Stat 3411 Section 6.5 Proportions

(1) \[\hat{p} = \frac{9}{235} \] For proportions \(\sigma^2 = p(1-p) \approx \hat{p}(1-\hat{p}) \)

\[SE_{\hat{p}} = \sqrt{\frac{\sigma^2}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]

\[\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{235}} \]

(b)

Z-Test

Ho: \(p = 0.07 \)

SE if \(H_0 \) true 0.017

Calculated \(z \) -1.905

\(p \)-values

\(Ha: \mu \neq \) 0.057

\(Ha: \mu < \) 0.028

\(Ha: \mu > \) 0.972

The only statistically significant test at the \(\alpha=0.05 \) level is for \(Ha: \mu < 0.07 \). For this test we reject \(H_0: p = 0.07 \) in favor of \(H_a: p < 0.07 \).

(2) Going through the details again behind the usual formulas:

\[Var(\hat{p}_1) = \frac{\sigma^2}{n_1} = \frac{\hat{p}_1(1-\hat{p}_1)}{n_1} \]

\[Var(\hat{p}_2) = \frac{\sigma^2}{n_2} = \frac{\hat{p}_2(1-\hat{p}_2)}{n_2} \]

For independent \(\hat{p}_1 \) and \(\hat{p}_2 \), \(Var(\hat{p}_1 - \hat{p}_2) = Var(\hat{p}_1) + Var(\hat{p}_2) \approx \frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2} \)

\[SE(\hat{p}_1 - \hat{p}_2) = \sqrt{Var(\hat{p}_1 - \hat{p}_2)} \approx \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} = \sqrt{\frac{0.56(1-0.56)}{100} + \frac{0.33(1-0.33)}{100}} \]

0.23 ± 1.96 * \[\sqrt{\frac{0.56(1-0.56)}{100} + \frac{0.33(1-0.33)}{100}} \]

- We use \(Z_{0.025} \) rather than \(t_{0.025} \) because the 1's and 0's that go into the means \(\hat{p}_1 \) and \(\hat{p}_2 \) are not normally distributed.

- In order for the Central Limit Theorem's approximate normality to work OK we need
o # of "successes": 56 and 33
 ▪ Both > 5. OK

o # of "failures": 100-56 = 44 and 100-33 = 67
 ▪ Both > 5. OK

○ The approximation is OK.

(b, c)
 • If \(p = 0.50 \), then the variance = \(0.5 \times (1-0.5) = 0.25 \).
 • If \(p = 0.80 \), then the variance = \(0.8 \times (1-0.8) = 0.16 \).
 • We have large variance if \(p = 0.50 \), so this require the larger sample size.
 o We used 0.50 when finding \(n \) when we didn't have any restrictions on what \(p \) might be.
 ▪ The "worst case" scenario.
 ▪ Since \(p = 0.5 \) is the worst case scenario, the required sample size is less when \(p = 0.8 \).

(d)
Z-Test

<table>
<thead>
<tr>
<th>Combined</th>
<th>(n)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho: (p_1 - p_2 = 0)</td>
<td>200</td>
<td>67</td>
</tr>
</tbody>
</table>

SE if \(H_0 \) true
\[0.067 \]

Calculated\[z \]
\[1.348 \]

p-values

<table>
<thead>
<tr>
<th>Ha: (\mu \neq)</th>
<th>Ha: (\mu <)</th>
<th>Ha: (\mu >)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.178</td>
<td>0.911</td>
<td>0.089</td>
</tr>
</tbody>
</table>

None of these test have significant differences since all p-values > 0.05.

(3)
(a) The worst case scenario with largest variance \(p(1-p) \) requiring the largest sample is for \(p=0.5 \)
\[
1.96 \times SE_{\hat{p}} \leq 0.01
\]
\[
1.96 \times \sqrt{\frac{0.5(1-0.5)}{n}} \leq 0.01
\]
\[n \geq 9604 \]

(b) If \(p \leq 0.25 \), then the worst case \(p \) closest to 0.5 is \(p = 0.25 \).
\[1.96 \times SE_{\hat{p}} \leq 0.01 \]
\[1.96 \times \sqrt{\frac{0.25(1 - 0.25)}{n}} \leq 0.01 \]
\[n \geq 7203 \]

(4)

\[\hat{p} \geq 5 \text{ and } n(1 - \hat{p}) \geq 5 \quad \hat{p} \Rightarrow \geq 5 \text{ and } n(1 - \hat{p}) \geq 5 \]
\[\text{count} \Rightarrow \geq 5 \text{ and } n - \text{count} \geq 5 \]

\[\bar{X} = 1.802 \quad S = 0.232 \]
\[P(Lifetime \leq 100) \approx P(X \leq \log(100)) = P\left(Z \leq \frac{2.000 - 1.802}{0.232}\right) \]
\[\approx P(Z \leq 0.853) = 0.803 \]
\[Z_{\text{Low}} = 0.853 - \frac{1.96}{\sqrt{23}} \sqrt{1 + \frac{(23/2) \times 0.853^2}{23 - 1}} = 0.373 \]
\[P_{\text{Low}} = P(Z \leq Z_{\text{Low}}) = P(Z \leq 0.373) = 0.645 \]
\[Z_{\text{Low}} = 0.853 + \frac{1.96}{\sqrt{23}} \sqrt{1 + \frac{(23/2) \times 0.853^2}{23 - 1}} = 1.333 \]
\[P_{\text{Low}} = P(Z \leq Z_{\text{Low}}) = P(Z \leq 1.333) = 0.909 \]