composition of white-taiiled deer (odvi)

The body composition of white-tailed deer may be predicted from ingesta-free weight in kg (IFWK). Equations for males, females, and both sexes combined are given by Robbins et al. (1974). The sex differences are very slight when composition is expressed on a per kg basis. The equations for both sexes combined are:

> WATK = e(0.8982 ln IFWK - 0.0827)FATK = e(2.1345 ln IFWK - 6.3944)PRTK = e(1.0091 ln IFWK = 1.6267)ASHK = e(0.9480 ln IFWK - 2.9008)

Complete the calculations and plot the relationships below. Note that the sum of the weights should equal the ingesta-free weight used in the calculations; deviations are due to experimental error. What is the sum when weights characteristic of moose (500 kg) are used in the calculations? Are these equations realistic when extrapolated beyond deer weights?

Robbins, C. T., A. N. Moen, and J. T. Reid. 1974. Body composition of white-tailed deer. J. Anim. Sci. 38(4):871-876.

CHAPTER 2, WORKSHEET 2.1b

Relative body compositions of wild ruminants

The lack of data on the body compositions of different species of wild ruminants makes it necessary to derive first approximations based on other species. Extrapolation of the equations in WORKSHEET 2.1a to moose (500 kg) does not work. How, then, can the body composition of moose be estimated?

If the assumption that water, fat, protein, and ash fractions of moose and other wild ruminants are proportional to those of white-tailed deer, then the weights of these fractions can be expressed as a fraction of the total and that fraction multiplied by the weight of the new species. Illustrating with the equation for water:

WATF = $e^{(0.8982 \ln IFWK - 0.0827)/IFWK}$

where WATF = water fraction. The result is a decimal fraction.

Calculate the fractions for 20, 30, 40 . . . kg for deer for each of the four chemical groups and curve-fit the results. Then, use the resulting equations by making the weights of the new species proportional to the weight of white-tailed deer and complete the first approximations for different species. Relabel the x-axis with IFWK for the species considered.

Chapter 2 - Page 40b

UNIT 2.2: CHEMICAL COMPOSTION OF MILK

Milk is produced by the epithelial cells lining alveoli of the mammary glands. Production is stimulated primarily by a lactogenic hormone, prolactin, from the anterior pituitary gland (Pantelouris 1967). The sucking stimulus plays a part in the continuation of production; lactation diminishes rapidly if the milk is not removed from the udder.

The chemical composition of milk changes during the lactation period. Few measurements have been made of the composition of milk of any wild ruminant for the entire lactation period, however. The references listed usually contain chemical composition data at one point or for only a small part of the lactation period.

The chemical composition of milk changes during the lactation period. Few measurements have been made of the composition of milk of any wild ruminant for the entire lactation period, however. The references listed usually contain chemical composition data at one point or for only a small part of the lactation period.

Fat and energy. The fat content of milk is the major determinant of the caloric energy in milk. A formula for determining the kcal/kg of milk is in Blaxter (1962:171), with the caloric energy content a direct function of percent fat. The equation given is:

Kcal/kg milk = 304.8 + 114.1(f)

where f is the percentage of fat in the milk. The equation was derived from "many thousands" of samples from dairy cows milks varying in composition from 2.8 to 6.2% fat. Calculations of the caloric content of milks from different species of wild ruminants are explained in WORKSHEET 2.2b.

Milk is relatively high in protein, a biological necessity Protein. when it is the main or only source of nutrients for the neonate. Wild ruminant neonates begin grazing a few days after birth and extract proportionately more of their nutrient requirements from plants as their rumens develop. Since their total protein requirement is increasing as they grow rapidly during the suckling period, the contribution of milk proteins is significant. The chemical breakdown of milk protein can be quite extensive and is beyond the intent of this UNIT and available data on wild ruminant milk. Total nitrogen, which may be determined with the Kjeldahl method, is a good indicator of the total protein content of milk as only about 5% of total nitrogen is milk is present as non-protein materials (Lampert 1975:47).

Lactose. Lactose is the main carbohydrate found in milk. Called milk sugar, it is a disaccharide that can be hydrolyzed into two other sugars, glucose and galactose (Lampert 1975:49). The lactose in normal cow's milk ranges from 4.4 to 5.8% (Nicherson 1965:225). A table of composition of milk of 23 mammals in Nicherson lists reindeer as having 2.4% carbohydrate [lactose] which is only 1/2 of the amount in cow's milk. Such single numbers may be misleading because changes in the chemical composition of milk over the entire lactation period are certain to occur and probably have not been considered since milk collections of free-ranging animals are difficult to make over the entire lactation period.

Minerals. Minerals, collectively referred to as the ash content, make up 1% or less of the total content of milk. The minerals are not abundant, but they are important in neonate nutrition since skeletal growth is rapid early in life. The percents of seven minerals in milk and their percents in the ash of milk are listed by Lampert (1975:51). The seven minerals are potassium, calcium, chlorine, phosphorous, sodium, magnesium, and sulfur. There are also several minerals found in very small, or trace amounts.

Vitamins. Milk contains vitamins A, B, D, and E all necessary for metabolic processes.

Water. Milk is composed of nearly 90% water, which carries the lactose, minerals, salts, and water-soluble vitamins in solution.

LITERATURE CITED

- Blaxter, K. L. 1962. The energy metabolism of ruminants. Hutchinson & Co., London. 327 p.
- Lampert, L. M. 1975. Modern Dairy Products. Chemical Publishing Co., New York. 437 p.
- Nicherson, T. P. 1965. Chapter 6 In Webb B. H. and A. H. Johnson, Editors. Fundamentals of dairy chemistry. The Avi Publishing Company, Inc., Westport, Connecticut. 827 p.

Pantelouris, G. M. 1967. Introduction to animal physiology and physiological genetics. Pergamon Press, Oxford. 497 p.

REFERENCES, UNIT 2.2

CHEMICAL COMPOSITION OF MILK

BOOKS

<u>publ</u>	<u>city</u> page	<u>anim</u>	kewo	auth	year
isup	amia 291	dome	secretion of milk (4th ed)	espe, w; smith, v	1952
saco	phpa 584		handbook of biological dat	spector, ws	1956
isup	amia 291	dome	physiology of lactation	smith, vr	1959
hutc	10en 307	dome	energy metabol of ruminant	blaxter, kl	1962
jblc	phpa 273		nutrition, compos of milk	<pre>kirchgessner,m; /</pre>	1967
pepr	oxen 497		anim physiol, physiol gene	pantelouris, gm	1967
acpr	nyny		milk protein; chem, molecu	mckenzie,ha	1970
whfr	sfca 317	dome	biology of lactation	schmidt,gh	1971
butt	1oen 467	many	lactation	falconer, ir, ed	1971
acpr	nyny		lactation	larson, bl; smith,	1974
	publ isup saco isup hutc jblc pepr acpr whfr butt acpr	publcitypageisupamia291sacophpa584isupamia291hutcloen307jblcphpa273peproxen497acprnynywhfrsfca317buttloen467acprnyny	publcitypageanimisupamia291domesacophpa584isupamia291domehutcloen307domejblcphpa273peproxen497acprnynywhfrsfca317domebuttloen467manyacprnyny	publcity pageanimkewoisupamia 291domesecretion of milk (4th ed)sacophpa 584handbook of biological datisupamia 291domephysiology of lactationhutcloen 307domeenergy metabol of ruminantjblcphpa 273nutrition, compos of milkpeproxen 497anim physiol, physiol geneacprnynymilk protein; chem, molecuwhfrsfca 317domebuttloen 467manyacprnynylactationacprnynylactation	publcity pageanimkewoauthisupamia 291domesecretion of milk (4th ed)espe, w; smith, vsacophpa 584handbook of biological datspector, wsisupamia 291domephysiology of lactationsmith, vrhutcloen 307domeenergy metabol of ruminantblaxter, kljblcphpa 273nutrition, compos of milkkirchgessner,m; /peproxen 497anim physiol, physiol genepantelouris, gmacprnynymilk protein; chem, molecumckenzie, hawhfrsfca 317domebiology of lactationschmidt,ghbuttloen 467manylactationfalconer,ir,edacprnynylactationlarson,bl; smith,

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JRPFA	371	67	84	cerv	composi milk, cerv species	arman,p; kay,rnb/	1974
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JWMAA	244	439	441	odvi	rearing, breedi fawns, cap	murphy,da	1960
JWMAA	251	66	70	odvi	deer milk, substitute milk	silver,h	1961
JWMAA	291	79	84	odvi/	comp milk, bld nursng doe, f	<pre>youatt,wg; verme/</pre>	1965
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CAFGA	372	217	218	odhe	composit, deer milk, calif	hagen,hl	1951
CAFGA JOMAA	372 363	217 473	218 474	odhe odhe	composit, deer milk, calif mule deer milk	hagen,hl browman.lg; sears	1951 1955
CAFGA JOMAA JOMAA	372 363 583	217 473 420	218 474 423	odhe odhe odhe	composit, deer milk, calif mule deer milk changes nutri compos, milk	hagen,hl browman,lg; sears mueller,cc; sadle	1951 1955 1977

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo				. <u> </u>	auth		<u>year</u>
BIJOA	153 - 3	647	655	cee1	whey	protein	ns,	red d	e mill	a mcdougal	l,ei; ste	1976
JRPFA	371	67	84	ceel/	comp,	, yield	of	milk,	red o	l arman,p;	kay,rnb/	1974
ZTTFA	315	227	238	cee1	comp,	, milk,	red	deer	, pt]	brueggem	ann,j; d/	1973

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	,				auth		<u>year</u>
CJZOA	482	213	215	alal	gros	comp	milk,	fat,	minrl	cook,hw;	rausch,/	1970
JWIDA	122	202	207	alal,	/milk	, hai	r, elen	nent	relati	franzman	n,aw; fl/	1976

CODEN	vo-nu	bepa	<u>enpa</u>	anim	kewo					auth		year
CJZOA	456	1101	1106	rata	milk,	groe	s comp,	fat,	prot	hatcher,vb	; mcew/	1967
JDSCA	57-11	1325	1333	rata/	/milk (comp	chang,	grazi	lng r	luick,jr;	white,/	1974
ZOBIA	326	746	750	rata	alal,	elec	etroph,	milk	prot	shubin,pn;	turub/	1971

CODEN	vo-nu	bepa	enpa	anim	kewo				auth	year
CAFGA	372	217	218	anam	odhe,	compos	milk,	compars	hagen, h1	1951

CODEN	vo-nu	bepa	enpa	anim	kewo)				auth		year
JOMAA	362	305	308	bibi	the	lipids	in	bison	bison	wilbur,cg;	gorski	1955

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
CAFGA	412	131	143	ovca	rearing lambs in captivity	deming, ov	1955
CJZOA	435	885	888	ovca	milk, gross comp, fat cons	chen, ech; blood,/	1965

CODEN	vo-nu	bepa	enpa	anim kewo				auth		year
CJZOA	484	629	633	ovda*milk,	stage	lact,	composit	cook,hw;	perarso/	1970

. .

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo auth	year
CJZOA	346	569	571	obmo	gross composition of milk tener,js	1956
CJZOA	486	1345	1347	obmo	gros comp,ftty acid, minrl baker, be; coo	ok,h/ 1970

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo				auth		<u>year</u>
CJZOA	471	5	8	oram	gross	compos,	fat	acid con	lauer, bh	; blood,/	1969
CJZOA	472	185	187	oram	miner	const,	milk,	arctic	luer, bh;	baker,b	1969

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
CBCPA	42b-2	323	328	many	electrophesis milk casins	lauer,bh; baker,b	1972
CJZOA CJZOA	494 551	551 231	554 236	many many	carbohydra content, casein amin acid comp casein milk	baker,be; lauer,t lauer,bh; baker,t	971 1977

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	. <u> </u>			auth		year
IZYBA	4	333	342	many	composit	milk	wild	animals	ben	shaul.dm	1962

•

CHAPTER 2, WORKSHEET 2.2a

Chemical composition of milk

The chemical composition of milk changes as the lactation period progresses. The data on chemical composition should be evaluated in relation to both the days into lactation (DILA) and the fraction of the lactation period (FRLP) that has passed. The format suggested below may be useful for tabulating chemical compositions and evaluating changes through the lactation period.

spec	DILA	FRLP	FAT-	PRTN CH	EMICALS MNRL	WATR	LCTS	reference
								
			<u> </u>					
				·				. <u> </u>
	·	<u></u>				<u> </u>		<u>·</u>
		<u></u>						
<u> </u>								
			- <u> </u>					
		<u> </u>				<u> </u>		
		·						
								
spec = FAT- = PRTN = MNRL = WATR = LCTS =	species fat protein mineral water lactose							

CHAPTER 2, WORKSHEET 2.2b

Energy content of milk

The amount of energy in milk depends on the chemical composition of the milk. Milk with a high fraction fat fraction contains more energy than milk with a low fat fraction. The equation given by Blaxter (1962:171) based on research by Overman and Gaines (1933) and Gaines and Overman (1938) for calculating kcal/kg milk as a function of the percentage of fat in the milk. The equation, with letter symbols modified, is:

ECPK = 304.8 + 114.1 FATP

where ECPK = energy content per kg, and FATP = fat percent.

Note that FATP is percent and not fraction. Milk with FATP = 4.0 has an energy content of 761 kcal/kg.

The equation has been derived from data on dairy cattle with milk varying from 2.8 to 6.2% fat. It should provide reasonable estimates when used for wild ruminants whose milk may contain more than 6.2% fat.

Lactation is a costly process. The use of this equation along with equations in CHAPTER 7 for calculating milk production results in estimates of the energy cost of milk, which is a significant part of the total cost of the ecological metabolism of free-ranging females.

Calculate ECPK and plot the line on the graph on the next page.

LITERATURE CITED

- Blaxter, K. L. 1962. The energy metabolism of ruminants. Hutchinson & Co., Ltd., London. 329 pp.
- Gaines, W. L. and O. R. Overman. 1938. Inter-relations of milk fat, milk protein, and milk energy yield. J. Dairy Science 21(6):261-271.
- Overman, O. R. and W. L. Gaines. 1933. Milk-energy formulae for various breeds of cattle. J. Agric. Res. 46(12):1109-1120.

TOPIC 3. GENETIC CHARACTERISTICS

Biological inheritance depends on chemical messengers called genes which are arranged on chromosomes, with the hereditary information in the deoxyribonucleic acids (DNA) of the genes (Hoar 1966; 663). Thus genetic characteristics are chemical characteristics with the unique role of transferring information from one individual to its offspring, from one generation to the next.

Each species has a given number of pairs of chromosomes, and genetic information is transmitted from both male and female when the sperm and egg unite in fertilization. The new individual is similar but not identical to its parents, with many, but not all, of the characteristics inherited by the offspring in ways suggesting Mendelian ratios (Pantelouris 1967; 423).

The spectrum of individual genetic characteristics comprises the genetic characteristics of populations. Some of the characteristics of populations that have been isolated for some time are visible and obvious (Svalbard reindeer, for example), and there is growing evidence that there are more subtle differences present too, differences which affect basic physiological functions that are of importance ecologically. It is very difficult, of course, to attribute such differences in wild ruminant populations to genetics or environment since controlled experiments are very difficult and expensive. Well-prepared physiologists interested in free-ranging animals have many interesting problems to investigate, but only with considerable expense and difficulty.

LITERATURE CITED

Hoar, W. S. 1966. General and comparative physisology. Prentice-Hall, Inc., Englewood Cliffs, N.J. 815 p.

Pantelouris, E. M. 1967. Introduction to animal physiology and physiological genetics. Pergamon Press, Oxford. 497 p.

REFERENCES, TOPIC 3

GENETIC CHARACTERISTICS

BOOKS

type	publ	<u>city</u>	page	anim	kewo			auth		year
edbo	haro	nyny	397		readings,	ecologi	genetics	connell, jh;	mert/	1970

SERIALS

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	year
EVOLA	241	220	229	odvi	anal div skull morph, mich	rees,jw	1970
PCGFA	29	392	403	odvi	starch gel, popul genetics	manlove,mn; avis/	1975
CODEN		h			h	t h	
CODEN	vo-nu	bepa	enpa	anım	Kewo		year
GENTA	83	s12	s12	cee1	genetic studi, yellowstone	cameron,dg; vyse,	1976

CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo				auth	<u>year</u>
IZYBA	17	77	81	obmo	gene	pool	conserva,	analys	flesness,nr	1977

UNIT 3.1: INDIVIDUAL CHARACTERISTICS

Individual wild ruminants inherit genetic potentials for growth, maximum body sizes, antler and horn development, and other physical characteristics, and likely behavioral characteristics as well. The physical characteristics actually attained are dependent on range characteristics, including nutrient abundance and chemical quality, and on factors influencing productivity, such as weather and thermal exchange.

The role of the range in determining body size was demonstrated experimentally for white-tailed deer by Severinghaus (1964) when deer from the Adirondacks, small in size and with low reproductive rates were held in captivity and fed adequate diets. They then attained large body sizes and reproductive rates characteristic of deer on good range.

Experiments at Penn State University have demonstrated that antler patterns of white-tailed deer are inherited, but antler size is determined by the quality of diet (French et al. 1955 and Magruder et al. 1957). This seems biologically reasonable, and is likely to be true for other species of wild ruminants as well. The effects of range quality are especially evident in yearly differences in antler growth, and annual increments to horns are also related to range conditions.

LITERATURE CITED

- French, C. E., L. C. McEwen, N. D. Magruder, R. H. Ingram, and R. W. Swift. 1955. Nutritional requirements of white-tailed deer for growth and antler development. Pennsylvania Agricultural Experiment Station Bulletin 600.
- Magruder, N. D., C. E. French, L. C. McEwen, and R. W. Swift. 1957. Nutritional requirements of white-tailed deer for growth and antler development II. Pennsylvania Agricultural Experiment Station Bulletin 628.
- Severinghaus, C. W. 1964. Productivity and growth of white-tailed deer from the Adirondack region of New York. New York Fish and Game Journal. 11(1):13-27.

REFERENCES, UNIT 3.1

INDIVIDUAL CHARACTERISTICS

SERIALS

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
BLOOA	296	867	877	odvi	hemmoglobin polymorphism	kitchen,h; putna/	1967
CBCPA	304	695	713	odvi	hemat, bld chem, prot polymo	seal,us; erickson	1969
JBCHA	247	7320	7324	odvi	heterogen hemoglob-a chain	taylor,wj; easle/	1972
JOMAA	38-3	421	422	odvi	possible identical twins	mccullough,ra	1957
JWMAA JWMMA	343 373	642 422	644 423	odvi odvi	studies, the sex chromatin sex chrom in antlered fema	crispens,cg jr; d crispens,cg,jr; d	1970 1973
NFGJA	11-1	13	27	odvi	product, growth, adirondac	severinghaus,cw;	1964
PAABA PAABA	600 628	1 1	50 21	odvi odvi	nutrit req, grow, antl dev nutr req, growth, antl dev	<pre>french,ce; mcewa/ magruder,nd; fre/</pre>	1955 1957
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
JOMAA	401	96	108	odhe	antler anomalies of mule d	robinette,wl; jon	1959
CODEN	<u>vo-nu</u>	вера	enpa	anim	kewo	auth	<u>year</u>
7Ε ΙΔΔ							
alonn	23	142	148	ceel	[biostatist stud, breedng]	<pre>bubenik,a; lochm/</pre>	1956
CODEN	23 vo-nu	142 <u>bepa</u>	148 enpa	ceel anim	[biostatist stud, breedng] kewo	bubenik,a; lochm/	1956 year
CODEN RIJUA	23 <u>vo-nu</u> 7	142 <u>bepa</u> 52	148 <u>enpa</u> 59	ceel <u>anim</u> alal	[biostatist stud, breedng] kewo moose popu palmated, type	bubenik,a; lochm/ auth voipio,p	1956 <u>year</u> 1952
CODEN RIJUA	23 <u>vo-nu</u> 7	142 <u>bepa</u> 52	148 <u>enpa</u> 59	ceel <u>anim</u> alal	[biostatist stud, breedng] kewo moose popu palmated, type	bubenik,a; lochm/ auth voipio,p	1956 <u>year</u> 1952
CODEN RIJUA CODEN	23 <u>vo-nu</u> 7 <u>vo-nu</u>	142 <u>bepa</u> 52 <u>bepa</u>	148 <u>enpa</u> 59 <u>enpa</u>	ceel <u>anim</u> alal <u>anim</u>	[biostatist stud, breedng] kewo moose popu palmated, type kewo	<pre>bubenik,a; lochm/ auth voipio,p auth</pre>	1956 <u>year</u> 1952 <u>year</u>
CODEN RIJUA CODEN AVCSA	23 <u>vo-nu</u> 7 <u>vo-nu</u> 101	142 <u>bepa</u> 52 <u>bepa</u> 44	148 <u>enpa</u> 59 <u>enpa</u> 47	ceel <u>anim</u> alal <u>anim</u> rata	[biostatist stud, breedng] <u>kewo</u> moose popu palmated, type <u>kewo</u> somatic y chromosome, rein	<pre>bubenik,a; lochm/ auth voipio,p auth gustavsson,i; sun</pre>	1956 <u>year</u> 1952 <u>year</u> 1969
CODEN RIJUA CODEN AVCSA EXPEA	23 <u>vo-nu</u> 7 <u>vo-nu</u> 101 337	142 <u>bepa</u> 52 <u>bepa</u> 44 875	148 <u>enpa</u> 59 <u>enpa</u> 47 876	ceel <u>anim</u> alal <u>anim</u> rata rata	[biostatist stud, breedng] <u>kewo</u> moose popu palmated, type <u>kewo</u> somatic y chromosome, rein rate,sister chromat exchng	<pre>bubenik,a; lochm/ auth voipio,p auth gustavsson,i; sun pathak,s; ward,o/</pre>	<u>year</u> 1952 <u>year</u> 1969 1977
CODEN RIJUA CODEN AVCSA EXPEA GNKAA	23 <u>vo-nu</u> 7 <u>vo-nu</u> 101 337 72	142 <u>bepa</u> 52 <u>bepa</u> 44 875 171	148 <u>enpa</u> 59 <u>enpa</u> 47 876 173	ceel anim alal anim rata rata rata	[biostatist stud, breedng] <u>kewo</u> moose popu palmated, type <u>kewo</u> somatic y chromosome, rein rate,sister chromat exchng alleles, transferrin locus	<pre>bubenik,a; lochm/ auth voipio,p auth gustavsson,i; sun pathak,s; ward,o/ turabanov,mn; shu</pre>	<u>year</u> 1952 <u>year</u> 1969 1977 1971
CODEN RIJUA CODEN AVCSA EXPEA GNKAA HEREA	23 <u>vo-nu</u> 7 <u>vo-nu</u> 101 337 72 881	142 <u>bepa</u> 52 <u>bepa</u> 44 875 171 113	148 <u>enpa</u> 59 <u>enpa</u> 47 876 173 115	ceel anim alal anim rata rata rata rata	[biostatist stud, breedng] <u>kewo</u> moose popu palmated, type <u>kewo</u> somatic y chromosome, rein rate,sister chromat exchng alleles, transferrin locus genetic markers, spitzberg	<pre>bubenik,a; lochm/ auth voipio,p auth gustavsson,i; sun pathak,s; ward,o/ turabanov,mn; shu storset,a; olais/</pre>	<u>year</u> 1952 <u>year</u> 1969 1977 1971 1978

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				anam			
CODEN	<u>vo-nu</u>	hena	еппа	enim	кечо	auth	vear
	<u>vo nu</u>	<u>bepa</u>	cupa				<u>year</u>
JANSA	431	219	219	bovi	g, c bandng char, 4 specie	kieffer,nm; patha	1976
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
CJZOA	55-10	1759	1762	bibi	chrom homol wood, plain bis	ying,kl; peden,dg	1977
CODEN	W0-711	benz	0002	anim	kano	auth	voar
CODEN	<u>vo nu</u>	<u></u>	enpa				ycar
JOHEA	692	//	80	ov	fundamn karyotyp, wild,dom	bunch,td	1978
CODEN	V0-011	bepa	епра	ลกไพ	kewo	auth	vear
CRCDA	401 2	567	<u>570</u>		and annu transformin home		1071
CBCPA	400-2	207	570	ovca	ovda, ovmu, transferrin, nemo	nadler, cr; wooli/	19/1
CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	kewo	auth	<u>year</u>
JOMAA	522	461	463	ovda	chromosomes, the dall sheep	nadler,cf	1971
CODEN	VOSDU	hona	0002	anim	kemo	auth	vear
	<u>vo nu</u>	<u>bepa</u>	enpa	<u>anıı</u>			year
				оbщо			
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
				oram			
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
ZEJAA	32	53	63	caca	[heterogeneity, europe]	lehmann,e	1957

Chapter 2 - Page 51

.

UNIT 3.2: POPULATION CHARACTERISTICS

Genetic differences between populations have been recognized for some time, and external characteristics of isolated populations may be quite different from those of populations that have no natural barriers to immigration and emigration. The Svalbard reindeer population, isolated on Svalbard Island, is a striking example of external differences compared to continental populations of reindeer and caribou. Their legs are shorter, bodies more compact, hair is longer, etc. than other populations of <u>Rangifer</u> tarandus.

Research on genetic characteristics of populations has begun recently, especially on caribou and reindeer. Several studies were published in the 1970's, and more research is in progress. Reindeer are good subjects for such studies because of husbandry that has identified more or less discrete herded populations, with the wild caribou also divided into more or less distinct herds due to its behavior and natural barriers.

REFERENCES, UNIT 3.2

POPULATION CHARACTERISTICS

BOOKS

type	<u>publ</u>	<u>city</u>	page	anim	kewo		auth		year
edbo	acpr	nvnv	105	manv	population	genetics.ecolog	karlin.s:	eviatar	1976

SERIALS

00000

CODEN	<u>vo-nu</u>	bepa	<u>enpa</u>	anim	<u>kewo</u>	auth	year
CAFGA	223	155	246	od	distr,var, pacif coast reg	cowan,i mct	1936
JOMAA	393	347	367	od	mammals, guerrero, mexico	davis,wb; lukens,	1958
JWMAA	431	136	142	ođ	biochem var, heterog,s car	<pre>ramsey,pr; avise/</pre>	1979

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
ABBIA	127	711	717	odvi	hemoglob hetergeneity, w-t	huisman,thj; doz/	1968
JOMOA JOMOA	128 128	95 113	112 130	odvi odvi	morph var, cranium, mandib morph var, mandibl, skelet	rees,jw rees,jw	1969 1969
JWMAA	343	642	644	odvi	studies, the sex chromatin	crispens,cg jr; d	1970
PCGFA PCGFA	25 29	65 392	69 403	odvi odvi	blk-t, crossbrd study tenn strch gel eletroph, pop gen	whitehead,cj,jr manlove,mn; avis/	1971 1975

CODEN	vo-nu	bepa	enpa	anim	kewo	auth	<u>year</u>
JOMMA	434	539	541	odhe	black-tail,wt-tail hybrids	cowan, imt	1962
NOSCA	481	66	71 [°]	odhe	subsp overlap, north washi	nellis,ch; fairb/	1974
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
IRFOA	3 0	64	78	ceel	hybrd amng deer, impl for c	harrington,r	1973
JZOOA JZOOA	174-2 177-4	185 553	201 566	ceel ceel	reexam of subsp, red deer hybrid, red deer,sika deer	lowe,vpw; gardine lowe,vpw; gardine	1974 1975
SWNAA	231	63	70	ceel	taxonomi status, merriam's	anderson,s; barlo	1978
ZEJAA	23	142	148	ceel	[biostatist stud, breedng]	bubenik,a; lochm/	1956
					Chapter 2 - Page 53		
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	<u>year</u>
RIJUA	7	52	59	ala1	moose popu palmated, type	voipio,p	1952
.					tuk dide. A		
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo	auth	year
EXPEA	337	875	876	rata	sister chromatid exchnges	pathak,s; ward,o/	1977
GNKAA	72	171	173	rata	alleles, transferrin locus	turubanov,mn; shu	1971
HEREA	881	113	115	rata	genetic markers, spitzberg	storset,a; olais/	1978
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				anam	en e		
	1. A. 19		1				
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
			•	bibi			
					and a second		
CODEN	<u>vo-nu</u>	<u>bepa</u>	<u>enpa</u>	anim	kewo	auth	year
				ovca			
,					en e		
CODEN	vo-nu	bepa	enpa	anim	kewo	auth	year
				ovda			
na Na seriesta		an an a ang kang	ana Referencia		and a strange of the		

CODEN	vo-nu	bepa	епра	anim	kewo		_		auth		year
				obmo			• .				
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo				auth		<u>year</u>
				oram							
CODEN	<u>vo-nu</u>	bepa	enpa	anim	kewo		<u></u>		auth		year
ZEJAA	32	53	63	caca	[heter	rogeneity,	euro	pe]	lehmann,ev		1957
CODEN	vo-nu	bepa	enpa	anim	kewo				auth		year
JANSA	405	1009	1015	many	wild,	domes,dev	new	genoty	<pillett,jj;< pre=""></pillett,jj;<>	bun/	1975

CLOSING COMMENTS

Characteristics of organs and glands, chemical composition, and genetic characteristics have been introduced in CHAPTER 2. Characteristics of organs and glands are used in analyses of metabolic and behavioral functions in later CHAPTERS. Chemical compositions of the body and of milk are especially important in PART III. PHYSIOLOGY and METABOLISM OF WILD RUMINANTS.

All of the remaining CHAPTERS include direct or indirect references to CHAPTERS 1 and 2. The interdependence of material in all CHAPTERS will become more clear as the comprehensive concept of carrying capacity is evaluated.

Users of these CHAPTERS are urged to add WORKSHEETS on specific biological functions of different species. The design of this publication lends itself to such additions as both problem-solving examples and lists of published literature on other species are included. The ecological picture will become more complete in direct proportion to the number of analyses completed and biological functions related.

GLOSSARY OF SYMBOLS USED - CHAPTER TWO

AGDA = Age in daysAGYE = Age class in years ANWG = Antler weight in gms ANWK = Antler weight in kg ASHK = Ash content in kg ASHR = Fraction of ashCLWK = Calculated live weight in kg DILA = Days into lactation EBWG = Eyeball weight in gms ECPK = Energy content per kg ELWG = Eye lens weight in gms FAGD = Fetal age in daysFAT - = FatFATF = Fat fractionFATK = Fat content in kg FATP = Fat percent FRCT = FractionFRLP = Fraction of the lactation period HAWG = Hair weight in gms HIWK = Hide weight in kg HLLK = Heart, lung, liver weights in kg IFWK = Ingesta-free weight in kg JDAY = Julian day LAPE = Lactation period LBLC = Left beam length in cm LCTS = LactoseLIWK = Live weight in kg LWMG = Lens weight in milligrams MBLC = Main beam length in cm MNRL = Mineral **PROF** = **Protein** fraction PRTK = Protein content in kg PRTN = Protein RBLC = Right beam length in cm THWG = Thyroid weight in gms WATF = Water fraction WATK = Water content in kg WATR = Water

GLOSSARY OF CODE NAMES - CHAPTER TWO

5

CODEN

ACATA	Acta Anatomica
AIPAD	Anales del Instituto de la Patagonia
AJANA	American Journal of Anatomy
AJBSA	Australian Journal of Biological Sciences
AJPHA	American Journal of Physiology
AJVRA	American Journal of Veterinary Research
AMZOA	American Zoologist
ANANA	Anatomischer Anzieger
ANBEA	Animal Behaviour
ANREA	Anatomical Record
ATRLA	Acta Theriologica
AVCSA	Acta Veterinaria Scandinavica
AZOFA	Annales Zoologici Fennici
AZOSA	Acta Zoologica
BAPBA	Bulletin de l'Academie Polonaise des Sciences Serie de Sciences
BECTA	Bulletin of Environmental Contamination and Toxicology Biologiques
BGTEA	Bulletin de Groupe de Travail pour l'Etude de l'Equilibre Foret-Gibier
BIJOA	Biochemical Journal
BJLSB	Biological Journal of the Linnean Society
BJNUA	British Journal of Nutrition
BLOOA	Blood
CAFGA	California Fish and Game
CAFNA	Canadian Field Naturalist
CATRB	Calcified Tissue Research
CBCPA	Comparative Biochemistry and Physiology
СВРАВ	Comparative Biochemistry and Physiology - A comparative physiology
CJPPA	Canadian Journal of Physiology and Pharmacology
CJZOA	Canadian Journal of Zoology
CPSCA	Chesapeake Science
EVOLA	Evolution
EXPEA	Experientia
FEPRA	Federation Proceedings
FMFUB	Forma et Functio
FOBGA	Folia Biologica
FUNAA	Fauna
GCENA	General and Comparative Endocrinology
GENTA	Genetics
GNKAA	Genetika
HEREA	Hereditas

HLTPA	Health Physics
IZYBA	International Zoo Year Book
JAASA	Journal of the Alabama Academy of Science
JAECA	Journal of Animal Ecology
JANSA	Journal of Animal Science
JBCHA	Journal of Biological Chemistry
JBLPA	Jelen
JBOMA	Journal of the Bombay Natural History Society
JCECD	Journal of Chemical Ecology
JCOQA	Journal of the Colorado-Wyoming Academy of Sciences
JDSCA	Journal of Dairy Science
JDREA	Journal of Dental Research
JEEMA	Journal of Embryology and Experimental Morphology
JEZOA	Journal of Experimental Zoology
JOHEA	Journal of Heredity
JOMAA	Journal of Mammalogy
JOMOA	Journal of Morphology
JRPFA	Journal of Reproduction and Fertility
JSFAA	Journal of the Science of Food and Agricuture
JULRA	Journal of Ultrastructure Research
JWIDA	Journal of Wildlife Diseases
JWMAA	Journal of Wildlife Management
JZOAA	Journal of Zoology
KPSUA	Khimiya Prirodnykh Soedinii
MAMLA	Mammalia
MMRLA	Mammal Review
MRLTA	Murrelet, The
NATUA	Nature
NAWTA	North American Wildlife and Natural Resources Conference, Transactions of the.
NCANA	Naturaliste Canadien, Le
NYCOA	New York State Conservationist
NFGJA	New York Fish and Game Journal
NJZOA	Norwegian Journal of Zoology
NZJSA	New Zealand Journal of Science
OFWRA	Ontario Fish and Wildlife Review
PAABA	Pennsylvania Agricultural Experiment Station Bulletin
PAANA	Proceedings of the Australian Society of Animal Production
PAARA	Pennsylvania State University College of Agriculture
PASCC	Proceedings of the Alaskan Scientific Conference
PCGFA	Proceedings of the Southeastern Association of Game and Fish
	Commissioners
PCZOA	Proceedings of the International Congress of Zoology
PIAIA	Proceedings of the Iowa Academy of Science

PLNAA	Plains Anthropologist
PMACA	Papers of the Michigan Academy of Sciences, Arts and Letters
PMASA	Proceedings of the Montana Academy of Sciences
PNDAA	Proceedings of the North Dakota Academy of Science
POASA	Proceedings of the Oklahoma Academy of Science
PSEBA	Proceedings of the Society for Experimental Biology and
	Medicine
PZSLA	Proceedings of the Zoological Society of London
RIJUA	Riistatieteellisia Julkaisuja
SAGCA	Science in Agriculture
SCAMA	Scientific American
SCIEA	Science
SOVEA	Southwestern Veterinarian
SSBLA	Seliskokhozyaistvennaya Biologiya
SWNAA	Southwestern Naturalist
TGANA	Tsitologiya I Genetika
TISAA	Transactions of the Illinois State Academy of Science
TKASA	Transactions of the Kentucky Academy of Science
TNWSD	Transactions of the Northeast Section, The Wildlife Society
TRNZA	Transactions of the Royal Society of New Zealand
VCSZA	Vestnik Ceskoslovenske Spolecnosti Zoologicke
VESMA	Vesmir
VEZOA	Vestnik Zoologii
VILTA	Viltrevy
VIWIA	Virginia Wildlife
VJSCA	Virginia Journal of Science
WAEBA	Wyoming Agricultural Experiment Station Bulletin
WLMOA	Wildlife Monographs
WSCBA	Wisconsin Conservation Bulletin
7 A SMA	Zoologicah Abbandlungan
ΖΑΟΓΙΑ	Zoologisch Abbahulungen Zeitechrift fuer lagdwissenschaft
ΖΕΥΤΔ	Zeitechrift fuer TiernevchologieAc
ZOBIA	Zercechille luer llerpsychologiene Zhurnal Obehehed Biologii
201.74	Zoologicheskii Zhurnal
20024	
2001A 794FA	20010gica Zoitaabrift fuor Caoucotiorkundo
20868 77758	Zeitschlift fuor Tiernbreieleete Tierernachrung und
DI IFA	Futtermittelkunde
ZZAHA	Zeitschrift fuer Zellforschung und Mikroskopisch Anatomie

LIST OF PUBLISHERS - CHAPTER TWO

acpr	Academic Press	New York	nyny
butt	Butterworth	Washington, D.C.	wadc
edar	Edward Arnold	London	loen
haro hutc	Harper and Row Hutchinson	New York London	nyny loen
isup	Iowa State University Press	Ames, IO	amia
jblc	J. B. Lippincott Co.	Philadelphia, PA	phpa
nasc	National Academy of Science	Washington, D.C.	wadc
pepr	Pergamon Press	Oxford, England	oxen
saco	Saunders Publishing Co.	Philadelphia, PA	phpa
whfr	W. H. Freeman Co.	San Francisco, CA	sfca

.

LIST OF WORKSHEETS - CHAPTER TWO

1.1a	Body weight: antler characteristic relationships of	0.
		8a 01
1.10	Age:antier weight relationships of elk (ceel)	8D
1.1c	Antler weight: main beam length relationships of elk (ceel) \cdots	8c
1.3a	Live weight: hide weight relationships for	
	white-tailed deer (odvi)	L4a
1.3b	Hair weight:live weight relationships for	
	white-tailed deer (odvi)	L4Ъ
1 5-	Tetal and the second data of fatal and de	
1. Ja	retal age weights as a predictor or retal age in	04.0
1 51	$\mathbf{Dry} \text{ weight of the lenses of white-tailed deer as a}$.4d
1.50	function of age (odvi)	94h
1.7a	Seasonal changes in thyroid gland weights of	
	white-tailed deer (odvi)	32a
0.1.		101
2.1a 2.1k	Bolative bady compositions of wild wordparts	01 01
2.10	Relative body compositions of wild ruminants 4	00
2.2a	Chemical composition of milk	6a
2.2Ъ	Energy content of milk	6b

•