Tests and Confidence Intervals: Basic Facts

- \(SE_{\text{Estimate}} = \sqrt{\text{Var}(\text{Estimate})} \) with estimated variances from sample statistics

- \(\text{Var}(\bar{X}) = \frac{\sigma^2}{n} \)

- For independent variables \(\text{Var}(U \pm V) = \text{Var}(U) + \text{Var}(V) \)
 \[
 \text{Var}(\bar{X}_1 - \bar{X}_2) = \text{Var}(\bar{X}_1) + \text{Var}(\bar{X}_2) \\
 \text{Var}(\hat{p}_1 - \hat{p}_2) = \text{Var}(\hat{p}_1) + \text{Var}(\hat{p}_2)
 \]

- 95% confidence intervals are
 \[
 \text{Estimate} \pm t \times SE_{\text{Estimate}} \quad \text{Estimate} - t \times z_{0.025} \times SE_{\text{Estimate}} \quad \text{Estimate} + t \times z_{0.025} \times SE_{\text{Estimate}}
 \]
 For means use \(t \). For proportions, use \(z \).

- To test \(H_0: \text{Parameter} = \#_0 \), \(z_{\text{calculated}} \) or \(t_{\text{calculated}} = \frac{\text{Estimate} - \#_0}{\text{SE}_{\text{Estimate}}} = \text{SE's from } H_0 \)

- For rejecting \(H_0: \text{Parameter} = \#_0 \) for \(\alpha=0.05 \), the following are equivalent.
 - Reject \(H_0: \text{Parameter} = \#_0 \) in favor of
 - \(H_a: \text{Parameter} \neq \#_0 \) if \(|t \text{ or } z_{\text{calculated}}| > t \text{ or } z_{0.025} \)
 - \(H_a: \text{Parameter} > \#_0 \) if \(t \text{ or } z_{\text{calculated}} > t \text{ or } z_{0.05} \)
 - \(H_a: \text{Parameter} < \#_0 \) if \(t \text{ or } z_{\text{calculated}} < -t \text{ or } z_{0.05} \)
 - Or similarly for \(z_{\text{calculated}} \)

- Reject \(H_0 \) if p-value < \(\alpha = 0.05 \)

- Reject \(H_0 \) if the associated confidence interval (CI) does not include \(\# \)
 - Reject \(H_0 \) in favor of \(H_a: \text{Parameter} \neq \#_0 \)
 if 2-sided 95% CI doesn't include \(\#_0 \)
 - Reject \(H_0 \) in favor of \(H_a: \text{Parameter} > \#_0 \)
 if 1-sided 95% interval [Lower Bound, \(\infty \)] is completely above \(\#_0 \)
 - Reject \(H_0 \) in favor of \(H_a: \text{Parameter} < \#_0 \)
 if 1-sided 95% interval [\(-\infty \), Upper Bound] is completely below \(\#_0 \)

- The p-value for testing \(H_0: \text{Parameter} = \#_0 \) is
 - \(2P(T > |t \text{ or } z_{\text{calculated}}|) \) for \(H_a: \text{Parameter} \neq \#_0 \)
 - \(P(T > t \text{ or } z_{\text{calculated}}) \) for \(H_a: \text{Parameter} > \#_0 \)
 - \(P(T < t \text{ or } z_{\text{calculated}}) \) for \(H_a: \text{Parameter} < \#_0 \)
For Means
- Use sample standard deviations to estimate σ's in standard errors.
- For two independent groups with $\sigma_1^2 = \sigma_2^2 = \sigma^2$

 The pooled estimate of σ^2 is

 $S_p^2 = \text{Estimate of } \sigma^2 \text{ in } SE_{x_1-x_2}$

 $S_p^2 = \text{weighted average of } S_1^2 \text{ and } S_2^2 \text{ weighted by degrees of freedom}$

 df for $S_1^2 = n_1 - 1$. df for $S_p^2 = df_1 + df_2$

- For two independent groups without assuming equal variances

 Use S_1^2 and S_2^2 separately for σ_1^2 and σ_2^2 in $SE_{x_1-x_2} = \sqrt{SE_1^2 + SE_2^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

 $df = \text{Satterthwaite formula}$

For proportions
- $\hat{p} = \overline{X}$ where X_i are 0's and 1's

 $\sigma^2 = p(1-p)$

 X_i's are not normal.

 Use z (not t) as long as

 $np = \# \text{ of times event happened and } n(1-\hat{p}) = \# \text{ of times event didn't happened \ both } \geq 5$.

- $Var(\hat{p}) = \frac{\sigma^2}{n} = \frac{p(1-p)}{n}$

- Use \hat{p} for p in SE's

- When testing H_0 use SE's calculated for case where H_0 is true.

 $H_0: p = \#$. Use $\#$ for p

 $H_0: \hat{p}_1 = \hat{p}_2 = p$. Use combined estimate of p over both groups.