An Introduction to VLSI (Very Large Scale Integrated) Circuit Design

Presented at EE1001 Oct. 16th, 2012

By Hua Tang

The First Computer

The Babbage Difference Engine (1832)

25,000 parts

cost: £17,470

The first electronic computer (1946)

First Transistor (Bipolar)

First transistor Bell Labs, 1948

The First Integrated Circuits

Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Basic IC circuit component: MOS transistor

MOS: Metal Oxide Semiconductor

Intel 4004 Micro-Processor

1971 1000 transistors < 1MHz operation 10µm technology

Intel Pentium (IV) microprocessor

2001
42 Million transistors
1.5 GHz operation
0.18µm technology

More recent Processors

2006291 Million transistors3 GHz operation65nm technology

2007 800 Million transistors 2 GHz operation 45nm technology (the biggest change in CMOS transistor technologies in 40 years)

2010 Core i71.2 Billion transistors3.3 GHz operation32nm technology

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's law in Microprocessors

Transistors on Lead Microprocessors double every 2 years

Frequency

Lead Microprocessors frequency doubles every 2 years

Not Only Microprocessors

Cell Phone

HDTV

PDA

. . . .

What is a MOS Transistor?

A Switch!

An MOS Transistor

MOS Transistors - Types and Symbols

The CMOS Inverter: A First Glance

CMOS Inverter First-Order DC Analysis

Transient Response

The delay
Essentially
determines the
clock speed of the
processor

Static CMOS (Complementary MOS)

PUN and PDN are dual logic networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

Example Gate: NAND

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table of a 2 input NAND gate

PDN:
$$G = A B \Rightarrow Conduction to GND$$

PUN:
$$F = A + B = AB \Rightarrow Conduction to V_{DD}$$

$$G(In_1,In_2,In_3,\ldots) \equiv F(\overline{In_1},\overline{In_2},\overline{In_3},\ldots)$$

Example Gate: NOR

	A	В	Out		
	0	0	1		
	0	1	0		
	1	0	0		
	1	1	0		
Truth Table of a 2 input NOR gate					

Full-Adder

A	В	$C_{\boldsymbol{i}}$	S	C_{o}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The Binary Adder

$$S = A \oplus B \oplus C_{i}$$

$$= A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{i}$$

$$C_{0} = AB + BC_{i} + AC_{i}$$

Complimentary Static CMOS Full Adder

28 Transistors

The Ripple-Carry Adder

SRAM Memory cell

The add-up

32-bit adder: >3,000

32-bit comparator: >3,000

32-bit multiplier: >50,000

1k SRAM: 6,000

. . .

Design Metrics

- □ How to evaluate performance of a digital circuit (gate, block, ...)?
 - Cost
 - Reliability
 - Scalability
 - Speed (delay, operating frequency)
 - Power dissipation
 - Energy to perform a function

Future Design Challenges

- Processor architecture (multiple-core; interconnections)
- □ Semi-conductor materials (current leakage; process variation)

□ Power consumption (power density; thermal dissipation)

Career in VLSI design

VLSI circuit design and design automation

- □ Intel, IBM, AMD, Texas Ins., Agilent,...
- □ Qualcomm, Broadcom, Samsung,...
- □ Micron, Seagate, WesternDigital...
- □ Cadence, Synopsys, MentorGraphics...
- □ Xilinx, Altera,

. . . .

VLSI Design: FFT Butterfly

- Widely used in signal processing
- Design Butterfly Unit for 2-point FFT
- Components include multiplier, adder, subtractor, and data management

8-point FFT composed of 12 butterflies

Image from www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

By: Spencer Strunic
Matt Webb

FFT Butterfly Unit Layout

VLSI Design: 8-bit CPU

- □ Registers
 - Store data
 - Manipulate data
- **ALU**
 - Select between many different operations to output
- □ Adder
 - Adds two 8-bit numbers
- Multiplier
 - Multiplies two 8-bit numbers

By: Brian Linder Matt Leines

8-bit CPU Layout

FIR Filter

- □FIR Finite-Impulse Response
- Involves calculations of finite convolution sums in discrete-time systems
- □ Useful for Digital Signal Processing
- □ Equation -

$$y[n] = \sum_{k=0}^{N-1} h[k]x[n-k]$$

x is the input signal, h is the finite impulse response, y is the sum output and N is the order of the filter

By: Craig Bristow
Joliot Chu

FIR Filter System Design

Module 1 - Control Module

Module 2 – Input Module

Module 3 – Coefficients Module

Module 4 – Arithmetic Module

Module 5 – Results Storage

A Delta-Sigma Converter for WCDMA

Nowdays, many electronic systems on a single chip have both analog and digital (called Mixed-signal SoC (System on Chip))

From Texas Instruments

Why A-D Interface?

- Nature is analog, not digital.
- A-D interface's role is "translator".

Contact Information:

Office: MWAH 276

Hour: 3-5pm MW

Phone: 726-7095

Email: httang@d.umn.edu

Http: www.d.umn.edu/~htang