A SERIES OF BOOKS IN AGRICULTURAL SCIENCE

Animal Science

EDITORS

G. W. Salisbury

E. W. Crampton (1957-1970)

WILDLIFE ECOLOGY

AARON N. MOEN

Cornell University

with a foreword by Douglas L. Gilbert Colorado State University

W. H. FREEMAN AND COMPANY

SAN FRANCISCO

Copyright © 1973 by W. H. Freeman and Company

No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use without written permission of the publisher.

Printed in the United States of America

123456789

Library of Congress Cataloging in Publication Data

Moen, Aaron N 1936– Wildlife ecology.

Bibliography: p. 1. Zoology—Ecology. 2. Wildlife management. 3. Ruminantia. I. Title. QH541.M54 599'.735'045 73-6833 ISBN 0-7167-0826-4

CONTENTS

Foreword	xiii
Preface	xv
Acknowledgments	xvii

PART 1

LIFE, INTERACTIONS, AND ECOLOGICAL MODELING

1	PRODUCTIVITY GRADIENTS	3	
	1-1 The concept of life	3	
-	1-2 The role of the analytical ecologist	4	
	1-3 Dead or alive	5	
	1-4 Productivity of the individual	5	
	1-5 The natural mosaic	7	
	1-6 Interspecies interaction	10	
	1-7 Intraspecies interaction	11	
	1-8 Reproductive patterns	12	
	1-9 A theoretical mosaic	13	
2	INTERACTIONS BETWEEN ORGANISMS AND ENVIRONMENT	16	
	2-1 Functional relationships	16	
	2-2 The scope of the environment	21	
	OPERATIONAL, POTENTIAL, AND HISTORICAL RELATIONSHIPS	21	
	TIME	24	
	ASSOCIATED RELATIONSHIPS	25	
	HABITAT EVALUATION	26	
3	ECOLOGICAL MODELING AND SIMULATION	32	
	3-1 Mathematical models	33	
	3-2 The analytical model in ecology	36	

PART 2

THE DISTRIBUTION OF MATTER AND ENERGY IN TIME AND SPACE

4	SOIL, WATER, AND TOPOGRAPHY	43
	4-1 Soil	44
	PHYSICAL CHARACTERISTICS	44
	SOIL PROFILE	46
	SOIL WATER	46
	CHEMICAL CHARACTERISTICS	47
	BIOLOGICAL CHARACTERISTICS	48
	4-2 Soil classification in transition	51
	4-3 Eutrophication	52
	4-4 Biogeochemical cycles	53
5	WEATHER IN RELATION TO	
	PHYSICAL CHARACTERISTICS	57
	5-1 The distribution of sunlight	57
	THE ATMOSPHERE	60
	5-2 Atmospheric water	62
	5-3 Precipitation	62
	RAIN	62

		02
	RAINFALL IN RELATION TO SOIL AND TOPOGRAPHY	60
	SNOW	68
	CONDUCTIVITY	69
5-4	Snow cover in relation to kinetic energy	69
	WINDPACK	69
	THE EFFECT OF WINDBREAKS	70
	SNOWFALL INTERCEPTION	72
	THE ROLE OF SNOW IN A PRECIPITATION-CANOPY-SUBSTRATE MODEL	7
	THE EFFECT OF SNOW DISTRIBUTION ON ANIMALS	72

6 WEATHER AND THE PROCESSES OF THERMAL EXCHANGE

6-1	The four modes of heat transfer	75
6-2	Radiant energy exchange	76
	THE ELECTROMAGNETIC SPECTRUM	76
	SOLAR RADIATION	77
	INFRARED RADIATION	78
	ATMOSPHERIC TRANSMISSION AND ABSORPTION CHARACTERISTICS	78
	ATMOSPHERIC EMISSION	80
	RADIATION FROM PHYSICAL AND BIOLOGICAL OBJECTS	84
	EMISSIVITY AND REFLECTIVITY OF SNOW	85
	RADIANT TEMPERATURE IN RELATION TO AIR TEMPERATURE	85

CONTENTS vii

6-3	Instrumentation for measuring radiation	90
6-4	Convection	92
	AIR MOVEMENT	92
	MEAN VELOCITY WIND PROFILES	93
6-5	Convective heat loss	94
6-6	Conduction	97
6-7	Heat loss by evaporation	98
6-8	Conclusion	103

PART 3

METABOLISM AND NUTRITION

7	ENERGY METABOLISM	109
	7-1 Basal metabolism and associated terminology	110
	USES FOR MEASUREMENTS OF BASAL METABOLIC RATE	110
	CONDITIONS FOR MEASUREMENT	110
	ASSOCIATED TERMINOLOGY	112
	7-2 Measurements of basal metabolic rate	112
	DIRECT METHODS	112
	INDIRECT METHODS	112
	CALCULATION OF HEAT PRODUCTION	113
	7-3 Metabolic rates of ruminants	115
	RELATIONSHIPS OF BODY WEIGHT	115
	METABOLIC RATES OF WILD RUMINANTS	116
	FASTING METABOLISM OF DOMESTIC RUMINANTS	120
	7-4 Metabolic rates of other animals	120
	7-5 Factors influencing energy metabolism and heat production	123
	THE RELATIONSHIP BETWEEN HEAT PRODUCTION AND SURFACE AREA	126
	HEAT INCREMENTS DUE TO DIET	127
	HEAT INCREMENTS DUE TO ACTIVITY	127
	NONSHIVERING THERMOGENESIS	127
	SEX DIFFERENCES	128
	REPRODUCTIVE CONDITION	128
	RHYTHMIC CHANGES IN THE BASAL METABOLIC RATE	129
	INSULATION CHARACTERISTICS	129
	WEATHER	130
	PATHOGENS AND PARASITES	130
	7-6 Social and psychological effects on heat production	130
3	DIGESTION	7.25
		135
	8-1 The definition of digestion	135
	8-2 A research philosophy	135
	8-3 Chemical composition of food materials	136
	WATER	137
	NITROGENOUS SUBSTANCES—CRUDE PROTEIN	137
	CARBOHYDRATES	138

CONTENTS

		CARBOHYDRATES—CRUDE FIBER	138
		ETHER EXTRACT	138
		ASH	138
		SUMMARY OF PROXIMATE ANALYSIS	139
	8-4	The nutritive evaluation of forages	139
	8-5	The alimentary canal	141
		ANATOMY	141
		HISTOLOGY	144
	8-6	Mechanical and secretory processes in digestion	145
		INGESTION	147
		SALIVATION AND MASTICATION	147
		RUMINATION	147
		STOMACH AND INTESTINAL MOVEMENTS	147
		DEFECATION	149
	8-7	Chemical processes of digestion	149
		RUMEN MICROORGANISMS	150
		FERMENTATION	151
		pH	153
	8-8	Products of fermentation	153
		HEAT ENERGY	153
		GASES	153
		VOLATILE FATTY ACIDS	154
		PROTEIN	156
		VITAMINS AND MINERALS	157
	8-9	Passage of digesta through the gastrointestinal tract	157
		Digestion and absorption in the gastrointestinal tract	159
		Summary	159
9	ING	GESTION AND NUTRIENT UTILIZATION	164
	9-1	Variations in nutrient intake	164
		SEASONAL VARIATIONS	164
		INDIVIDUAL VARIATIONS	165
	9-2	Regulation of nutrient intake	166
		RELATIONSHIP TO WEIGHT	166
		RELATIONSHIP TO ENERGY EXPENDITURE	167
		CONTROL OF INTAKE	167
	9-3	Energy utilization	
		PATHWAYS OF ENERGY UTILIZATION	171
		NET ENERGY FOR MAINTENANCE	172
		NET ENERGY FOR PRODUCTION	175
		SUMMARY OF ENERGY UTILIZATION	176
	9-4	Protein utilization	176
		Efficiency of nutrient utilization	176 177
		DIGESTION COEFFICIENTS	177
		NET ENERGY AND PROTEIN COEFFICIENTS	177
		METABOLIC EFFICIENCY	177
	9-6	Body growth	178
		Summary	182

viii

PART 4

BEHAVIORAL FACTORS IN RELATION TO PRODUCTIVITY

10	THE ORGANISM AS A FUNDAMENTAL UNIT IN A POPULATION	189
	10-1 Energy, matter, and time	190
	10-2 Biological chronology	191
11	INTRASPECIES INTERACTION	206
	11-1 Sensory perception	206
	11-2 Protective behavior and family ties	213
	11-3 Movement patterns	214
	11-4 Feeding behavior	216
	11-5 Rest	216
	11-6 Play	217
	11-7 Social order	217
	DOMINANCE PATTERNS	217
	11-8 Radio telemetry and behavioral analyses	218
12	INTERSPECIES INTERACTION	225
	12-1 Predator-prey relationships	226
	12-2 Factors affecting predation rates	228
	12-3 Energetic considerations	230
	TROPHIC LEVELS	232
	12-4 Man as a predator	235
	12-5 Parasites and pathogens	236
	12-6 Competition	238
	12.7 Conclusion	238

PART 5

ENERGY FLUX AND THE ECOLOGICAL ORGANIZATION OF MATTER

13	THERMAL ENERGY EXCHANGE BETWEEN ORGANISM AND ENVIRONMENT	245
	13-1 Thermal energy exchange	245
	13-2 The concept of homeothermy	246
	REGIONS OF THERMAL EXCHANGE	247
	ANALYSES OF HOMEOTHERMIC RELATIONSHIPS	249
	13-3 Measurement of thermal parameters	250
	CONDUCTION COEFFICIENTS	250
	TEMPERATURE-PROFILE MEASUREMENTS	253

x CONTENTS

	TEMPERATURE PROFILES IN FREE CONVECTION	254
	TEMPERATURE PROFILES IN FORCED CONVECTION	254
	TEMPERATURE PROFILES UNDER RADIANT ENERGY LOADS	255
	13-4 Radiant surface temperature related to air temperature	258
	13-5 The concept of thermal depth	261
	13-6 Geometry and surface area	262
	13-7 The calculation of heat loss	265
14	PHYSIOLOGICAL, BEHAVIORAL, AND GENETIC	
	RESPONSES TO THE THERMAL ENVIRONMENT	273
	14-1 The role of the animal in thermal energy exchange	2.5.2
	14-2 The thermal regime and the critical thermal environment	273
	14-3 Heat loss in relation to heat production	274
	14-4 Physiological responses to the thermal environment	275
	THERMOGENIC RESPONSES	276
	THERMOREGULATORY RESPONSES	277
	14-5 Behavioral responses	281
	INDIVIDUAL RESPONSES	286
		286
	GROUP RESPONSES	292
	14-6 Genetic responses	293
	14-7 Summary	296
15	THE ORGANIZATION OF ENERGY AND MATTER	
	IN PLANT AND ANIMAL COMMUNITIES	299
	15-1 Taxonomic relationships	300
	15-2 Morphological relationships	300
	15-3 Chemical relationships	306
	15-4 Temporal relationships	308
	SUCCESSION	314
	15-5 A plant-production model	316
	A GEOMETRIC MODEL	316
	A SEASONAL MODEL	318
	A PHYSIOLOGICAL MODEL FOR PREDICTING NET PHOTOSYNTHESIS	321
	15-6 Perturbations	325
	OVERGRAZING	325

FIRE

PART 6

325

333

PRODUCTIVITY, POPULATIONS, AND DECISION-MAKING

A BIOLOGICAL BASIS FOR THE CALCULATION OF CARRYING CAPACITY 16-1 The conceptual design

16-1	The conceptual design	333
16-2	Protein requirements of the individual animal	334
	PROTEIN REQUIREMENTS FOR MAINTENANCE	334
	PROTEIN REQUIREMENTS FOR PRODUCTION	336

CONTENTS xi

	PROTEIN REQUIREMENTS FOR GESTATION	336
	MILK PRODUCTION	341
	SUMMARY OF THE PROTEIN REQUIREMENTS OF THE INDIVIDUAL	344
	16-3 Energy requirements of the individual animal	347
	ENERGY REQUIREMENTS FOR MAINTENANCE AND ACTIVITY	347
	ENERGY REQUIREMENTS FOR PRODUCTION	352
	ENERGY REQUIREMENTS FOR GESTATION	352
	MILK PRODUCTION	354
	SUMMARY OF THE ENERGY REQUIREMENTS OF THE INDIVIDUAL	356
17	MATHEMATICAL ANALYSES OF FACTORS	
	AFFECTING CARRYING CAPACITY	365
	17-1 The carrying-capacity model	365
	17-2 The program format	367
	INPUTS FOR ANIMAL REQUIREMENTS	367
	INPUTS DESCRIBING THE RANGE SUPPLY	368
	DECISIONS	369
	17-3 Constraints in the animal-range relationship	370
	17-4 Program outputs	371
	17-5 The dynamic characteristics of the animal-range	
	relationships	372
	17-6 Weight changes	372
	ABSOLUTE VALUES	372
	PERCENTAGE OF BODY WEIGHT	373
	LACTATION EFFECTS	374
-	17-7 Forage ingested	375
	RELATIONSHIP TO BODY WEIGHT	375
	MAINTENANCE-GAIN COMPARISONS	375
	FORAGE CONSUMPTION DURING GESTATION	377
	FORAGE INGESTED AS A FRACTION OF THE PHYSICAL RUMEN CAPACITY	378
	17-8 Physiological efficiency	380
	METABOLIC FECAL NITROGEN AND NET PROTEIN RELATIONSHIPS	380
		300
	METABOLIC FECAL NITROGEN, FORAGE INGESTED, AND NET PROTEIN COEFFICIENT RELATIONSHIPS	380
	METABOLIC FECAL NITROGEN, BODY WEIGHT, AND NET PROTEIN	500
	METADOEIC IECAE MIROGEN, DODI WEIGHI, AND NEI IROIEIN	
	COEFFICIENT RELATIONSHIPS	381
	COEFFICIENT RELATIONSHIPS BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN	381
	COEFFICIENT RELATIONSHIPS BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS	381 382
	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN	
	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS	382
	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days	382 383
	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE	382 383 384
	 BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH 	382 383 384 386
	 BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH FORAGE PRODUCTION AT DIFFERENT STAGES IN SUCCESSION 	382 383 384 386 388
11	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH FORAGE PRODUCTION AT DIFFERENT STAGES IN SUCCESSION 17-10 Summary	382 383 384 386 388 388
18	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH FORAGE PRODUCTION AT DIFFERENT STAGES IN SUCCESSION 17-10 Summary 3 N-DIMENSIONAL POPULATION STRUCTURES	382 383 384 386 388 388
18	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH FORAGE PRODUCTION AT DIFFERENT STAGES IN SUCCESSION 17-10 Summary 3 N-DIMENSIONAL POPULATION STRUCTURES 18-1 Sex and age ratios	382 383 384 386 388 388
18	BODY WEIGHT, NET PROTEIN COEFFICIENT, AND PHYSICAL RUMEN CAPACITY RELATIONSHIPS 17-9 The expression of carrying capacity in deer-days EFFECTS OF BODY SIZE EFFECTS OF BODY SIZE EFFECTS OF SNOW DEPTH FORAGE PRODUCTION AT DIFFERENT STAGES IN SUCCESSION 17-10 Summary 3 N-DIMENSIONAL POPULATION STRUCTURES	382 383 384 386 388 388 388

xii CONTENTS

	18-4 Population requirements for protein 18-5 Population requirements for energy	400 400
	18-6 Other population dimensions	400
19	PREDICTING POPULATION DYNAMICS	404
	19-1 Ecological productivity gradient	404
	19-2 The relative importance of different variables	405
	ANIMAL REQUIREMENTS	405
	RANGE SUPPLY	406
	FACTORS AFFECTING BOTH ANIMAL REQUIREMENTS AND RANGE SUPPLY	406
	19-3 Factors to consider in population analyses	408
	19-4 Population analyses for $n = 1, 2, \ldots n$	408
	MORPHOLOGICAL AND PHYSIOLOGICAL CONSIDERATIONS	409
	BEHAVIORAL CONSIDERATIONS	410
	A THEORETICAL AVERAGE DEER	410
	19-5 Time in relation to biological events	411
	SEASONAL CHANGES IN ANIMALS AND PLANTS	411
	THE IMPORTANCE OF SEASONAL CHANGES	412
	VARIATIONS IN THE TIME OF BREEDING	413
20	ECOLOGICAL ANALYSES AND DECISION-MAKING	
	PROCEDURES	418
	20-1 The simulation of management practices	418
	BIOLOGICAL CONSIDERATIONS	419
	SOCIAL AND ECONOMIC CONSIDERATIONS	419
	POLITICAL CONSIDERATIONS	420
	20-2 Conclusion	420

APPENDIXES

A-1	Weights and Measurements	425
A-2	Weather, Thermal Factors, and the Julian Calendar	428
A-3	Weight and Metabolic Weight	432
A-4	Radiant Temperature in Relation to Air Temperature	433
A-5	Surface Area in Relation to Weight	436
A-6	Symbols	438
A-7	Reference Books	440
A-8	Instructions for Contributors to the Professional Literature	442

INDEX

FOREWORD

In recent years, environmental problems have created great general concern. Thus, the time has come when a revitalized and more effective approach to the management of natural resources is necessary. This is especially true in light of increased human populations.

In the past, individual abuses of the natural resources have been treated as isolated problems—an approach doomed to failure. Instead, individual abuses can be seen as parts of a larger problem: the increasing pressure of an expanding population on dwindling nature resources. That problem often appears overwhelming. In seeing it, many have given up in despair. But a great problem may be broken down; each part can be attacked separately and perhaps solved. Bit by bit the big problem becomes solvable. The importance of each issue, whether it be protein availability, harvest of females, or disposal of waste pollutants, depends on the particular role of the issue in the overall environmental structure.

Wild animals, and the management of them are a vital part of the environmental "machine," a part that also is made of smaller parts. Age, sex, and time of year affect the physiology of an individual animal. These, together with nutritional factors, genetic history, and features of the physical environment, combine in the complex system that determines the interactions between an animal, other organisms, and the land.

It is the essence of the wildlife manager's job that he understand the system and be able to work with it. He must understand how an organism fits into the ecosystem. He must understand the effects of the organism on its total environment and the effects of the environment on the organism.

In *Wildlife Ecology: an analytical approach*, Professor Moen has analyzed this natural system. He evaluates each component and welds them together into a unified whole. Although most of the examples deal with white-tailed deer, the concepts are applicable to the other wild ruminants and, indeed, to all organisms.

Professor Moen's creative research and dedication have produced a work in which traditional pieces of wildlife management—numbers and conditions of animals, nutritive values of range plants, behavior patterns—are at last presented as parts of a greater whole. This book should be made available to every wildlife professional, whether technician, manager, biologist, conservation officer, administrator or researcher. It is an important publication and the time for it has come.

Douglas L. Gilbert

Colorado State University Fort Collins, Colorado September 1972

PREFACE

Rapid advances in analytical capabilities within the last fifteen years have made it possible for the ecologist to do things within a time dimension that were unheard of a few years ago. The capabilities for rapid analyses pose a threat to the discipline of ecology, however, because there can be a tendency to use numbers, large quantities of them, hoping by some magical means of computer analysis to find some relationships emerge.

The reorganization of numbers within a computer program of storage and computation is nothing more than a rapid bookkeeping system. Computers used in such a way do not usually help much in gaining insight into the mechanisms that are operating in the natural world. They tend to promote a false sense of security.

The real benefits of computer analyses emerge if they are used to extend the analyst's capabilities for analyzing the relationship between one factor or force and another factor or force in the ecosystem. It is important to realize that the human mind must always be ahead of the computer, with the electronic system doing rapid computations that are too numerous and time-consuming to do in any other manner. This suggests that the first models built by analytical ecologists are of necessity very simple ones. Let them be no more complex than the model builder can fully comprehend, insuring that he knows not only the capabilities of his analytical model but also its weakness. A progression of such simple models will result in more complex, working models that represent a *known* portion of the ecosystem.

In this book I have aimed at promoting the building of simple but workable models. They do not require large computer centers for their use; small desk-top computing systems are entirely adequate. In fact, many of the models suggested can be done manually, with the principles of model building illustrated just as well. Thus the book should be of interest to ecology classes in many types of educational institutions, from the small college to the major university. I am convinced that, wherever the student is located, the major factor that will determine his progress in ecology is his ability to think, along with the guidance of a professor who stimulates thinking about meaningful ecological relationships.

Aaron N. Moen

April 1973

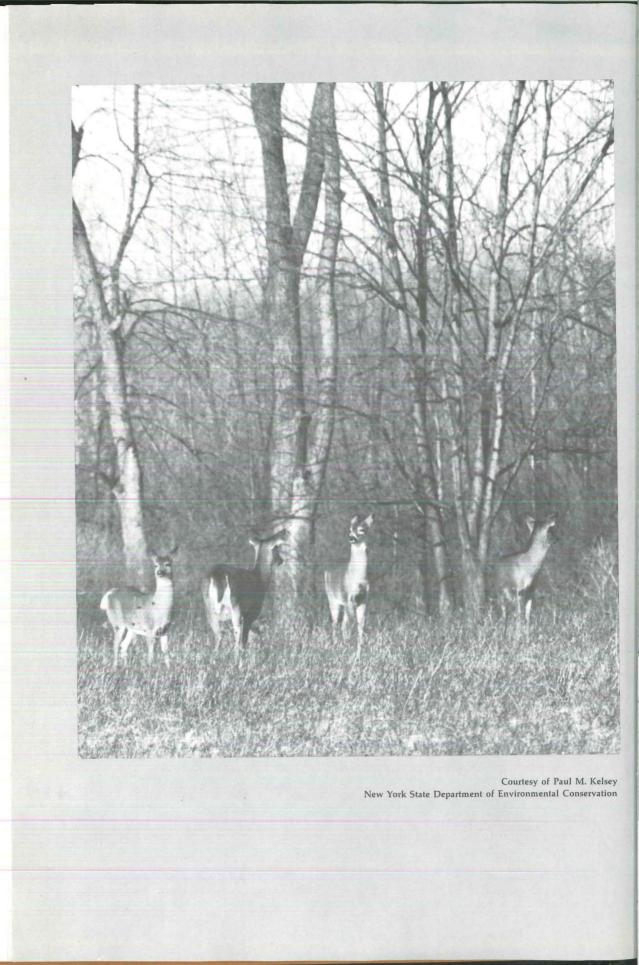
ACKNOWLEDGMENTS

of am erof ps.

oen

The completion of a book is not possible without the help of many people. My own efforts have been made possible through the kind direction and guidance given to me by my parents on their farm in western Minnesota. The opportunities for contact with wild animals and native plants in that area stirred within me an interest to pursue an understanding of the relationships between organism and environment.

My academic career in the field of natural resources began under the guidance of Dr. Max Partch at St. Cloud State College. His enthusiasm for teaching in the field impressed me greatly. Dr. William H. Marshall, of the University of Minnesota, gave me opportunities, freedom, and responsibility as I pursued a Ph.D. The most significant academic work that permitted me to delve into the energy relationships of deer at that time was that of Helenette Silver and her colleagues at the New Hampshire Fish and Game Department and the University of New Hampshire. Without her pioneering efforts in the field of energy metabolism of white-tailed deer, my Ph.D. dissertation could not have started me on the challenging research on the energetics of a free-ranging animal.


I wish to thank the many friends I have made in the field of wildlife management, especially the deer biologists in the State of New York who always provide stimulating interaction as we proceed together to understand this most important resource in New York State. My colleagues at Cornell, especially Dr. Peter Van Soest of the Department of Animal Science, have provided many insights into the animal-environment relationships currently under investigation. Dr. Douglas L. Gilbert, formerly at Cornell and now at Colorado State University, has discussed big-game management with me on many occasions. Dr. Donald Ordway and his staff of aerodynamic engineers have been of great help in our thermal analyses at the BioThermal Laboratory. Dr. Dwight A. Webster, former head of the Department of Natural Resources, and the administrators of the Agricultural Experiment Station at Cornell have all been most helpful as I established a research program at the BioThermal Laboratory. Funds for research at the Laboratory have been contributed through the Pittman-Robertson Federal Aid program, Project W-124-R, and the New York State Department of Environmental Conservation. Additional funds from the Agricultural Experiment Station at Cornell, the Cornell Research Grants Committee, the National Science Foundation, The Loyalhanna Foundation, and the National Rifle Association have helped support the work at the BioThermal Laboratory.

The staff at the Laboratory has contributed significantly to the work that is described in this text. My respect for the abilities and dedication of my students cannot be fully expressed by acknowledgment but will be manifested by their contributions in the future. I must recognize the help and accomplishments of former students, especially Dr. Keith E. Evans and Dr. Deborah S. Stevens. The work of Nadine L. Jacobsen and Charles T. Robbins, both Ph.D. candidates studying the energy relationships of deer, has provided much insight into the complex animal-environment relationships that are the focus of study at the Laboratory. William Armstrong, laboratory technician, has helped in the design and construction of research equipment and in the care of our experimental deer herd. Richard E. Reynolds, foreman at the Ithaca Game Farm, has contributed much to the program with his help in the construction of the deer pens, maintenance of the facilities, and continual attention to our needs. Eleanor Horwitz offered many fine suggestions on ways to improve the manuscript. I appreciate her efforts to convince me to say things in the simplest way possible.

Students in my courses have raised many stimulating questions. I wish that each one of them could participate actively rather than passively in the educational process of research and discovery.

Finally, the help and encouragement of my wife, Sharon, and of Ronald, Thomas, Daniel, and Lindy cannot be fully expressed in words. It has often been impossible to keep up with some of the domestic duties confronting every husband and father because of the urgency of research according to a biological clock and my own intense interest in the subject. As Tom (age 9) said when I suggested I might write another book, "Oh no, not another five years of that!"

	WILD	LIFE ECOLOGY	
		×.	
and the second second			
The second second			
A DESCRIPTION OF	-		
A CONTRACTOR OF			
and the second se			

