SPSS 15 Select Cases (revised October 15, 2008)

You may need to run some analyses by only looking at specific cases (e.g. just those who said they “will never eat in this stupid restaurant again!”). Here’s how to do this:

1. Click on Data.
2. Click on Select Cases.
3. Select “If condition is satisfied” alternative.
4. Select “Filtered” in the “Unselected Cases Are” box at the bottom.
5. Click on “If”. This opens a dialog box which allows you to choose the variable (e.g. the variable name might be EATTH, “will eat there again?”) and a value (e.g. 2, if that means “they will never eat there again”). So, it would end up looking like this: EATTH=2. Then click on Continue.

If you want to choose more than value for a variable (like you want to select all cases where EATTH is either 2 or 3) you can do that as well. In this example it would end up looking like this: EATTH = 2 | EATTH=3

Here are what the other operators mean (you will see these on your screen):

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>=</td>
<td>Equal to</td>
</tr>
<tr>
<td>&</td>
<td>And</td>
</tr>
<tr>
<td>~</td>
<td>Not</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>~=</td>
<td>Not equal to</td>
</tr>
</tbody>
</table>

6. After you’ve chosen all of the values to include, click on Continue
7. Click on OK. Now, only those cases are selected that meet your criteria. You’ll notice that the sample size is now reduced. Now you can run Frequencies or whatever analysis you want to run.

TO TURN OFF SELECT CASES, YOU MUST CLICK ON DATA, THEN THE SELECT CASES DIALOG BOX AGAIN AND THEN “SELECT ALL CASES.” If you forget, everything else will just run with this reduced sample size.

Recoding into New Groups

You may need to recode some variables, which means to put them into groups (e.g. recode age into 18-25, 26-35, etc.). Here’s how to do this:

1. Click on Transform
2. Click on Recode.
3. Choose either Into Different Variable (it will permanently change the values in your variable) or Into Different Variable (it will create a new variable, so your old one won’t get changed). I personally recommend that you recode them into different variables (just make up some name and put it in the box labeled “Name” under the words “Output Variable”).
4. Use the arrow in the middle to slide over variable you want to recode. If you are recoding into a new variable, put it in the “output variable name” box and hit “changes” button.
5. Click on Old and New Value at the bottom. In the left side of this dialog type in the old value, or range (e.g. 18...25). Then in the right side, type in the new value (e.g. 1).
6. Click on Add.
7. Keep doing this for all the recoding you need to do.
8. When you’re through, click on Continue.
9. Click on OK.

To recode another variable, follow this procedure again.

Note: Anything you recode will be permanent until you change it back again.
How to Run Other Types of Analyses

You are responsible for deciding what kind of analyses your team should perform. Try lots of different kinds of things. You’ll be surprised what you might learn! How many should your team run? That is up to your team. Obviously, you have to at least analyze the data enough to answer the research questions. Think logically. Assume you are the decision maker. What kinds of information would you want? What would be most useful?

CROSSTABS You may need to look at two groups at one time (e.g. males versus females on how they answered all the questions in your survey).

[Note: You may need want to recode before running crosstabs. Why? If you crosstab age (that was input not in categories) with gender, you may end up with, say, a 25 x 2 table, which is way too long and confusing. If you recoded age into, say three age categories, your table will only be 3 x 2, a much more easy-to-use table.]

Here’s how to run CROSSTABS:

1. Click on Analyze
2. Click on Descriptive Statistics
3. Click on Crosstabs.
4. Highlight and move over the variables you want to put in rows (these will be on the left side of the paper).
5. Highlight and move over the variables you want to put in columns (these will be on the top of your output).
6. Click on Cells at the bottom of the screen. This allows you to choose what kinds of numbers (counts, percentages, etc.) you want displayed in your tables. Hint: You’ll usually want row or column percentages, not counts.
7. Click on Continue
8. Click on OK.

OTHER ANALYSES Of course, you may want to run other analyses (like t-tests, correlations, Regressions, ANOVAS, etc). What to run? Try looking in your textbook for ideas. Also, you can use the Statistics Coach from HELP.

Statistical Test Results–INTERPRETATION

p value, or significance level (sometimes just called “sig.” in SPSS) This is the probability of getting a test statistic due to chance or sampling error. Thus, if you’re running a two sample t test (to see if two means are actually different) and get a p value (or “Sig.”) of .321, that means there is a 32.1% chance that the t test difference found was just due to error. Thus, the means are probably not significantly statistically different from each other. You compare the significance level given to you by a test against some predetermined value (often .05, but could easily be .10 or some other number).

Independent Samples t-test If you run a two sample t-test, you’ll get several test results. The first is Levene’s Test for Equality of Variances. Look at the significance level. If it is small (less than .05) you have unequal variances, and you use the row entitled “Equal Variances Not Assumed.” If it is high (greater than .05), you have equal variances and you should use the row that is titled “Equal Variances Assumed.” The actual t-test itself is in the column titled “Sig. 2-tailed.” If the number in that column is small (e.g., less than .05) you interpret this to mean that the means are unequal (in other words, they are significantly different from each other).

Chi-Square test You must meet the test assumptions before you can interpret the chi square test. The assumptions are: No more than 20% of categories can have expected frequencies of less than 5 and none should be less than 1. If either situation exists, you’ll need to “squash” into fewer categories and rerun the test. Note that once you get to a 2 x 2 table, you can’t squash it anymore.