Variance Estimates and Degrees of Freedom

- For any t-test or confidence interval
 - $df = \text{degrees of freedom associated with estimate of } \sigma^2$
 - σ^2 is the variance of values measured under the same conditions
 - Within the same treatment group in chapter 6 t-tests or factorial designs
 - With the same x values in regression.

<table>
<thead>
<tr>
<th>Estimate of σ^2</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^2</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>s_{d}^2</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Assuming Equal Variances

- **2 Independent Groups**
 \[s^2_p = \frac{(n_1 - 1)s^2_1 + (n_2 - 1)s^2_2}{(n_1 - 1) + (n_2 - 1)} \]
 \[(n_1 - 1) + (n_2 - 1) \]

- **Multiple Groups and Factorial**
 \[s^2_p = \frac{\sum_{i=1}^{t} (n_i - 1) \cdot s^2_i}{\sum_{i=1}^{t} (n_i - 1) \cdot \sum (n_i - 1) } \]
 \[MS Error = MS Within = MS Residual \]

Regression with a Single X
 \[MS Error = MS Residual \]
 \[n - 2 \]

- **MS Error or MS Within or MS Residual** are just different names that get used for MS Residual
 - MS Residual or MS Error or MS Within estimates the variance of residuals, errors, y values with the same x value in regression, or y values within the same treatment group.

- For factorial data
 - The same estimate of σ^2 and the same df are use for any confidence intervals and t-tests,
 - Regardless of which treatment groups or combinations of treatment groups we are comparing.
 - The Estimate and SE Estimate will change depending on the comparison in the confidence interval or t-tests,
 - But $MS Error$ will be used for σ^2 in calculating any standard errors.

- **Special case for * and **
 - With equal n's, the pooled variance is a straight average of all variances.
 - Two groups: $s^2_p = \frac{s^2_1 + s^2_2}{2}$
 - Multiple groups: $s^2_p = \frac{s^2_1 + s^2_2 + \ldots + s^2_t}{t}$ for t treatments.