Section 4.1: Fitting a Line by Least Squares

Often we want to fit a straight line to data.

For example from an experiment we might have the following data showing the relationship of density of specimens made from a ceramic compound at different pressures.

By fitting a line to the data we can predict what the average density would be for specimens made at any given temperature, even pressures we did not investigate experimentally.

For a straight line we assume a model which says that on average in the whole population of possible specimens the average density, y, value is related to pressure, x, by the equation

$$y \approx \beta_0 + \beta_1 x$$

The population (true) intercept and slope are represented by Greek symbols just like μ and σ.
For the measured data we fit a straight line

\[\hat{y} = b_0 + b_1 x \]

For the \(i \)th point, the fitted line or predicted value is

\[\hat{y}_i = b_0 + b_1 x_i \]

The fitted line is most often determined by the method of “least squares”.

This is the optimal method to use for fitting the line if

- The relationship is in fact linear.
- For a fixed value of \(x \) the resulting values of \(y \) are
 - normally distributed with
 - the same constant variance at all \(x \) values.

If these assumptions are not met, then we are not using the best tool for the job.

For any statistical tool, know when that tool is the right one to use.
A least squares fit minimizes the sum of squared deviations from the fitted line \(\hat{y} \)

\[
\text{minimize } \sum (y_i - \hat{y}_i)^2
\]

Deviations from the fitted line are called “residuals”
- We are minimizing the sum of squared residuals,
- called the “residual sum of squares.”

We need to
- minimize \(\sum (y_i - (b_0 + b_1 x_i))^2 \)
- over all possible values of \(b_0 \) and \(b_1 \)
- a calculus problem.

The resulting formulas for the least squares estimates of the intercept and slope are

\[
b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
\]

\[
b_0 = \bar{y} - b_1 \bar{x}
\]

\[
\hat{y} = \bar{y} - b_1 \bar{x} + b_1 x
\]

\[
\hat{y} - \bar{y} = b_1 (x - \bar{x})
\]
\hat{y} - \bar{y} = b_i(x - \bar{x}). \text{ When } x = \bar{x}, \text{ then } y = \bar{y}.

If we have average pressure, \(x\), then we expect to get about average density, \(y\).

The sample (linear) correlation coefficient, \(r\), is a measure of how “correlated” the \(x\) and \(y\) variable are.

The correlation coefficient is between -1 and 1

+1 means perfectly positively correlated
0 means no correlation
-1 means perfectly negatively correlated

The correlation coefficient is computed by

\[
r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}
\]
The slope, \(b_1 \), and the correlation coefficient are related by

\[
b_1 = \frac{r \cdot SD_y}{SD_x} = \frac{\text{rise}}{\text{run}}
\]

- \(SD_y \) is the standard deviation of y values and
- \(SD_x \) is the standard deviation of x values.

For every \(SD_x \) run on the x axis, the fitted line rises \(r \cdot SD_y \) units on the y axis.

So if x is a certain number of standard deviations above average, \(\bar{x} \),

- then y is, on average, the fraction r times that many standard deviations above average, \(\bar{y} \).

For example if

- the correlation is \(r = 0.9 \)
- the pressure, x, is 2 standard deviations above average \(\bar{x} \)
- Then we expect the density, y, will be about

 \[0.9(2) = 1.8 \text{ standard deviations above average } \bar{y}. \]
Interpretation of r^2 or R^2

$R^2 =$ fraction of variation accounted for (explained by) the fitted line.

Ceramic Items Page 124

<table>
<thead>
<tr>
<th>Pressure</th>
<th>y = Density</th>
<th>y - mean</th>
<th>(y-mean)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2486</td>
<td>-181</td>
<td>32761</td>
</tr>
<tr>
<td>2000</td>
<td>2479</td>
<td>-188</td>
<td>35344</td>
</tr>
<tr>
<td>2000</td>
<td>2472</td>
<td>-195</td>
<td>38025</td>
</tr>
<tr>
<td>4000</td>
<td>2558</td>
<td>-109</td>
<td>11881</td>
</tr>
<tr>
<td>4000</td>
<td>2570</td>
<td>-97</td>
<td>9409</td>
</tr>
<tr>
<td>4000</td>
<td>2580</td>
<td>-87</td>
<td>7569</td>
</tr>
<tr>
<td>6000</td>
<td>2646</td>
<td>-21</td>
<td>441</td>
</tr>
<tr>
<td>6000</td>
<td>2657</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td>6000</td>
<td>2653</td>
<td>-14</td>
<td>196</td>
</tr>
<tr>
<td>8000</td>
<td>2724</td>
<td>57</td>
<td>3249</td>
</tr>
<tr>
<td>8000</td>
<td>2774</td>
<td>107</td>
<td>11449</td>
</tr>
<tr>
<td>8000</td>
<td>2808</td>
<td>141</td>
<td>19881</td>
</tr>
<tr>
<td>10000</td>
<td>2861</td>
<td>194</td>
<td>37636</td>
</tr>
<tr>
<td>10000</td>
<td>2879</td>
<td>212</td>
<td>44944</td>
</tr>
<tr>
<td>10000</td>
<td>2858</td>
<td>191</td>
<td>36481</td>
</tr>
</tbody>
</table>

mean 6000 2667 sum 0 289366
st dev 2927.7 143.767
correlation 0.991
correl^2 0.982
- If we don't use the pressures to predict density
 - We use \bar{y} to predict every y_i
 - Our sum of squared errors is $\sum (y_i - \bar{y})^2 = 289,366 =$ SS Total in Excel
- If we do use the pressures to predict density
 - We use $\hat{y}_i = b_0 + b_1 x_i$ to predict y_i
 - $\sum (y_i - \hat{y}_i)^2 = 5152.67 =$ SS Residual in Excel

<table>
<thead>
<tr>
<th>Observation</th>
<th>Predicted Density</th>
<th>Residuals</th>
<th>Residual^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2472.333</td>
<td>13.667</td>
<td>186.778</td>
</tr>
<tr>
<td>2</td>
<td>2472.333</td>
<td>6.667</td>
<td>44.444</td>
</tr>
<tr>
<td>3</td>
<td>2472.333</td>
<td>-0.333</td>
<td>0.111</td>
</tr>
<tr>
<td>4</td>
<td>2569.667</td>
<td>-11.667</td>
<td>136.111</td>
</tr>
<tr>
<td>5</td>
<td>2569.667</td>
<td>0.333</td>
<td>0.111</td>
</tr>
<tr>
<td>6</td>
<td>2569.667</td>
<td>10.333</td>
<td>106.778</td>
</tr>
<tr>
<td>7</td>
<td>2667.000</td>
<td>-21.000</td>
<td>441.000</td>
</tr>
<tr>
<td>8</td>
<td>2667.000</td>
<td>-10.000</td>
<td>100.000</td>
</tr>
<tr>
<td>9</td>
<td>2667.000</td>
<td>-14.000</td>
<td>196.000</td>
</tr>
<tr>
<td>10</td>
<td>2764.333</td>
<td>-40.333</td>
<td>1626.778</td>
</tr>
<tr>
<td>11</td>
<td>2764.333</td>
<td>9.667</td>
<td>93.444</td>
</tr>
<tr>
<td>12</td>
<td>2764.333</td>
<td>43.667</td>
<td>1906.778</td>
</tr>
<tr>
<td>13</td>
<td>2861.667</td>
<td>-0.667</td>
<td>0.444</td>
</tr>
<tr>
<td>14</td>
<td>2861.667</td>
<td>17.333</td>
<td>300.444</td>
</tr>
<tr>
<td>15</td>
<td>2861.667</td>
<td>-3.667</td>
<td>13.444</td>
</tr>
</tbody>
</table>

5152.666667 sum
The percent reduction is our error sum of squares is

\[R^2 = \frac{\sum (y_i - \bar{y})^2 - \sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \times 100 = \frac{289,366 - 512.67}{289,366} \times 100 = \frac{284,213.33}{289,366} \times 100 \]

\[R^2 = 98.2\% \]

Using x to predict y decreases the error sum of squares by 98.2%.

The reduction in error sum of squares from using x to predict y is

- Sum of squares explained by the regression equation
- 284,213.33 = SS Regression in Excel

This is also the correlation squared.

\[r^2 = 0.991^2 = 0.982 \]

For a perfectly straight line

- All residuals are zero.
 - The line fits the points exactly.
- SS Residual = 0
- SS Regression = SS Total
 - The regression equation explains all variation
- \(R^2 = 100\% \)
- \(r = \pm 1 \)
 - \(r^2 = 1 \)

If \(r=0 \), then there is no linear relationship between x and y

- \(R^2 = 0\% \)
- Using x to predict y does not help at all.
Checking Model Adequacy

With only single x variable, we can tell most of what we need from a plot with the fitted line.

Plotting residuals will be most crucial in section 4.2 with multiple x variables
 • But residual plots are still of use here.

Plot residuals versus
 • Predicted values \(\hat{y} \)
 • Versus x
 • In run order
 • Versus other potentially influential variables, e.g. technician
 • Normal Plot of residuals
A residual plot gives us a magnified view of the increasing variance and curvature.

This residual plot indicates 2 problems with this linear least squares fit
- The relationship is not linear
 - Indicated by the curvature in the residual plot
- The variance is not constant
 - So the least squares method isn't the best approach even if we handle the nonlinearity.

Don't fit an exponential function to these data directly with least squares.
- With increasing variability, not all squared errors should count equally.
 - An error of 5 for x=1
 - Is a bigger problem than an error of 5 for x=16.
Some Study Questions

What does it mean to say that a line fit to data is the "least squares" line? Where do the terms least and squares come from?

We are fitting data with a straight line. What 3 assumptions (conditions) need to be true for a linear least squares fit to be the optimal way of fitting a line to the data?

What does it mean if the correlation between x and y is -1? What is the residual sum of squares in this situation?

If the correlation between x and y is 0, what is the regression sum of squares, SS Regression, in this situation?

If x is 2 standard deviations above the average x value and the correlation between x and y is -0.6, the expected corresponding y values is how many standard deviations above or below the average y value?
Consider the following data.

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Significance F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>57.6</td>
<td>57.6</td>
<td>12</td>
<td>0.041</td>
</tr>
<tr>
<td>Residual</td>
<td>3</td>
<td>14.4</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
<th>Lower 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.8</td>
<td>0.348</td>
<td>0.751</td>
<td>-6.513</td>
</tr>
<tr>
<td>X Variable 1</td>
<td>1.2</td>
<td>3.464</td>
<td>0.041</td>
<td>0.098</td>
</tr>
</tbody>
</table>

What is the value of R^2?
What is the least squares regression equation?
How much does y increase on average if x is increased by 1.0?
What is the sum of squared residuals? Do not compute the residuals; find the answer is the Excel output.
What is the sum of squares of deviations of y from \bar{y}?
By how much is the sum of squared errors reduced by using x to predict y compared to using only \bar{y} to predict y?
What is the residual for the point with $x = 2$?